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Abstract

Background: There are currently 7 known serotypes of botulinum neurotoxin (BoNT) classified upon non-cross reactivity of
neutralizing immunoglobulins. Non-neutralizing immunoglobulins, however, can exhibit cross-reactivities between 2 or
more serotypes, particularly mosaic forms, which can hamper the development of highly specific immunoassays, especially
if based on polyclonal antisera. Here we employ facile recombinant antibody technology to subtractively select ligands to
each of the 7 BoNT serotypes, resulting in populations with very high specificity for their intended serotype.

Methods and Findings: A single llama was immunized with a cocktail of 7 BoNT toxoids to generate a phage display library
of single domain antibodies (sdAb, VHH or nanobodies) which were selected on live toxins. Resulting sdAb were capable of
detecting both toxin and toxin complex with the best combinations able to detect 100s-10s of pg per 50 mL sample in a
liquid bead array. The most sensitive sdAb were combined in a heptaplex assay to identify each of the BoNT serotypes in
buffer and milk and to a lesser extent in carrot juice, orange juice and cola. Several anti-A(1) sdAb recognized A2 complex,
showing that subtype cross-reactivity within a serotype was evident. Many of our sdAb could act as both captor and tracer
for several toxin and toxin complexes suggesting sdAb can be used as architectural probes to indicate BoNT
oligomerisation. Six of 14 anti-A clones exhibited inhibition of SNAP-25 cleavage in the neuro-2A assay indicating some
sdAb had toxin neutralizing capabilities. Many sdAb were also shown to be refoldable after exposure to high temperatures
in contrast to polyclonal antisera, as monitored by circular dichroism.

Conclusions: Our panel of molecularly flexible antibodies should not only serve as a good starting point for ruggedizing
assays and inhibitors, but enable the intricate architectures of BoNT toxins and complexes to be probed more extensively.

Citation: Conway JO, Sherwood LJ, Collazo MT, Garza JA, Hayhurst A (2010) Llama Single Domain Antibodies Specific for the 7 Botulinum Neurotoxin Serotypes
as Heptaplex Immunoreagents. PLoS ONE 5(1): e8818. doi:10.1371/journal.pone.0008818

Editor: Andreas Hofmann, Griffith University, Australia

Received November 6, 2009; Accepted December 23, 2009; Published January 21, 2010

Copyright: � 2010 Conway et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Defense Threat Reduction Agency (DTRA) Medical Program (HDTRA 1-07-C-0018) and National Institutes of Health
(NIH) construction grant C06 RR12087. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
SFBR is a non-profit organization devoted to improving global human health through innovative biomedical research.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ahayhurst@sfbr.org

. These authors contributed equally to this work.

Introduction

Botulinum neurotoxins (BoNT) are still the most poisonous

naturally occurring substances known [1], with extrapolations

from non-human primate studies indicating that lethal doses for

humans would be 1 mg/kg, 10 ng/kg or 1 pg/kg for oral,

inhalation and injection routes respectively [2,3,4]. For perspec-

tive, it has been estimated that BoNT are 100 billion times more

toxic than cyanide [5]. The extreme potency, widespread

distribution in soils of producing strains, and relative ease of

production has meant that BoNT are the only toxins in the highest

risk group i.e., CDC category A, of biological agents thought to

pose a potential threat alongside Marburgvirus and Bacillus anthracis

[6,7]. Indeed, it has been predicted that contamination of

centralized milk supplies could result in hundreds of thousands

of cases in the absence of suitable detection methods [8] and it has

been speculated that, ‘‘it is likely only a matter of time until

botulism is intentionally caused…’’ [9]. Since intoxication can

result in a paralysis so severe it can require mechanical ventilation

for weeks to months, it would be facile to overwhelm health

authorities and cause mass casualties via BoNT mis-use [9,10].

Specific species of the spore forming anaerobe Clostridium

produce BoNT as 150 kDa proteins with one or more neurotoxin

accessory proteins (NAPs) to form toxin complexes or progenitors

of varying sizes approximately 300, 500, and 900 kDa known as

M, L and LL. The NAPs shield the toxin from the harsh protease

rich environments of the stomach and intestine, elevating the

potency of the ingestion route several hundred fold over toxin and

may also play a role in uptake across the intestinal epithelium. The

toxins themselves consist of an N-terminal translocation domain

(Hn or HCT) and C-terminal receptor binding domain (Hc or

HCR) comprising a 100 kDa heavy chain (HC) fragment, which is

disulfide linked to a 50 kDa proteolytic light chain domain (LC or

Lc). The Hc targets receptors on pre-synaptic membranes at
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neuromuscular junctions where the toxin is endocytosed and the

Hn is subsequently triggered by low pH to translocate the Lc into

the cytosol. Lc cleaves specific proteins involved in acetylcholine

release to inhibit nerve transmission and cause muscle relaxation

(for recent review see [11]).

There are 7 serotypes of BoNT (A, B, C, D, E, F and G) based

upon non-cross-reactive neutralizing antisera specific to the

150 kDa toxin component. While A, B, E, and F have been

definitively linked to human botulism, G has been implicated in 7

cases of sudden unexpected deaths [12,13], and C, D are typically

associated with farming/wildlife outbreaks. Importantly, all 7

serotypes have been shown to be highly lethal in non-human

primate models [3]. Neutralizing sera are not necessarily

absolutely specific since cross-neutralization can occur between

E and A [14], B, F [15]. A non-protective antibody cross-reactive

with B, C, D and E has been isolated [16] and polyclonal

antibodies raised to fragments of A have been shown to cross react

with heterologous holotoxins [17]. Furthermore, serotypes D and

C have high Lc and Hn homologies, which can confer cross-

reactivity to antibodies [18,19] and some C/D and D/C toxins are

‘‘mosaics’’ with low homology to either parent in the Hc domain

[20]. Several serotypes have subtypes (currently A = 5, C = 2,

D = 2, E = 3 and F = 4) that can show reduced reactivity towards

antibodies to the major subtype [21,22,23]. Indeed, sequence

divergence of the BoNT is substantial considering they share many

similarities in a complex series of functions [24]. For example,

each serotype has a unique protease cleavage site specificity within

the SNARE complex, though often in shared targets with A and E

recognizing SNAP-25, B, D, F and G recognizing VAMP and C

recognizing both SNAP-25 and syntaxin. The cleavage specificities

of various subtypes are under study with remarkable differences in

cleavage rates among recombinant Lc of A1-A4 already being

observed using synthetic SNAPtide substrate [25].

The NAPs tend to be less conserved across serotypes, though

homologies have been identified from recent genomic studies

[26,27] and cross-reactivities have been noted from immunological

studies [28,29,30]. Within those subtypes so far studied, NAPS can

also vary, with prominent components such as HA33 of subtype A1

being present in A4 but not A2 or A3 for example [27]. Thus, the

addition of NAPs to toxin varies according to serotype and

potentially subtype: A exists in M, L and LL forms; B/C/D/E in

L and M forms; F in M form; and G in L form. C. botulinum normally

produces one of A, B, C, D, E or F and C. argentinense produces G. C.

butyricum and C. baratii also produce E and F, respectively, yet the E

has been shown to be partially immunologically distinct from the

botulinum E counterpart [31] and the F is even more divergent [32]

and expected to be sero-distinguishable. Some B and all E strains are

non-proteolytic and so the toxin is a single chain molecule that may

have different surface topography to the component chains once

nicked and activated as shown for serotype E [33]. To complicate

matters more, bivalent strains of C. botulinum exist, which can

produce two different serotypes (Ab, Af, Ba, or Bf) where the capital

letter indicates the prominent serotype [15]. Finally, the NAPs have

been shown to occlude the recognition of toxin by particular

antibodies [34], though exposure to high pH can reduce this steric

hindrance [35,36]. As can be seen, immunoassay development for

BoNT and their complexes is extremely challenging!

We are interested in developing disruptive antibody technolo-

gies to probe and counter high consequence targets, and one

aspect of this employs llama single domain antibodies (sdAb or

nanobodies) to generate rugged ligands [30,37,38]. SdAb are

derived by cloning the variable domains of the heavy chain only

antibody of Camelids or IgNAR of sharks and expressing them

recombinantly (see [39,40,41] for reviews). SdAb are highly

soluble, well expressed, and have been shown to refold after

thermal or chemical denaturation unlike conventional multi-

domain immunoglobulins or their recombinant derivatives

[42,43,44,45]. At approximately 1/10th the size of an IgG, their

compact architecture is proving advantageous in accessing cryptic

epitopes normally out of bounds to standard immunoglobulins

[46,47] potentially offering new routes of neutralization. SdAb also

appear highly capable of crystallizing and co-crystallizing with

their target antigens to enable high resolution structures of even

fickle targets to be obtained [48,49].

With all of these advantages in hand, we reasoned that sdAb

would make ideal candidates to begin probing the complex

antigenic make-up of the BoNT molecules and offer potentially

novel inhibitory routes. Therefore, we chose to generate sdAb to

all 7 BoNT serotypes and examine their specificities and

sensitivities on both toxins and toxin complexes. We also examined

the in vitro neutralizing ability and the molecular flexibility of some

of the sdAb obtained.

Results and Discussion

Generating Anti-BoNT sdAb
We immunized a single llama with a cocktail of all 7 serotypes of

the toxins as toxoids and observed seroconversion against toxoids,

toxins and toxin complexes by ELISA (Figure 1). We used 6

immunizations yet did not see appreciable increase in seroconver-

sion between doses 4 and 6, suggesting the response had plateaued

(data not shown). After the final immunization, we cloned the

variable heavy chain repertoire into a phage display vector using

variable heavy domain framework 1 and 4 specific primers to

capture VHH and VH genes since the latter have been shown to

produce sdAb with favorable biophysical characteristics too [50].

The library was approximately 1e+9 clones with 24/24 unique

clones having inserts at a ratio of almost 2 VH: 1VHH as judged by

examining the amino acid composition of framework 2 [51].

The library was mined for BoNT binders by selections on

biotinylated toxins in the presence of excess non-biotinylated

decoy toxins, resulting in the isolation of polyclonal phage mostly

specific for the serotype upon which they were selected except for

those selected on C (C1) and D (Figure 2). Serotypes C and D

share regions of homology, particularly in the Hn domain [20],

implying that some sdAb selected on D or C could be cross-

reactive. Furthermore, the D serotype supplied by Metabiologics is

actually a D/C mosaic, and while it shares high Hn homology and

partial Lc homology, it differs from both D and C parental

serotypes in its Hc [20].

The polyclonal phage populations were deconvoluted by

monoclonal phage ELISA on the serotype of toxin upon which

they were selected and positive clones sequenced to reveal several

unique predicted amino acid sequences for each serotype A(18),

B(21), C(26), D(36), E(8), F(10) and G(27) (Figure S1). It is

noteworthy that only 10 of 146 unique sequences were VH (A14,

A15, B21, D4, D5, D12, D13, D19, D20 and G24) suggesting that

there may actually be a counter-selection against these domains

perhaps due to the lack of affinity contributions by VL. However,

the dominance of VH over VHH has recently been shown for

cancer marker antigens [52], indicating that the target require-

ment for VL contributions and/or other factors are at play.

Despite the cross-reactivity between C and D, we could not

identify any clones that were common to both populations.

Characterization of Anti-BoNT sdAb Serotype Specificity
We managed to subclone, express and purify over 100 different

sdAb genes A(18), B(19), C(22), D(28), E(8), F(9) and G(22) for

Heptaplex Anti-BoNT Nanobodies
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analysis. The purified sdAb proteins were incorporated into bead

suspension microarrays (Luminex). Each antibody was coupled to

a unique bead region so that the mix of captors could be analyzed

against each biotinylated tracer individually for specificity to be

gauged and a first indication of sensitivity to be noted. To choose

appropriate clones, we used a concentration of 1e+5 pg BoNT per

well, which did not saturate our ligands and so resulted in

sensitivity discrimination. First, we chose an upper limit of

approximately 500 median fluorescent intensities (MFI) from this

data to rule out relatively insensitive combinations that would not

have the dynamic range we sought (ideally several thousand MFI).

Second, we calculated the percentage cross-reactivity of each pair

on mixes of decoy toxins and toxin complexes (Tables S1).

Almost all sdAb were capable of highly specific recognition of

the serotype upon which they were selected apart from some of the

C and most of the D populations, presumably owing to the

homologies previously discussed. Typically, for each pair of sdAb

captor and tracer, the mean percentage cross-reactivity on a mix

of non-cognate or decoy serotypes was below 0.1%. High

resolution of target serotype indicates that, apart from when

mosaic toxins are encountered, subtractive panning on live

holotoxins is capable of delivering ligands with the desired

specificity. The anti-C clones that did have high reactivities on

non-cognate mixes were further examined to confirm that it was D

(D/C mosaic) reactivity rather than broader cross-reactivity (data

not shown). We therefore did not pursue anti-C clones that

showed high cross-reactivities further. Since the E proteins we

used were based upon non-activated forms we expect our clones to

be able to detect naturally occurring forms and further studies will

be needed to determine if they are capable of recognizing the

dichain molecules.

All sdAb were capable of binding both toxin and toxin complex

suggesting that 1) either the sdAb targeted epitopes on the toxin

not shielded by the complex of NAP proteins as seen with some

Figure 2. Capturing the llama anti-BoNT repertoire by phage display. Polyclonal phage ELISA of round 2 selected phage populations
analyzed on each a) toxin or b) toxin complex indicates the potential degree of specificity for the serotype of toxin upon which the population was
selected.
doi:10.1371/journal.pone.0008818.g002

Figure 1. Seroconversion of Snoop the llama after being immunized with the 7 serotypes of BoNT toxoids. Antibody capture from
serum after the 6th immunization was monitored on the seven serotypes of a) toxoid, b) toxin and c) toxin complexes versus a control antigen, bovine
serum albumin (BSA).
doi:10.1371/journal.pone.0008818.g001

Heptaplex Anti-BoNT Nanobodies

PLoS ONE | www.plosone.org 3 January 2010 | Volume 5 | Issue 1 | e8818



scFv [34], or 2) the toxin complexes were disassembled and were

not shielding the toxin effectively. We found it odd that none of our

sdAb to any serotype appeared to be occluded by the complex

proteins and it would be tempting to speculate that the small size

of the sdAb may enable them to penetrate the NAP shield and

target the toxin beneath. However, it is important to note that our

PBSTB assay buffer is pH 7.3, which may encourage the

dissociation of the complexes which is favored by alkaline

pH 7.5–8 [35,36,53,54]. However, as noted below, the range of

sdAb able to act as both tracer and captor varied between toxin

and complex, indicating that toxin epitopes were not identically

presented, inferring that complex dissociation was not occurring or

was incomplete.

Many sdAb could perform as both captor and tracer, thereby

hinting at the oligomeric potential of some toxins and their

complexes. It has been found previously that at pH 7.0 toxin A

can be detected as a dimer, trimer and higher species, B as a

dimer, and E as a dimer and monomer [55]. We noticed sdAb

clones B2, B3, B5, B7, B17 and B18 were capable of detecting

toxin when used alone and also capable of detecting complex

alone, as were B4, B6, B10, B13, B14 and B20. Only C6 could

detect toxin alone, yet C3, C4, C6, C7, C8, C22 and C25 were

able to detect complex. D22, E8, F5 and F9 were also single-

handedly able to detect their respective toxins and toxin

complexes. Of the anti-G clones, only G11, when used alone,

was able to detect toxin, while G2, G3, G4, G11 and G18 were all

able to detect complex. Therefore, it is possible that B, C, D, E, F,

G toxin complexes, and perhaps C, F and G toxins also form

dimers or higher structures, though cross-linking and other

biophysical analyses will naturally be needed to confirm these

suspicions.

The pairs with the lowest cross-reactivity and therefore the

highest specificity are presented in Table 1 with the values

obtained using rabbit polyclonal sera as controls to demonstrate

improved specificities of sdAb. Our sdAb are between 775 fold (B

complex) and 48 fold (C toxin) less cross-reactive than the

corresponding rabbit polyclonal sera.

Characterization of Anti-BoNT sdAb Sensitivity
The best pair of sdAb against each serotype was then employed

in a titration of cognate toxin and toxin complex to determine the

lower limits of detection (Figure 3). Our threshold was set at the

MFI value obtained by multiplying by ten, the MFI yielded on

1e+5 pg mix of non-target serotype. Since there can be batch to

batch variation of toxin preparations and a standardized mouse

bioassay can be used to normalize active toxin concentrations

between them, we also calculated the lower LOD in MLD50 based

upon activity data kindly provided by Metabiologics. We therefore

estimate our lower LOD per 50 mL sample to be approximately

30 pg (0.81 MLD50) of A toxin, 100 pg (3.5 MLD50) of A complex,

Table 1. Comparison of cross-reactivities of the chosen sdAb pairs specific for each serotype and rabbit polyclonal antibodies
when challenged with 1e+5 pg of toxins or toxin complexes.

Antigen Captor Tracer Cognate mMFI1 Non-cognate mMFI2 % Cross-reactivity

A toxin A18 A17 7349677 2.2560.25 0.03

B toxin B4 B2 18716247 1.2560.75 0.07

C toxin C1 C24 7009661 8.062.0 0.11

D toxin D22 D16 1393648 32.2560.25 2.32

E toxin E7 E4 3052658 2.7560.75 0.09

F toxin F9 F5 7032677 4.560.5 0.06

G toxin G20 G3 50086197 1.560.5 0.05

A toxin A Rab A Rab 910640 11168.5 12.1

B toxin B Rab B Rab 2226634 12564.75 5.6

C toxin C Rab C Rab 1453671 7762 5.3

E toxin E Rab E Rab 388641 4761.75 12.2

F toxin F Rab F Rab 415627 4262 10.1

A complex A18 A17 40916102 2.060 0.05

B complex B4 B2 113906130 2.060 0.02

C complex C1 C24 37666358 3.2560.75 0.09

D complex D22 D16 1343678 4.062 0.3

E complex E7 E4 23116126 3.560.5 0.15

F complex F9 F5 59406113 7.560.5 0.13

G complex G20 G3 53746357 2.060 0.04

A complex A Rab A Rab 16906205 6868 4.0

B complex B Rab B Rab 2655657 411623.5 15.5

C complex C Rab C Rab 808640 7768.5 9.5

E complex E Rab E Rab 470635 5361.25 11.2

F complex F Rab F Rab 247612 3665.5 14.4

1Cognate refers to the serotype on which the sdAb were selected upon or raised against (for the rabbit sera).
2Non-cognate refers to a mix of all other serotypes at 1e+5 pg each.
1,2mMFI, mean median fluorescent intensity.
doi:10.1371/journal.pone.0008818.t001
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300 pg (33 MLD50) of B toxin, 100 pg (0.95 MLD50) of B

complex, 300 pg (7.2 MLD50) of C toxin, 600 pg (4.2 MLD50) of

C complex, 500 pg (45 MLD50) of D toxin, 60 pg (1.74 MLD50) of

D complex, 80 pg (4.8 MLD50) of E toxin, 300 pg (9 MLD50) of E

complex, 30 pg (0.6 MLD50) of F toxin, 200 pg (0.64 MLD50) of F

complex, 100 pg (1.4 MLD50) of G toxin and 70 pg (0.27 MLD50)

of G complex. A heptaplex assay was established in buffer, milk,

orange, carrot juice and cola (Figure 4) revealing that the panel

could detect and discriminate all serotypes when present at

1e+4 pg/well in buffer and milk, but to a lesser extent in the other

matrices. We relied on microfiltration for our assay and had to

centrifuge the food matrices to avoid clogging and did not monitor

any losses of toxin or complex in that process nor adherence to the

filters themselves. Perhaps magnetic beads would be more reliable

Figure 3. Deducing the sensitivity of selected anti-BoNT llama single domain antibodies. Lower limits of detection of the best antibody
pairs on cognate toxin and toxin complex for each serotype a) A, b) B, c) C, d) D, e) E, f) F, and g) G. To provide a non-specific background value for
each plot, the mMFI of the pairs employed on 1e+5 pg/well (i.e. 10x the top concentration used in this titration) of non-cognate serotypes are
provided as follows: A toxin, 2.3; A complex, 2.0; B toxin, 1.3; B complex, 2.0; C toxin, 8.0; C complex, 3.3; D toxin, 32.3; D complex, 4; E toxin, 2.8; E
complex; 3.5; F toxin, 4.5; F complex, 7.5; G toxin, 2.5; G complex, 2.0.
doi:10.1371/journal.pone.0008818.g003
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Figure 4. Heptaplex assays using selected pairs of anti-BoNT captors and tracers in various food matrices. Assays were challenged with
1e+4 pg per well of each of the toxin or toxin complexes in a) PBSTB, b) 2% reduced fat milk, c) orange juice d) carrot juice and e) cola.
doi:10.1371/journal.pone.0008818.g004
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for food-stuff analysis to avoid such aggressive sample preparation

[56]. Captor D (raised against a D/C mosaic) though relatively

specific with tracer D alone (table 1), here appeared to also capture

C complex (and C toxin in buffer) perhaps by virtue of tracer C

binding. While we have not matched the high sensitivities of and

breadth of foodstuffs tested by others [57] the methodology could

be improved using directed evolution of the sdAb genes and can

also be fully automated on the FDA approved Bioplex 2200. It

would certainly be exciting to test the current assay on ‘‘real world

samples’’ to give us an idea of whether our chosen clones are

indeed the best performers in harsh matrices and crude culture

filtrates.

Characterization of Anti-BoNT sdAb Subtype Specificity
The anti-A (A1) clones showed varying reactivity against A2

complex and we tabulated the A2 cross-reactivities for those

combinations already having the highest specificity for A1

(Table 2). While many (n = 10) combinations were highly specific

for A1 (0–1% A2/A1 cross-reactivity), most (n = 19) showed

marginal (1–10%) cross-reactivities, yet some (n = 3) showed high

(80–100%) cross-reactivities. Our most sensitive combination of

A18 captor with A17 tracer was still capable of 32% cross-

reactivity. Based on extrapolation of data in figure 3a., we would

expect a lower limit of detection of approximately 300 pg (21

MLD50) of A2 complex and 100 pg of A2 toxin in a 50 mL sample

volume if a signal to noise ratio of 10 is used to define a positive.

We aim to further explore subtype specificity of anti-A clones and

other clones using synthetic gene assembly of BoNT domains since

rare subtypes can be fickle to obtain.

Inhibitory Effect of sdAb on BoNT Activity
We employed the neuro-2A assay to preliminarily explore any

inhibitory effects of sdAb on BoNT activity. The assay involves

combining toxin with antibody and incubating the mix over the

neuroblastoma monolayer for several days, after which, the

cleavage of the pertinent SNARE target is monitored. We

concentrated on our anti-A clones and show that six of the anti-

A clones (A1, A2, A8, A9, A16, A17) demonstrate reduced SNAP-

25 cleavage by virtue of a decrease in the amount of D-SNAP-25

relative to SNAP-25 itself (Figure 5). This assay and others like it

are complex and rather fickle since a relatively large amount of

toxin is required to elicit modest cleavage which can only be

monitored after cell collection, lysis and western blotting. That

these remarkable little antibodies 1/10th the size of the toxins can

impact intoxication under these conditions certainly indicates

more decisive studies are needed. We hope to use more

streamlined assays that enable cleavage to be monitored in vivo

[58] for all of our clones and then deconvolute the sites of

inhibition. Since sdAb have been shown to be ideally suited for

inhibiting enzymes by intruding into their catalytic pockets [47],

exploring this potential with in vitro cleavage assays [59] will be

especially exciting!

Molecular Flexibility of the Anti-BoNT sdAb
We examined the refoldability of our best sdAb candidates using

circular dichroism (Figure S2, panels a-n) and found they varied in

their ability to regain a refolded state with C24, D22, F5, G3 and

G21 outperforming the rest (Table 3). Suspecting that molecular

heterogeneity may have been responsible for mediochre perfor-

mance in this assay we re-purified A17 and A18 on a larger scale

and subjected the proteins to more stringent chromatography

conditions such that by SDS-PAGE they were judged to be .98%

pure, yet saw the same CD signatures (data not shown). While we

chose the fastest cycling times and did not optimize buffer

conditions, nor explore chemical denaturation, it has been noted

previously that sdAb can vary widely in their molecular flexibility

and ability to refold [60]. Despite this, all but one of our

candidates (F9) appeared superior to the polyclonal conventional

IgG preparations (Figure S2, panels o-s).

Conclusions
In this work, our goal was not so much to compete with existing

diagnostics and therapeutics for BoNT but rather begin exploring

the capacity of a relatively novel type of antibody (sdAb or

nanobody) to probe the BoNT architectures for unique epitopes

and inhibitory activities. It appears that sdAb are capable of highly

specific BoNT recognition, perhaps by virtue of their smaller non-

antigen binding surface areas minimizing unwanted cross-

reactivities as opposed to larger multi-domain immunoglobulins.

Several sdAb were capable of acting as both captor and detector

for specific BoNT serotypes, indicating their potential as probes for

toxin and toxin complex higher order structures. A handful of anti-

A clones were also shown to inhibit the activity of BoNT A in a

tissue culture assay and it would be pertinent to determine if the

inhibition occurs via receptor blocking or at a later stage via uptake

[61].

We were impressed by the ability of a single llama to deliver a

broad range of ligands with good sensitivity and mostly exquisite

Table 2. Distribution of A2 cross-reactivities of the most
serotype A specific tracer captor pairs.

% cross-reactivity
on A2

Pairs with non-cognate
cross-reactivity , = 0.1%

Pairs with non-cognate
cross-reactivity , = 1%

0–1 2 8

1–10 5 14

10–20 4 4

20–40 5 4

40–60 2 2

60–80 0 2

80–100 0 3

doi:10.1371/journal.pone.0008818.t002

Figure 5. In vitro tissue culture assay to discover potential inhibitory activities of our sdAb clones. Neuro-2A assay demonstrating the
ability of some of the anti-A BoNT sdAb to inhibit the process of BoNT intoxication by reducing the intracellular cleavage of SNAP-25. + indicates toxin
without sdAb and – indicates no toxin and no sdAb.
doi:10.1371/journal.pone.0008818.g005

Heptaplex Anti-BoNT Nanobodies

PLoS ONE | www.plosone.org 7 January 2010 | Volume 5 | Issue 1 | e8818



specificity, after being immunized with relatively low amounts

(since they were so costly) of multiple immunogens that have been

shown to be far from native [62] and far from optimal in eliciting

the highest antibody titers [63,64]. Our low immune responses

and resulting mediochre limits of detection for serotype E and F

especially, would indicate that using newer more native toxoided

formulations [63,64], catalytically inactive mutants [65,66,67],

bead bound forms [56] or recombinant BoNT fragments

[14,18,68,69] may deliver a wider diversity of sdAb with higher

sensitivities. To our knowledge, these sdAb represent the first

recombinant antibodies specific for BoNT serotypes other than A,

B or E [70,71,72,73] and we hope these and future improved

derivatives will facilitate increased biosecurity. For example, many

new and promising detection systems can be super-sensitized with

an antibody capture step [74,75], and these may benefit from non-

inhibitory antibodies to less common BoNT serotypes.

It would be difficult to envision these current sdAb as

competitors with very promising immunotherapeutics derived

from fully human recombinant antibody cocktails [76] that are

aimed at clearing toxin appearing in serum prior to uptake by

susceptible neurons, since sdAb are likely to be both rapidly

cleared without modification [77] and then potentially immuno-

genic unless humanized. However, since such a countermeasure

must be given immediately after exposure, there is great interest in

novel approaches to inactivate/eliminate toxin once neuronal

uptake has occurred and botulism is fully apparent. Once inside

the neuron, toxin is refractory to conventional circulating

antibodies though may perhaps be targeted by anti-Lc sdAb

fusions as an Hc targeted intrabody [78]. It would also be tempting

to speculate that engineered anti-BoNT sdAb might also be one

day employed as efficacious oral anti-dotes with further rugged-

ization to counter the harsh gastric environment [79].

Materials and Methods

Materials
All BoNT toxoids, toxins, toxin complexes and anti-BoNT

rabbit polyclonal antibodies were from Metabiologics (Madison,

WI). The primary production strains used by Metabiologics were

A Hall, B Okra, C Brazil, D 5995, E Alaska, F Langeland, G 89,

and A2 complex was from FR1 honey isolate. Mouse lethal dose

50% (MLD50) per mg values were provided as follows: Toxins: A

2.7e+7, B 1.1e+8, C 2.4e+7, D 1.0e+8, E 6.0e+7, F 2.0e+7, G

1.4e+7; Complexes: A 3.5e+7, 9.5e+6, C 7.0e+6, 2.9e+7, E

3.0e+7, F 3.2e+6, G 3.9e+6, A2 7e+7. Both toxins and complexes

were provided at 1 mg/mL.

Biosafety
All protocols involving BoNT were approved by the SFBR

Biohazards and Safety Committee and carried out under the CDC

Select Agent Program following all applicable federal guidelines.

Llama Immunization
Institutional Animal Care and Use Committee (IACUC)

approval for this experiment was through the Triple J Farms

(Bellingham, WA) protocol application process. A single male

llama (Lama glama) named ‘‘Snoop’’ was immunized six times at 3

week intervals with a cocktail of toxoided botulinum neurotoxins.

Snoop is kept with ten other male llamas ranging in age from 4 to

20 years of age. All llamas are housed in an eight acre grass

paddock and have free access to a barn enclosure. All bleeds and

injections are done in the barn enclosure with the herd mates

present so as not to cause undue stress. The llamas used are

acclimatized to being handled and bled, so no anesthesia is

necessary. Triple J Farms IACUC committee inspects the facilities

at six month intervals and USDA inspections are done by their

veterinarians at least once a year. The first immunization was in

Freunds complete adjuvant and subsequent immunizations were

in Freunds incomplete adjuvant, all being one subcutaneous

injection. Each dose was 1 mL total, 500 mL of which was

adjuvant and 500 mL was phosphate buffered saline (PBS)

containing 10 mg of each toxin serotype as formalin cross-linked

toxoid. A 5 mL serum sample was taken one week prior to each

immunization for analysis of seroconversion, and a full bleed of

800 mL was taken 3 weeks after the final immunization.

Seroconversion Enzyme Linked Immunosorbant Assay
(ELISA)

100 mL of 1 mg/mL of antigen in PBS was used to coat high

binding ELISA plate wells overnight at 4uC. Plates were washed 3

times with 175 mL PBS and blocked with 300 mL of PBS +2%

Carnation non fat dried milk (PBSM) for 1 h. Dilutions of serum

in PBSM were then applied for 1 h, the plates washed 3x with

175 mL PBS +0.1% Tween-20 (PBST) and 2x with PBS. 100 mL of

a 1 in 10,000 dilution of goat anti-llama horseradish peroxidase

conjugate (Bethyl laboratories, Montgomery, TX) in PBSM was

applied for 1 h and the plates washed again. TMB-Ultra (Pierce,

Rockford, IL) was used for color development with sulfuric acid

stop solution and absorbances read on a microplate reader

(BioRad, Hercules, CA).

Isolating Antibody Genes
White blood cells were first separated from half of the whole

blood using UNI-SEPmaxi+ columns (Novamed, Jerusalem, Israel)

and then total RNA was extracted using Trizol (Invitrogen,

Carlsbad, CA). 10 mg of RNA was used in multiple 20 mL oligo-

dT primed reverse transcription reactions (Ambion, Austin, TX) to

generate cDNA. 2 mL aliquots were then used in 246100 mL

polymerase chain reaction (PCR) volumes with Hotstart YieldAce

(Stratagene, La Jolla, CA) using 95uC for 5 min, 256(95uC for 30 s,

50uC for 30 s, 72uC for 30 s) and 72uC for 5 min. The front primers

were specific for the framework (FR) 1 region of llama variable

Table 3. Percent refoldedness of the most specific and
sensitive sdAb clones at each of the two cooling cycles.

sdAb cool 1 cool 2

A17 105.0 102.3

A18 52.2 32.2

B4 64.0 60.7

B2 70.4 59.3

C1 87.5 80.2

C24 93.8 93.2

D22 96.9 96.0

D16 100.9 97.3

E7 105.5 104.9

E4 89.4 86.7

F9 87.2 89.7

F5 98.9 99.3

G20 94.0 97.5

G3 87.7 85.2

doi:10.1371/journal.pone.0008818.t003
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heavy domains and encoded a Pst I site (‘‘PstN1’’ = 59-VAGGTS-

MARCTGCAGSAGTCWGG-39 [80] and ‘‘PstN2’’ = 59-GATG-

TGCAGCTGCAGGCGTCTGGRGGAGG-39 [81]). The back

primer was specific for framework 4 and encoded a Not I site

(‘‘GenNot’’ 59-AAAAAAGCGGCCGCTGAGGAGACGGTGA-

CCTG-39 based upon [82]). PCR products were phenol chloroform

extracted and ethanol precipitated, digested with Pst I and Not I and

ligated to similarly digested phage display vector pecan21

LgEBOZg which has an anti-Ebola NP sdAb providing the FR1

and FR4 scaffold (unpublished observations). Home-made electro-

competent XL-1 Blue were used in over 120 electroporations to

make the library of .1e+9 transformants. 24 clones were

miniprepped, mapped and sequenced to gauge the fidelity of the

library, which was then rescued with M13K07 and aliquots of

phage stored at 280uC long term.

Phage Selection and Screening for Anti-BoNT sdAb
100 mg amounts of toxins were individually biotinylated in

400 mL reactions using Sulfo-NHS-LC-Biotin (Pierce) and purified

on Zeba Desalt Spin Columns (Pierce). Biotinylation was

confirmed by comparing neutravidin capture efficiencies of

modified and unmodified toxins in ELISA employing Snoop

serum from the final bleed and anti-llama HRP as above (data not

shown).

In a 500 mL volume, 100 representations of each clone or 1e+11

phagemids were combined with 10 mL streptavidin coated M-280

magnetic beads (Dynal Biotech ASA, Oslo, Norway) on a rotisserie

to pre-absorb background binders for 1 h in PBS+2% bovine

serum albumin+0.05% Tween-20 (PBSBT). 100 nM of target

biotinylated toxin and 100 nM of each of the 6 unbiotinylated

non-target or decoy toxins were assembled in 500 mL PBST and

left to block for an hour. After magnetic capture of the beads, the

supernatant containing blocked phage was combined with the

toxin mix and rotissaried for 1 h. 10 mL of beads that had been

blocked in 1 mL of PBSBT were magnetically captured, the

supernatant removed, the phage/toxin mix added and rotated for

30 min to capture the biotinylated toxin and any specifically

bound phage. The beads were then captured and washed 5x with

900 mL of PBSBT over the course of about 10 min. Phage

remaining on the toxin were eluted with 500 mL 100 mM

triethylamine for 10 min and neutralized with 250 mL of 0.5 M

Tris-HCl pH 7.5. Half of this mix was used to infect exponential

phase XL1-Blue cells which were plated on selective medium and

rescued by super infection the next day according to standard

practices [83]. 2 to 4 rounds of panning were performed at 100,

20, 4 and 0.8 nM antigen concentration, with many clones

isolated after a single round. Polyclonal phage from round 2 was

analyzed on all 7 serotypes of toxins and toxin complexes to

determine if antigen specific clones were being enriched and a

minimum of 96 clones from each panning round was analyzed by

monoclonal ELISA on toxin as described above but employing

anti-M13HRP conjugate (GE Healthcare, Piscataway, NJ) as the

secondary antiserum. Positive clones having signals greater than

10x background were sequenced, amino acid sequences predicted

using BioEdit [84] and unique clones identified using Multalin

[85].

Isolating sdAb Proteins
Unique clones were mobilized from the phage display vector to

a soluble sdAb expression vector pecan45 LgEBOZg by Pst I/Not I

and resequenced before transfer to Rosetta (Novagen/EMD

Chemicals, Gibbstown, MD) for protein expression. Briefly,

saturated 40 mL overnight cultures grown in terrific broth (TB)

plus 2% glucose at 30uC were transferred to 400 mL of fresh TB

without glucose and shaken for 3 h at 25uC. Expression was

induced by addition of IPTG to 1 mM for 3 h at 25uC, the cells

pelleted (typical wet weights of 8–9 g) and osmotically shocked

[86] by resuspension in 14 mL ice-cold 0.75 M sucrose in 100 mM

Tris-HCl pH 7.5, addition of 1.4 mL of 1 mg/mL hen egg

lysozyme, followed by drop-wise addition of 28 mL of 1 mM

EDTA pH 7.5 and swirling on ice for 15 min. 2.0 mL of 0.5 M

MgCl2 was added, swirling continued for 15 min and cells

pelleted. The 45 mL supernatant (shockate) was mixed with

5 mL of 10xIMAC (immobilized metal affinity chromatography

buffer - 0.2 M Na2HPO4, 5 M NaCl, 0.2 M imidazole, 1%

Tween-20, pH 7.5), followed by 0.5 mL of High Peformance Ni

Separose (GE Healthcare) and the suspension gently mixed on ice

for 1 h. Resin was pelleted and washed twice with 2640 mL of

1xIMAC solution before elution with 2 mL of 0.45 M EDTA in

1xIMAC buffer. Proteins were concentrated in Amicon 10 kDa

ultrafiltration devices (Millipore, Billerica, MA) to 200 mL for

separation by gel filtration on a Superdex 200 HR 10/300 column

(GE Healthcare) operating in PBS. Proteins were quantified by

BCA assay (Pierce) and 10 mg analysed by SDS-PAGE and silver

staining for impurities.

Characterizing sdAb Proteins
To generate captor motifs, 10 mg of antibody was coupled to

Bioplex beads (BioRad) according to the manufacturer’s instruc-

tions to yield 150 mL of bead suspension. To generate tracer

motifs, 200 mg of protein was biotinylated with a 10 fold molar

excess of Sulfo-LC-NHS-biotin and purified as for the toxins to

yield 0.5 mg/uL solutions.

Cross-reactivity assays were performed in duplicate by combin-

ing 0.125 mL of each of the beadsets against a particular serotype

made in 50 mL of PBSBT with either 1e+5 pg of cognate toxin,

cognate toxin complex or 1e+5 pg of each of the other toxin or

toxin complex serotypes made in 50 mL. These mixes were

incubated with shaking in the dark for 30 min and then washed by

vacuum filtration twice with 175 mL PBSBT. 0.4 mL of a single

biotinylated tracer sdAb in 100 mL PBSBT (to give approx.

133 nM) was added to the wells, incubated with shaking for

30 min and washed as above. 100 mL of PBSTB containing

2.5 mL/mL PhycoLink strepatavidin-PE PJ31S (PROzyme, San

Leandro, CA) was added, wells shaken for 30 min, washed twice

and the beads resuspended in 130 mL of PBSBT. Plates were read

in a Bioplex (Biorad) with 100 events collected from each region to

yield a series of median fluorescence intensities (MFI). The captor

tracer pairs with mean MFI below 500 were discarded, and

remaining pairs tabulated for percentage cross-reactivities.

LOD assays were essentially performed as above except

threefold serial dilutions of toxin or toxin complex from

1e+4 pg/well in duplicate were employed in place of the fixed

1e+5 pg/well concentrations. Plots of duplicate MFI versus

concentration were used to evaluate the lower LOD by using a

value of 10 fold above background (set as non-cognate mMFI

given by 1e+5 pg/well).

Heptaplex assays were performed by combining all of the

selected pairs of beads and tracers, challenging them in duplicate

with 1e+4 pg/well of each of the toxins or toxin complexes diluted

in buffer, 2% reduced fat milk, orange juice (some pulp), carrot

juice or cola and plotting duplicate MFIs. The milk and orange

juice were microfuged prior to mixing with the beads.

Neuro-2A Intoxication Assay
Neuro-2A assays were performed by combining 10 mg of sdAb

with 2 mg of toxin in 0.5 mL of Eagle’s minimum essential

medium with Earle’s balanced salt solution, non essential amino
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acids, sodium pyruvate (ATCC, Manassas, VA), 5% FBS and

penicillin and streptomycin, incubating for 1 h at 37uC and then

using the mix to replace supernatant on 90% confluent neuro-2A

cells (ATCC, CCL-131) in 24 well plates. After incubation for

48 hours at 37uC in 5% CO2 in a humidified incubator the

supernatant was aspirated, the cells were washed with serum free

media and then lysed with 75 mL of 20 mM HEPES, 50 mM

NaCl, 1% Triton X-100, pH 7.4 plus protease inhibitor cocktail

(Roche, Nutley, NJ). 30 mL was combined with 75 mL of Laemmli

sample buffer, boiled for 5 min and loaded on a 12% SDS-PAGE

gel. Following semi-dry transfer to Immobilon P the membranes

were blocked in 2% milk in PBS (MPBS) overnight. Probing was

with 1 in 1000 of mouse anti-SNAP, clones SP12 and 4H251

(Santa Cruz Biotechnology, Santa Cruz, CA) and 1 in 5000 of

mouse anti-actin clone C4 (Santa Cruz Biotechnology) followed by

1 in 10,000 of goat anti mouse IgG (H+L) HRP (Pierce, Rockford,

IL). Pico west (Pierce) and Fuji X-ray film were used to develop

and capture the images. The entire assay was repeated several

times to try and generate the clearest images, and the same subset

of clones appeared to show inhibitory effect each time.

Circular Dichroism of sdAb and Conventional
Immunoglobulins

Polyclonal antisera and sdAb were used at a concentration of

0.2 mg/mL in PBS. Data was collected in a 1 mm path length

cuvette at 216 nm with a JASCO J-815 CD spectropolarimeter

equipped with a temperature controlled Peltier cell holder. Data

points were collected every 0.5uC and the temperature was

increased from 20uC to 80 or 90uC and reversed at a rate of 10uC/

min. To calculate the percentage refolded, the data points at 80uC
were taken as 100% unfolded and values between 20 and 40uC on

the curves were averaged and taken as the folded values. The

folded value of the cooling curve (1 or 2) was subtracted from

heating curve (1 or 2) and then divided by the 100% unfolded

value.

Supporting Information

Table S1 Chequerboard cross-reactivity assays of sdAb clones

on toxins and complexes to identify best captor/tracer combina-

tions. Duplicate median fluorescent intensities (MFI) and mean

MFI (mMFI) calculated for tracer/captor pairs employing 1e+5 pg

of target versus non-target serotype to evaluate the percentage

cross-reactivity (% x-reactivity) S1) A toxin, S2) A complex, S3) B

toxin, S4) B complex, S5) C toxin, S6) C complex, S7) D toxin, S8)

D complex, S9) E toxin, S10) E complex, S11) F toxin, S12) F

complex, S13) G toxin, S14) G complex. The most specific

combinations with the largest expected dynamic range selected for

further study in limit of detection trials are highlighted in yellow.

Found at: doi:10.1371/journal.pone.0008818.s001 (0.61 MB

PDF)

Figure S1 Primary structures of anti-BoNT sdAb clones.

Predicted amino acid sequences of sdAb identified as positive by

monoclonal phage ELISA on each serotype of toxin: a) A toxin; b)

B toxin c) C toxin d) D toxin, e) E toxin, f) F toxin, g) G toxin.

Found at: doi:10.1371/journal.pone.0008818.s002 (0.13 MB

PDF)

Figure S2 Examining the refoldabilty of sdAb in contrast to

conventional immunoglobulins. Circular dichroism analysis of our

final captor tracer pairs of sdAb specific for each serotype versus

polyclonal immunoglobulins for those serotypes that were

available: a) A18, b) A17, c) B4, d) B2, e) C1, f) C24, g) D22, h)

D16, i) E7, j) E4, k) F9, l) F5, m) G20, n) G3 o) A Ig, p) B Ig, q) C

Ig, r) E Ig, s) F Ig. First heating = red, first cooling = dark blue,

second heating = green, second cooling = light blue.

Found at: doi:10.1371/journal.pone.0008818.s003 (0.15 MB

PDF)

Acknowledgments

We thank Triple J Farms, Bellingham, WA for excellent llama care, the

Department of Biochemistry, University of Texas Health Science Centre at

San Antonio for access to the CD instrument, and the DNA Sequencing

Facility, University of Texas at Austin for excellent service. We would also

like to thank an anonymous reviewer for very knowledgeable and insightful

criticism.

Author Contributions

Conceived and designed the experiments: AH. Performed the experiments:

JOC LJS MTC JAG AH. Analyzed the data: JOC LJS MTC JAG AH.

Wrote the paper: AH.

References

1. Lamanna C (1959) The most poisonous poison. Science 130: 763–772.

2. Herrero BA, Ecklung AE, Streett CS, Ford DF, King JK (1967) Experimental

botulism in monkeys–a clinical pathological study. Exp Mol Pathol 6: 84–95.

3. Franz DR, Pitt LM, Clayton MA, Hanes MA, Rose KJ (1993) In: DasGupta BR,

ed. Botulinum and Tetanus Neurotoxins: Neurotransmission and Biomedical

Aspects. New York: Plenum Press. pp 473–476.

4. Scott AB, Suzuki D (1988) Systemic toxicity of botulinum toxin by intramuscular

injection in the monkey. Mov Disord 3: 333–335.

5. Singh BR (2000) Intimate details of the most poisonous poison. Nat Struct Biol

7: 617–619.

6. Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM (2002) Public health

assessment of potential biological terrorism agents. Emerg Infect Dis 8: 225–230.

7. Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, et al. (2001)

Botulinum toxin as a biological weapon: medical and public health
management. Jama 285: 1059–1070.

8. Wein LM, Liu Y (2005) Analyzing a bioterror attack on the food supply: the case

of botulinum toxin in milk. Proc Natl Acad Sci U S A 102: 9984–9989.

9. Marks JD (2004) Medical aspects of biologic toxins. Anesthesiol Clin North
America 22: 509–532, vii.

10. Dembek ZF, Smith LA, Rusnak JM (2007) Botulism: cause, effects, diagnosis,

clinical and laboratory identification, and treatment modalities. Disaster Med

Public Health Prep 1: 122–134.

11. Binz T, Rummel A (2009) Cell entry strategy of clostridial neurotoxins.

J Neurochem 109: 1584–1595.

12. Sonnabend O, Sonnabend W, Heinzle R, Sigrist T, Dirnhofer R, et al. (1981)

Isolation of Clostridium botulinum type G and identification of type G botulinal

toxin in humans: report of five sudden unexpected deaths. J Infect Dis 143:

22–27.

13. Sonnabend OA, Sonnabend WF, Krech U, Molz G, Sigrist T (1985)

Continuous microbiological and pathological study of 70 sudden and

unexpected infant deaths: toxigenic intestinal clostridium botulinum infection

in 9 cases of sudden infant death syndrome. Lancet 1: 237–241.

14. Baldwin MR, Tepp WH, Pier CL, Bradshaw M, Ho M, et al. (2005)

Characterization of the antibody response to the receptor binding domain of

botulinum neurotoxin serotypes A and E. Infect Immun 73: 6998–7005.

15. Gimenez DF, Gimenez JA (1993) Serological subtypes of botulinal toxins. In:

DasGupta BR, ed. Botulinum and tetanus neurotoxins: neurotransmision and

biomedical aspects. New York: Plenum Press. pp 421–431.

16. Tsuzuki K, Yokosawa N, Syuto B, Ohishi I, Fujii N, et al. (1988) Establishment

of a monoclonal antibody recognizing an antigenic site common to Clostridium

botulinum type B, C1, D, and E toxins and tetanus toxin. Infect Immun 56:

898–902.

17. Dertzbaugh MT, West MW (1996) Mapping of protective and cross-reactive

domains of the type A neurotoxin of Clostridium botulinum. Vaccine 14:

1538–1544.

18. Curran RM, Fringuelli E, Graham D, Elliott CT (2009) Production of serotype

C specific and serotype C/D generic monoclonal antibodies using recombinant

H(C) and H(N) fragments from Clostridium botulinum neurotoxin types C(1)

and D. Vet Immunol Immunopathol 130: 1–10.

19. Oguma K, Syuto B, Iida H, Kubo S (1980) Antigenic similarity of toxins

produced by Clostridium botulinum type C and D strains. Infect Immun 30:

656–660.

Heptaplex Anti-BoNT Nanobodies

PLoS ONE | www.plosone.org 10 January 2010 | Volume 5 | Issue 1 | e8818



20. Webb RP, Smith TJ, Wright PM, Montgomery VA, Meagher MM, et al. (2007)

Protection with recombinant Clostridium botulinum C1 and D binding domain

subunit (Hc) vaccines against C and D neurotoxins. Vaccine 25: 4273–4282.

21. Smith TJ, Lou J, Geren IN, Forsyth CM, Tsai R, et al. (2005) Sequence

variation within botulinum neurotoxin serotypes impacts antibody binding and

neutralization. Infect Immun 73: 5450–5457.

22. Garcia-Rodriguez C, Levy R, Arndt JW, Forsyth CM, Razai A, et al. (2007)

Molecular evolution of antibody cross-reactivity for two subtypes of type A

botulinum neurotoxin. Nat Biotechnol 25: 107–116.

23. Carter AT, Paul CJ, Mason DR, Twine SM, Alston MJ, et al. (2009)

Independent evolution of neurotoxin and flagellar genetic loci in proteolytic

Clostridium botulinum. BMC Genomics 10: 115.

24. Lacy DB, Stevens RC (1999) Sequence homology and structural analysis of the

clostridial neurotoxins. J Mol Biol 291: 1091–1104.

25. Henkel JS, Jacobson M, Tepp W, Pier C, Johnson EA, et al. (2009) Catalytic

Properties of Botulinum Neurotoxin Subtypes A3 and A4 (dagger). Biochemistry

48: 2522–2528.

26. Smith TJ, Hill KK, Foley BT, Detter JC, Munk AC, et al. (2007) Analysis of the

neurotoxin complex genes in Clostridium botulinum A1-A4 and B1 strains:

BoNT/A3, /Ba4 and /B1 clusters are located within plasmids. PLoS ONE 2:

e1271.

27. Jacobson MJ, Lin G, Raphael B, Andreadis J, Johnson EA (2008) Analysis of

neurotoxin cluster genes in Clostridium botulinum strains producing botulinum

neurotoxin serotype A subtypes. Appl Environ Microbiol 74: 2778–2786.

28. Sakaguchi G (1982) Clostridium botulinum toxins. Pharmacol Ther 19:

165–194.

29. Singh BR, Foley J, Lafontaine C (1995) Physicochemical and immunological

characterization of the type E botulinum neurotoxin binding protein purified

from Clostridium botulinum. J Protein Chem 14: 7–18.

30. Goldman ER, Anderson GP, Conway J, Sherwood LJ, Fech M, et al. (2008)

Thermostable llama single domain antibodies for detection of botulinum A

neurotoxin complex. Anal Chem 80: 8583–8591.

31. Kozaki S, Onimaru J, Kamata Y, Sakaguchi G (1991) Immunological

characterization of Clostridium butyricum neurotoxin and its trypsin-induced

fragment by use of monoclonal antibodies against Clostridium botulinum type E

neurotoxin. Infect Immun 59: 457–459.

32. Thompson DE, Hutson RA, East AK, Allaway D, Collins MD, et al. (1993)

Nucleotide sequence of the gene coding for Clostridium barati type F

neurotoxin: comparison with other clostridial neurotoxins. FEMS Microbiol

Lett 108: 175–182.

33. Singh BR, DasGupta BR (1990) Conformational changes associated with the

nicking and activation of botulinum neurotoxin type E. Biophys Chem 38:

123–130.

34. Chen F, Kuziemko GM, Amersdorfer P, Wong C, Marks JD, et al. (1997)

Antibody mapping to domains of botulinum neurotoxin serotype A in the

complexed and uncomplexed forms. Infect Immun 65: 1626–1630.

35. Singh BR, Lopes T, Silvia MA (1996) Immunochemical characterization of type

A botulinum neurotoxin in its purified and complexed forms. Toxicon 34:

267–275.

36. Volland H, Lamourette P, Nevers MC, Mazuet C, Ezan E, et al. (2008) A

sensitive sandwich enzyme immunoassay for free or complexed Clostridium

botulinum neurotoxin type A. J Immunol Methods 330: 120–129.

37. Goldman ER, Anderson GP, Liu JL, Delehanty JB, Sherwood LJ, et al. (2006)

Facile generation of heat-stable antiviral and antitoxin single domain antibodies

from a semisynthetic llama library. Anal Chem 78: 8245–8255.

38. Sherwood LJ, Osborn LE, Carrion R Jr, Patterson JL, Hayhurst A (2007) Rapid

assembly of sensitive antigen-capture assays for Marburg virus, using in vitro

selection of llama single-domain antibodies, at biosafety level 4. J Infect Dis 196

Suppl 2: S213–219.

39. Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, et al.

(2009) Camelid immunoglobulins and nanobody technology. Vet Immunol

Immunopathol 128: 178–183.

40. Wesolowski J, Alzogaray V, Reyelt J, Unger M, Juarez K, et al. (2009) Single

domain antibodies: promising experimental and therapeutic tools in infection

and immunity. Med Microbiol Immunol 198: 157–174.

41. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of

single domains. Nat Biotechnol 23: 1126–1136.

42. Perez JM, Renisio JG, Prompers JJ, van Platerink CJ, Cambillau C, et al. (2001)

Thermal unfolding of a llama antibody fragment: a two-state reversible process.

Biochemistry 40: 74–83.

43. Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, et al.

(2002) Single-domain antibody fragments with high conformational stability.

Protein Sci 11: 500–515.

44. Ewert S, Cambillau C, Conrath K, Pluckthun A (2002) Biophysical properties of

camelid V(HH) domains compared to those of human V(H)3 domains.

Biochemistry 41: 3628–3636.

45. van der Linden RH, Frenken LG, de Geus B, Harmsen MM, Ruuls RC, et al.

(1999) Comparison of physical chemical properties of llama VHH antibody

fragments and mouse monoclonal antibodies. Biochim Biophys Acta 1431:

37–46.

46. Henderson KA, Streltsov VA, Coley AM, Dolezal O, Hudson PJ, et al. (2007)

Structure of an IgNAR-AMA1 complex: targeting a conserved hydrophobic cleft

broadens malarial strain recognition. Structure 15: 1452–1466.

47. De Genst E, Silence K, Decanniere K, Conrath K, Loris R, et al. (2006)
Molecular basis for the preferential cleft recognition by dromedary heavy-chain

antibodies. Proc Natl Acad Sci U S A 103: 4586–4591.

48. Korotkov KV, Pardon E, Steyaert J, Hol WG (2009) Crystal structure of the N-
terminal domain of the secretin GspD from ETEC determined with the

assistance of a nanobody. Structure 17: 255–265.

49. Lam AY, Pardon E, Korotkov KV, Hol WG, Steyaert J (2009) Nanobody-aided
structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio

vulnificus. J Struct Biol 166: 8–15.

50. Tanha J, Dubuc G, Hirama T, Narang SA, MacKenzie CR (2002) Selection by
phage display of llama conventional V(H) fragments with heavy chain antibody

V(H)H properties. J Immunol Methods 263: 97–109.

51. Muyldermans S, Atarhouch T, Saldanha J, Barbosa JA, Hamers R (1994)
Sequence and structure of VH domain from naturally occurring camel heavy

chain immunoglobulins lacking light chains. Protein Eng 7: 1129–1135.

52. Kastelic D, Frkovic-Grazio S, Baty D, Truan G, Komel R, et al. (2009) A single-
step procedure of recombinant library construction for the selection of efficiently

produced llama VH binders directed against cancer markers. J Immunol
Methods.

53. Chen F, Kuziemko GM, Stevens RC (1998) Biophysical characterization of the

stability of the 150-kilodalton botulinum toxin, the nontoxic component, and the
900-kilodalton botulinum toxin complex species. Infect Immun 66: 2420–2425.

54. Hasegawa K, Watanabe T, Sato H, Sagane Y, Mutoh S, et al. (2004)

Characterization of toxin complex produced by a unique strain of Clostridium
botulinum serotype D 4947. Protein J 23: 371–378.

55. Ledoux DN, Be XH, Singh BR (1994) Quaternary structure of botulinum and

tetanus neurotoxins as probed by chemical cross-linking and native gel
electrophoresis. Toxicon 32: 1095–1104.

56. Pauly D, Kirchner S, Stoermann B, Schreiber T, Kaulfuss S, et al. (2009)

Simultaneous quantification of five bacterial and plant toxins from complex
matrices using a multiplexed fluorescent magnetic suspension assay. Analyst 134:

2028–2039.

57. Sharma SK, Ferreira JL, Eblen BS, Whiting RC (2006) Detection of type A, B,

E, and F Clostridium botulinum neurotoxins in foods by using an amplified

enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies. Appl
Environ Microbiol 72: 1231–1238.

58. Dong M, Tepp WH, Johnson EA, Chapman ER (2004) Using fluorescent

sensors to detect botulinum neurotoxin activity in vitro and in living cells. Proc
Natl Acad Sci U S A 101: 14701–14706.

59. Hines HB, Kim AD, Stafford RG, Badie SS, Brueggeman EE, et al. (2008) Use

of a recombinant fluorescent substrate with cleavage sites for all botulinum
neurotoxins in high-throughput screening of natural product extracts for

inhibitors of serotypes A, B, and E. Appl Environ Microbiol 74: 653–659.

60. Saerens D, Pellis M, Loris R, Pardon E, Dumoulin M, et al. (2005) Identification

of a universal VHH framework to graft non-canonical antigen-binding loops of

camel single-domain antibodies. J Mol Biol 352: 597–607.

61. Adekar SP, Takahashi T, Jones RM, Al-Saleem FH, Ancharski DM, et al. (2008)

Neutralization of botulinum neurotoxin by a human monoclonal antibody

specific for the catalytic light chain. PLoS One 3: e3023.

62. Singh BR, DasGupta BR (1989) Molecular differences between type A

botulinum neurotoxin and its toxoid. Toxicon 27: 403–410.

63. Jones RG, Liu Y, Rigsby P, Sesardic D (2008) An improved method for
development of toxoid vaccines and antitoxins. J Immunol Methods 337: 42–48.

64. Keller JE (2008) Characterization of new formalin-detoxified botulinum

neurotoxin toxoids. Clin Vaccine Immunol 15: 1374–1379.

65. Webb RP, Smith TJ, Wright P, Brown J, Smith LA (2009) Production of

catalytically inactive BoNT/A1 holoprotein and comparison with BoNT/A1

subunit vaccines against toxin subtypes A1, A2, and A3. Vaccine 27: 4490–4497.

66. Kiyatkin N, Maksymowych AB, Simpson LL (1997) Induction of an immune

response by oral administration of recombinant botulinum toxin. Infect Immun

65: 4586–4591.

67. Pier CL, Tepp WH, Bradshaw M, Johnson EA, Barbieri JT, et al. (2008)

Recombinant holotoxoid vaccine against botulism. Infect Immun 76: 437–442.

68. Baldwin MR, Tepp WH, Przedpelski A, Pier CL, Bradshaw M, et al. (2008)
Subunit vaccine against the seven serotypes of botulism. Infect Immun 76:

1314–1318.

69. Stahl C, Unger L, Mazuet C, Popoff M, Straub R, et al. (2009) Immune
response of horses to vaccination with the recombinant Hc domain of botulinum

neurotoxin types C and D. Vaccine 27: 5661–5666.

70. Amersdorfer P, Wong C, Smith T, Chen S, Deshpande S, et al. (2002) Genetic
and immunological comparison of anti-botulinum type A antibodies from

immune and non-immune human phage libraries. Vaccine 20: 1640–1648.

71. Lee MS, Lee JC, Choi CY, Chung J (2008) Production and characterization of
monoclonal antibody to botulinum neurotoxin type B light chain by phage

display. Hybridoma (Larchmt) 27: 18–24.

72. Fischer A, Garcia-Rodriguez C, Geren I, Lou J, Marks JD, et al. (2008)

Molecular architecture of botulinum neurotoxin E revealed by single particle

electron microscopy. J Biol Chem 283: 3997–4003.

73. Zhou H, Zhou B, Pellett S, Johnson EA, Janda KD (2009) Selection and

characterization of a human monoclonal neutralizing antibody for Clostridium

Botulinum neurotoxin serotype B. Bioorg Med Chem Lett 19: 662–664.

74. Kalb SR, Lou J, Garcia-Rodriguez C, Geren IN, Smith TJ, et al. (2009) Extraction

and inhibition of enzymatic activity of botulinum neurotoxins/A1, /A2, and /A3

by a panel of monoclonal anti-BoNT/A antibodies. PLoS One 4: e5355.

Heptaplex Anti-BoNT Nanobodies

PLoS ONE | www.plosone.org 11 January 2010 | Volume 5 | Issue 1 | e8818



75. Bagramyan K, Barash JR, Arnon SS, Kalkum M (2008) Attomolar detection of

botulinum toxin type A in complex biological matrices. PLoS One 3: e2041.
76. Nowakowski A, Wang C, Powers DB, Amersdorfer P, Smith TJ, et al. (2002)

Potent neutralization of botulinum neurotoxin by recombinant oligoclonal

antibody. Proc Natl Acad Sci U S A 99: 11346–11350.
77. Harmsen MM, Van Solt CB, Fijten HP, Van Setten MC (2005) Prolonged in

vivo residence times of llama single-domain antibody fragments in pigs by
binding to porcine immunoglobulins. Vaccine 23: 4926–4934.

78. Goodnough MC, Oyler G, Fishman PS, Johnson EA, Neale EA, et al. (2002)

Development of a delivery vehicle for intracellular transport of botulinum
neurotoxin antagonists. FEBS Lett 513: 163–168.

79. Harmsen MM, van Solt CB, van Zijderveld-van Bemmel AM, Niewold TA, van
Zijderveld FG (2006) Selection and optimization of proteolytically stable llama

single-domain antibody fragments for oral immunotherapy. Appl Microbiol
Biotechnol. pp 1–8.

80. van der Linden R, de Geus B, Stok W, Bos W, van Wassenaar D, et al. (2000)

Induction of immune responses and molecular cloning of the heavy chain
antibody repertoire of Lama glama. J Immunol Methods 240: 185–195.

81. Vu KB, Ghahroudi MA, Wyns L, Muyldermans S (1997) Comparison of llama

VH sequences from conventional and heavy chain antibodies. Mol Immunol 34:

1121–1131.

82. Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997)

Selection and identification of single domain antibody fragments from camel

heavy-chain antibodies. FEBS Lett 414: 521–526.

83. Chames P, Hoogenboom HR, Henderikx P (2002) Selection of antibodies

against biotinylated antigens. Methods Mol Biol 178: 147–157.

84. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and

analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:

95–98.

85. Corpet F (1988) Multiple sequence alignment with hierarchical clustering.

Nucleic Acids Res 16: 10881–10890.

86. Neu HC, Heppel LA (1965) The release of enzymes from Escherichia coli by

osmotic shock and during the formation of spheroplasts. J Biol Chem 240:

3685–3692.

Heptaplex Anti-BoNT Nanobodies

PLoS ONE | www.plosone.org 12 January 2010 | Volume 5 | Issue 1 | e8818


