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Abstract

EEG and fMRI recordings measure the functional activity of multiple coherent networks distributed in the cerebral cortex.
Identifying network interaction from the complementary neuroelectric and hemodynamic signals may help to explain the
complex relationships between different brain regions. In this paper, multimodal functional network connectivity (mFNC) is
proposed for the fusion of EEG and fMRI in network space. First, functional networks (FNs) are extracted using spatial
independent component analysis (ICA) in each modality separately. Then the interactions among FNs in each modality are
explored by Granger causality analysis (GCA). Finally, fMRI FNs are matched to EEG FNs in the spatial domain using network-
based source imaging (NESOI). Investigations of both synthetic and real data demonstrate that mFNC has the potential to
reveal the underlying neural networks of each modality separately and in their combination. With mFNC, comprehensive
relationships among FNs might be unveiled for the deep exploration of neural activities and metabolic responses in a
specific task or neurological state.
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Introduction

Exploring long-range interactions of neuronal assemblies at

different temporal and spatial scales is an important issue in human

brain research. The concept of brain functional connectivity,

defined as the statistical dependence between neuronal activities in

distant regions, is central for the understanding of the organized

behavior of cortical regions which constitute distributed functional

networks (FNs) for cognitive and perceptive processing [1]. Activity

in one neural system can directly or indirectly exert influence on

another. This influence is modeled as effective connectivity in the

brain, and has been extensively investigated with electroencepha-

lography (EEG) and hemodynamic measurements [2,3].

EEG and functional Magnetic Resonance Imaging (fMRI)

recordings provide complementary information about brain

activation and may help to explain the complex relationships

among brain regions [4]. However, volume-conducted and

convolved hemodynamic signals are spatially and temporally

‘mixed’ across the brain [5]. Independent component analysis

(ICA) is a useful approach to decompose these mixed signals [6]. For

fMRI, the temporal dynamics of independent components (ICs)

have been further utilized to examine the functional interactions

among different correlated brain networks [7]. Functional network

connectivity (FNC) is a powerful approach to characterize the

relationships between distributed brain networks, while functional

connectivity (FC) focuses upon the relationships between voxels or

regions. The nodes in FNC are defined as FNs that contain multiple

brain regions. Previous studies used the lag between time courses of

FNs to examine FNC differences between schizophrenic and

healthy controls [7]. A recent extension using Granger causality

analysis (GCA) provides a powerful way of studying the directional

interactions among FNs [8].

To date, all FNC estimations have been computed from a single

modality (i.e., fMRI). Based on high-resolution EEG, Babiloni and

colleagues [9] employed fMRI as spatial priors for EEG source

inversion. The time course utilized to infer causality, however, was

still single modality EEG data, i.e., the cortical current density

waveforms. A thorough investigation of the relationship among

FNs needs to integrate the information from other modalities. A

straightforward extension of fMRI FNC may cover the interaction

among EEG FNs; meanwhile the FNs from different modalities

can be matched using EEG-fMRI fusion [10]. Based on the

assumption of linear neurovascular coupling, previous studies

convolved EEG features with a standard hemodynamic response

function (HRF) to model the time-series of fMRI signal [11]. In

this fashion, the hemodynamic correlates of EEG rhythms

[12,13,14] and adaptive modulations of event related responses

were studied [15]. In a resting state data study, fMRI FNs were

temporally correlated with power fluctuations in different bands

from concurrently recorded EEG [16]. Recently we provided a
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source localization method based on multiple fMRI FNs:

NEtwork-based SOurce Imaging (NESOI) [17,18]. NESOI can

reconstruct the neural source activation for each EEG IC, and

more importantly, EEG and fMRI ICs can be matched in the

spatial domain with the hyperparameters of NESOI.

In this study, we present a novel approach to estimate multi-

modal functional network connectivity (mFNC), a computational

method that explores the direction of information flow among

distributed brain networks gathered from simultaneous EEG and

fMRI recordings. First, the functional brain networks from a single

modality are extracted using spatial ICA. Then the directed

interactions among FNs are explored using causality analysis.

Finally, the fMRI FNs are matched to EEG FNs in EEG source

inversion, which combines EEG-FNC and fMRI-FNC into an

mFNC. MFNC has the potential to yield a holistic EEG-fMRI-

based picture of the interactions among brain networks. In the

current study, the performance of mFNC is demonstrated using

simulated data and real EEG and fMRI signals collected during

checkerboard stimulation.

Theory
Multimodal functional network connectivity (mFNC) is a

natural extension of fMRI FNC to cover the interaction among

EEG FNs and to further explore the spatial matching between

different modalities. The core procedures of mFNC are illustrated

in Figure 1 and will be explained in detail in the following section.

In summary, mFNC first explores causal connectivity among

brain networks with EEG and fMRI signals separately. To do so,

EEG and fMRI data undergo modality-specific preprocessing i.e.

spatial normalization of fMRI volumes and artifact removal of

EEG (see Section ‘‘Data Preprocessing’’ for a detailed description

in the real data test). Then, spatial ICA is performed on the

EEG and fMRI data separately (the main points are summarized

in Section ‘‘Extracting Functional Networks’’). The time courses of

EEG (or fMRI) components are employed to explore the

networks’ interactions (Section ‘‘Exploring Influences between

Functional Networks’’). Second, the spatial patterns of fMRI are

linked to the topographies of EEG using NESOI, which stitches

EEG-FNC and fMRI-FNC to construct mFNC (Section ‘‘Match-

ing between Modalities’’). The final networks of mFNC are

analyzed with graph theory (Section ‘‘Graph Theoretical Analy-

sis’’). In our computer simulation, the code for data generation and

visualization, and the simulated data used here are collected in a

customized STEFF toolbox which is available from the authors

upon request.

Extracting Functional Networks. Blind source decom-

positions are implemented to extract FNs in each modality. ICA

is a generative ‘‘latent variable’’ model that describes how the

observed data are generated by a process of mixing the underlying

unknown sources [19]. The sources are assumed to be statistically

independent and non-Gaussian. The results of the decomposition

are n spatial ICs (topographies for EEG or spatial patterns for

fMRI) and a mixing matrix consisting of the corresponding n time

courses. This process condensed the whole brain activation into n

components. The number of components is determined by the

number of electrodes for EEG and the number of time points for

fMRI. The common components across multiple implementations

can be identified by cluster analysis [20]. The FastICA toolbox

(http://www.cis.hut.fi/projects/ica/fastica/) was used for both

EEG and fMRI ICA. After artifacts removal, the remaining FNs

pave the way for NESOI and GCA.

Exploring Influences between Functional Networks. Granger

causality analysis (GCA) estimates causality based on EEG and fMRI

temporal information to explore directed influences between FNs.

GCA implements a statistical interpretation of causality in which Si

‘‘Granger causes’’ Sj if knowing the past value of Si can help predict Sj

better than knowing the past of Sj alone [21,22]. The standard

implementation of GCA is achieved via vector autoregressive (VAR)

modeling, in which a set of time series are modeled as weighted sums

of past values. Let S(t) = [s1(t), s2(t),...,sk(t)]
T be a k-dimensional random

process defined in a segment of windowed time series data, where T

stands for matrix transposition. Assuming stationarity of the process

Figure 1. Illustration of the multimodal functional network connectivity. Functional networks (or Independent components) are identified
using ICA from EEG and fMRI signal respectively. The time courses of EEG and fMRI networks are entered into Granger causality analysis to explore the
interactions between networks, while their corresponding spatial patterns are matched by NESOI to combine EEG-FNC and fMRI-FNC into an mFNC.
This yields a holistic expression of the interactive relationship between brain networks.
doi:10.1371/journal.pone.0024642.g001

Multimodal FNC
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S(t), one can describe S(t) by a pth-order autoregressive process:

E tð Þ
Xp

m~0

~AmS t{mð Þ ð1Þ

where A0 is the identity matrix and Am (m = 1, 2,..., p) are k6k

coefficient matrices. E(t) is a k-dimensional, zero mean, uncorrelated

noise vector. Am matrices can be estimated by the Levinson-Wiggins-

Robinson (LWR) algorithm [23]. The covariance matrix of the noise

(S) is estimated from the Yule-Walker equations of the model. The

multivariate Bayesian Information Criterion (BIC) is calculated to

determine the VAR model order, p.

Once Am and the covariance matrix of the noise (S) are estimated,

the Granger causal influence from S2 to S1 can be inferred if

knowing S2 reduces the variance in S1’s prediction error when all

other variables S3 … Sn are also included in the regression model.

To avoid excessive mathematical complexity we skip the derivation

of GCA and refer to the literature [22,24] for details. For event-

related data, each trial is considered to be an independent

realization of a single statistically stationary process, such that a

single VAR model can be estimated based on the entire data set.

Having computed Granger causality magnitudes, statistical

significance is established via an F-test on the null hypothesis that

Am(i,j) is zero. These tests are corrected for multiple comparisons

using the Bonferroni correction, in which the applied threshold is

pnom/n(n-1), where pnom is the nominal threshold (here we use

0.01), and n is the number of nodes. In the current study, Granger

causality analysis was calculated using the GCCA toolbox (www.

anilseth.com). Regarding FNs as nodes and influences as edges,

both EEG-FNC and fMRI-FNC are constructed at this stage.

Matching between Modalities. The fMRI FNs are

matched to EEG FNs using network source imaging (NESOI),

which implements Parametric Empirical Bayesian (PEB) models to

find the EEG-fMRI common FNs. As illustrated in Figure 2,

NESOI employs fMRI FNs (spatial patterns) as the covariance

priors (C2) to reconstruct the neuroelectric source (W) of the EEG

FN (topography: Y) [18,25]. To guarantee that the covariance

priors have a sufficient sampling of the source space, the subspace

uncovered by fMRI FNs is added in as multiple sparse prior (MSP

see [26]) in NESOI. Each prior (an fMRI FN or MSP) is assigned

a non-negative hyperparameter that controls the relative contribu-

tion. After model inversion, the hyperparameters corresponding to

the priors can identify whether an EEG FN can be considered as

fMRI supported or unsupported component. The FNs are divided

into three categories: fMRI-supported EEG FNs along with their

corresponding fMRI FNs are the EEG-fMRI common FNs; the

fMRI-unsupported EEG FNs are the EEG-specific FNs; the

remaining fMRI ICs are the fMRI-specific FNs. The matched

EEG-fMRI common FNs are assumed to represent the same

neuronal populations, and are the key nodes in combining EEG-

FNC and fMRI-FNC.

The PEB model in NESOI is inverted using the Restricted

Maximum Likelihood (ReML) algorithm [27]. As illustrated in

Figure 2 and the Text S1, the covariance at the second-level, C2, is

determined by hyperparameters c, which are akin to the standard

regularization parameters in ill-posed problems and need to be

inferred from the observed data. The objective function

maximized by ReML is identical to the variational free-energy

[27]. In fact, the free-energy provides a tight lower bound on the

model’s log-evidence, ln p(Y jc), which increases with the accuracy

of the model but decreases with the complexity [26]. ReML yields

the conditional density of the source neuroelectric activity, and c
quantifies the support from the fMRI FNs to each EEG FN. In

fact, the ReML iteration yields a parsimonious model, which

makes EEG and fMRI FNs match sparsely. The implementation

of ReML algorithm was performed with the free academic

software package SPM (http://www.fil.ion.ucl.ac.uk/spm/), and

hyperparameters were used to identify the EEG-fMRI common

substrates. Further mathematical details of NESOI are given in

Text S1.

Graph Theoretical Analysis. The interactions among FNs

are further analyzed with graph theoretical analysis (GTA), which

allows quantitative comparison of EEG-FNC and fMRI-FNC.

The causal density and causal flow [28] are the central concerns of

this work. Causal density refers to the total amount of causal

interactivity sustained by a network. It is a useful measure of

dynamical complexity because high causal density reflects

integration and differentiation in network dynamics [28]. In this

case, nodes (functional brain networks) are both globally

coordinated in their activity (useful for predicting each other’s

activity) and dynamically distinct (so that different elements

contribute in different ways to these predictions). Causal flow

refers to the difference between its out-degree (number of outgoing

connections) and its in-degree (number of incoming connections).

Causal flow can identify nodes that have distinctive causal effects

on network dynamics: a node with a highly positive flow is a causal

‘source’; a node with a highly negative flow is a causal ‘sink’.

Figure 2. A schematic illustration of the architecture of NESOI
and its computation scheme. NESOI employs multiple fMRI
functional networks (fMRI ICs, top right) to reconstruct the source of
each EEG functional network (EEG IC, top left). The Parametric Empirical
Bayesian model is inverted by the Restricted Maximum Likelihood
(ReML) algorithm. The products of ReML iteration are the conditional
density of EEG source distribution and hyperparameters that quantify
the matching between EEG and fMRI networks.
doi:10.1371/journal.pone.0024642.g002
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Simulation
To illustrate the performance of mFNC in exploring the

underlying causal relationship, a disc with 2452 voxels/dipoles is

employed to generate the synthetic data. In Figure 3(a), the disc was

wrapped with a concentric three-sphere EEG head model with 64

electrodes placed on the upper hemisphere. The two holes in the

disc represent areas of ‘white matter’. In the fMRI scanner, one slice

with Z-axis coordinate of 18 mm and field of view (FOV) of

2006200 mm2 covers this disc, and generates a two-dimensional

fMRI spatial map of 70670 voxels. In Figure 3(b), the spatial

profiles of four sources are drawn with different colors on the disc.

Each source is pretended to represent a possible neurophysiological

structure: ‘auditory cortex’ S1, ‘right cognition area’ S2, ‘left

cognition area’ S3 and ‘default mode networks’ S4.

The following autoregressive process is used to simulate the

neuronal interactions among the four sources:

s1(t)~0:98s1(t{1)ze1(t)

s2(t)~ 0:3s2(t{1){0:4cs3(t{2)ze2(t)

s3(t)~0:98s3(t{1){cs1(t{2)

z0:4cs2(t{2)ze3(t)

s4(t)~0:98s4(t{1){cs1(t{3)ze4(t)

8>>>>>><
>>>>>>:

ð2Þ

where si(t) and ei(t) is one channel of random process S(t) and

white noise E(t) in Equation (1). The parameter c represents the

coupling strength, ranging from 0.1, weak coupling, to 0.7, strong

coupling. S is the covariance matrix of the noise E(t) and is set to

the identity matrix. The number of simulated data points is 18,000

(360 s 6 sample rate 50 Hz) for each source of the VAR-process.

Initial 1,000 points are additionally simulated and later discarded to

allow the system to enter into a steady state. Figure 3 summarizes

causal relationships between sources, where a solid arrow from Sj to

Si is drawn if Sj causes Si.

To mimic spatial decoupling between EEG and fMRI sources,

S2 and S4 are assumed to be EEG and fMRI modality-specific

sources, respectively. For the EEG recording, the neural time

courses of S1, S2, and S3 are divided equally into 40 segments to

simulate 40 trials (data points: 450 = 18,000/40). The first 55 time

samples of each trial are used to simulate 1,100 ms of EEG

recording (sampling interval 20 ms). After normalizing the three

sources to zero mean and unit standard deviation, white Gaussian

noise was added according to a signal-to-noise ratio (SNR) deeg for

each source, representing noise in the neuroelectric response. SNR

is defined as the ratio between signal and noise variances. The

scalp potential distribution is generated by computing the forward

problem for the three sources simultaneously [29]. After

renormalizing the scalp signals, another Gaussian noise with

SNR of 1 was added to represent measurement error and noise in

the scalp data acquisition. The electrodes from the experiment

collecting the real data (see Section ‘‘Experiment and Data

Acquisition’’) were registered to the scalp surface, and the lead-

field matrix (X) was calculated analytically based on a concentric

three-sphere head model [30].

Based on a previous study [31], fMRI recording is approximat-

ed with a low-pass filtered and sub-sampled version of the above

neural time courses. The signals of S1, S3 and S4 are individually

filtered by convolution with a linear model of a gamma HRF [32].

After individually normalizing the signals to zero mean and unit

variance, white Gaussian noise was added to represent noise in the

hemodynamic signals with SNR dfMRI . Subsequently, these

simulated BOLD signals were sampled every 75 time-steps to

simulate signal acquisition by the scanner with a whole volume

repeat time (TR) of 1.5 s (75 6 the sampling interval 20 ms),

yielding signals with 240 time samples. After renormalizing, another

Figure 3. Head model and the construction of synthetic data. (a) Head model: 2452 voxels within a concentric three-sphere head model with
64 electrodes on the upper surface. The two holes in source slice are ‘white matter.’ (b) A schematic illustration of the procedure to generate
simulated time series. The spatial profile of each source is drawn with different color and the background is shown in gray and white. EEG signals are
recorded from S1, S2 and S3 (red-bordered areas), which generate scalp potentials through the head model. S1, S3 and S4 (blue-bordered areas) are
filtered by convolution with a gamma function to yield fMRI recording. S2 and S4 are assumed to be fMRI and EEG blind respectively.
doi:10.1371/journal.pone.0024642.g003

Multimodal FNC
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Gaussian noise was added to represent measurement noise with

SNR 0.2 in the fMRI data acquisition [31].

It is worth mentioning that the current simulation introduces

noises at three independent stages: the ei(t) in Equation (2) that

drives the dynamic system to generate neuronal interactions, the

physiological noise added in neuroelectric (for EEG) and

hemodynamics (for fMRI) responses and the noise at the level of

sampling to mimic measurement noise. Other parameters are

similar to our previous study [17] and are listed in Table 1.

Procedure of mFNC. An implementation of mFNC is shown

in Figure 4 with parameters of c = 0.5, dfMRI = dfMRI = 5. In the

FNs extracting stage, FastICA iteration usually terminated after

extracting three components, because the fixed point algorithm

did not converge in further calculating. The common FNs across

our 20 implementations were identified by cluster analysis, and the

final three clustering centers were used as spatial IC for each

modality. Figure 4(a) and 4(b) illustrate the FNs used for the

following procedures of NESOI and GCA.

NESOI reconstructed the source activity of EEG FNs in

Figure 4(d), and the estimated hyperparameters are illustrated in

Figure 4(c). Each row shows the relative contributions of fMRI

FNs (in the top row) to the EEG FNs (in the left column). The

grayscale of each row is normalized to emphasize the maximum

with white color. Obviously hyperparameters indicate the accurate

relationship between modalities: EEG IC1 is an EEG-specific FN

that MSP has the largest value, EEG IC2 is matched to fMRI IC1,

EEG IC3 is matched to fMRI IC3. As both EEG IC2 and fMRI

IC1 have the largest activation in S3, they all construct the

common source S3. With similar property, EEG IC3 and fMRI

IC3 construct the common source S1. Model special component

EEG IC1 and fMRI IC2 are assigned to source S2 and S4

respectively. Consequently, 4 sources are constructed in the

mFNC and the directed edge between them will be explored with

Granger causality. Another product of NESOI is the neuroelectric

activity imaging in Figure 4(d), where all the EEG visible activated

areas in Figure 3 are well reconstructed. However, the sources of

EEG IC1 are more local than the simulated one in Figure 3. The

sources of EEG IC2 and EEG IC3 are contaminated by

inaccurate priors from MSPs and fMRI IC2, as there are some

small clusters around the central areas.

Time courses of EEG and fMRI FNs are used to estimate the

Granger causality. The VAR model order estimated by BIC is two

for EEG data and one for fMRI data. The resulting Granger

causalities among FNs are illustrated in Figure 4(e). Edges

explored from EEG and fMRI are shown with different colors.

The estimated edges from both modalities indicate that S3 receives

information from S1. In contrast, FNCs derived from single

modality cannot identify the causal granger relationship between

these sources and the other blind (modality-specific) sources,

such as S2 for fMRI and S4 for EEG. Considering the EEG IC1

and fMRI IC2, the directed influences illustrated in Figure

4(e) together correctly show the entire networks simulated in

Figure 3.

Robustness of mFNC. The reconstruction of mFNC

contains multiple stages: extracting FNs, exploring the influences

among FNs and matching between modalities. Previous studies

have statistically investigated the performance of ICA

decomposition [6,20] and EEG source imaging [18]. VAR

model and Granger causality have been proven to be capable of

exploring the patterns of neural interactions based on

neuroelectric signals [22]. Granger causality has also been

applied to fMRI signals even if the temporal sampling of BOLD

responses is larger than the time scale of the influence [31]. In this

simulation, instead of a detailed consideration of noise effect and

coupling strength on each stage, we investigate the overall effect

that to what extent mFNC is capable of detecting directed

interactions among neuronal populations.

Systematic combinations of different levels of parameters

include: the strength of influence (c = 0.1, 0.3, 0.5, 0.7), the SNR

of EEG (deeg = ‘, 10, 5, 3.3, 2.5, 2) and fMRI (dfMRI = ‘, 10, 5,

3.3, 2.5, 2). For each of the 144 (46666) possible combinations of

these parameters, a set of 256 simulations was performed and

mFNC was reconstructed on the simulated signals. The perfor-

mance of the reconstruction was evaluated using rigorous criteria.

Though the final evaluation is for the reconstructed interactions,

here we follow a two-step procedure: first, based on NESOI, the

FNs of EEG and fMRI are classified into different groups (for

example the four groups illustrated in Figure 4(e)) with two of them

being matched FNs (S1 and S3); second, only the correct Granger

results among the correct groups are taken as the correct results.

We evaluated the reconstructed interactions among sources with

sensitivity (proportion of true positive) and specificity (proportion

of true negative). The mean values of 256 implementations are

given in Figure 5, which plots sensitivity and specificity as a

function of a range of values for c, deeg and dfMRI .

The four surfaces show the overall influences of the parameter

to ICA decomposition, EEG source imaging and causality

analysis. Three main observations can be made. First, an increase

in the coupling strength at given levels of SNR leads to a steady

increase in the sensitivity and specificity. Second, increasing SNR

Table 1. Parameters in simulation.

EEG fMRI

Sources: S1, S2, S3 Sources: S1, S3, S4

Sampling rate: 50 Hz Repeat time: TR = 1.5 s

Number of time samples: 55640 (trials) Number of time samples: 240

SNR of physiological noise: deeg SNR of physiological noise: dfMRI

SNR of measurement noise: 1 SNR of measurement noise: 0.2

Number of electrodes: e = 62 Size of simulated HRF: l = 13

Lead-field matrix X: 3 spheres head model with analytic solution Sphere radii: [0.87 0.89 1] HRF function: Gamma function70670 voxels Field of view (FOV): 2006200 mm2

Signal recording length: 360 s

Number of dipoles/voxels: d = 2452

Number of dipoles per source (S1-S4): [90 30 32 100]

doi:10.1371/journal.pone.0024642.t001

Multimodal FNC
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Figure 5. Mean value of sensitivity (proportion of true positive) and specificity (proportion of true negative) over 256 simulations.
Four surfaces show the performance for c = 0.1 (blue surface), c = 0.3 (red surface), c = 0.5 (grey surface), and c = 0.7 (cyan surface), as a function of
different noise levels of EEG deeg and fMRI dfMRI .
doi:10.1371/journal.pone.0024642.g005

Figure 4. An illustration of the intermediate results of mFNC in simulation. (a) scalp potential distribution (1st row) and single trial images
(2nd row) of EEG components, which are extracted by employing spatial ICA; (b) spatial distribution (1st row) and the corresponding BOLD signals (2nd

row) of fMRI components obtained using spatial ICA; (c) the hyperparameters quantify the support from the fMRI spatial patterns (the top row) for
each EEG component (the left column); (d) source localization results corresponding to the extracted EEG ICs. The maps are shown with a threshold of
1% quantile of the spatial distribution; (e) Granger causality estimated from EEG and fMRI signals, S1 and S3 are the EEG-fMRI common sources. Red
arrows depict connections for EEG and blue arrows for fMRI. There is a bidirectional link between EEG IC1 and IC2.
doi:10.1371/journal.pone.0024642.g004

Multimodal FNC
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when keeping coupling strength also increases the influence

measure. The conjoint effects of EEG and fMRI noise seem to be

roughly additive. Third, sensitivity mainly depends on EEG noise

while specificity depends on both noises. Further checking the

details of the EEG FNs reveals that the decrease of EEG SNR will

aggravate ICA decomposition, and this leads to failure in

reconstructing of the sources of mFNC, and further the edges

between them. In contrast, fMRI noise has little influence on

detection of interaction. Previous literature indicated that the

sensitivity decreases rapidly with increasing sampling interval and

decreasing influence delay [31]. In our simulation, the main effect

of fMRI noise is that the specificity decreases with increasing fMRI

noise. Overall, these simulations suggest that the proposed method

is able to detect influence between neuronal populations in

simultaneous EEG-fMRI recording. However, the sensitivity to

such interactions decreases rapidly with decreasing SNR and

coupling strength.

Experiment and Data Acquisition
As part of a study to investigate the link between EEG and

fMRI at the level of single trials [33], a twenty-eight-year-old right-

handed male was paid for his participation. Written informed

consent was obtained and the protocol was approved by the

Research Ethics Board of the Birmingham University Imaging

Centre. All the EEG and fMRI recoding experiments were

conducted according to the principles expressed in the Declaration

of Helsinki. Individual trials of the experiment consisted of a single

presentation of a hemifield checkerboard stimulus for 1 s with

phase reversal after 500 ms followed by a fixation period which

was uniformly sampled from 16.5 to 21 s, discretized to 1.5 s.

Individual runs consisted of 17 trials per contrast with fixation

periods at the beginning and at the end, amounting to a total

session length of 11 min (441 volumes61.5 s). Contrasts were

randomized and five of these runs were acquired, resulting in 85

trials per contrast. In the current study, only trials of high contrast

level (cMichelson = 1) were used for subsequent data analyses. A

simple fixation task was performed to maintain the observer’s

attention: on a random selection of half of the trials of a given

session, the fixation cross changed from a plus sign to an X during

the fixation period at random time points, discretely (1.5 s) and

uniformly sampled from the interval of 4.5–16.5 s after stimulus

onset. The observer’s task was to report the change in fixation by a

button press using the index finger of the right hand. Hit rate and

number of false alarms were presented to the observer at the end

of each session. Stimuli were presented and behavioural data were

collected using Psychotoolbox3 for Matlab (The Mathworks,

Natick, MA). The timing of stimulus presentation was controlled

by the MRI scanner volume trigger.

EEG data were recorded using a 64-channel MR compatible

EEG system (BrainAmp MR Plus, Brain Products, Munich,

Germany). The EEG cap consisted of 62 scalp electrodes

distributed according to the 10–20 system and two additional

electrodes, one of which was attached approximately 2 cm below

the left collarbone to record the ECG, while the other was

attached below the left eye for measurement of the electro-

oculogram. Data were sampled at 5000 Hz. fMRI data were

recorded using a 3-T Philips Achieva MRI scanner. EPI data

(gradient echo pulse sequence) were acquired from 441 volumes

and 20 slices (2.562.563 mm resolution, TR = 1500 ms,

TE = 35 ms, SENSE factor = 2, flip angle = 80u), providing

approximately half brain coverage in the dorsal-ventral direction.

Slices were oriented parallel to the AC-PC axis of the observer’s

brain and positioned to cover the entire occipital cortex.

Results

Data Preprocessing
For EEG measurement, the gradient artifacts were removed

using the average artifact subtraction approach. Ballistocardiogram

artifact correction was performed using the Optimal Basis Set

method [34]. The data were low-pass filtered at 25 Hz and down-

sampled to 50 Hz, then concatenated. The preprocessed EEG data

were further re-referenced to the average [30] and baseline

corrected. For each trial, signal between -100 ms and 1000 ms

related to the stimulus onset were preserved for further analysis.

For fMRI measurement, SPM8 was used for pre-processing.

Functional image time series data were first corrected for

differences in slice acquisition times, then warped into standard

Talairach anatomical space, and smoothed with an isotropic 8-

mm full-width-at-half -maximum Gaussian kernel. The data were

then concatenated and 13 peri-stimulus time points (18 s) were

preserved from each trial for further analysis.

Extracting EEG Functional Networks
ICA linearly decomposed EEG data into 61 maximally

independent components. We implemented FastICA for 20 times

with random initialization. To determine which components were

common across implementations, we performed cluster analysis on

the component maps [20] and eleven common components were

selected according to the resulted clustering centers. Three

neurophysiologically implausible patterns were removed due to

their multi-polar structure in the scalp potential configuration (see

Figure S1). Eight FNs were selected for further investigation.

Three primary features are presented in Figure 6 for each

FN. The scalp topography (top left insert) corresponds to the

decomposed spatial IC, whose time course is shown with a two-

dimensional representation of ERP images (top right insert, trials

are smoothed by a 10-trials moving average for visualization). The

thin color-coded horizontal bars represent a single trial. The

bottom insert is the average ERP during the visual tasks, where

standard error is labeled with the semitransparent line.

Extracting fMRI Functional Networks
The number of ICs in our fMRI data was determined by the

number of time points. We implemented FastICA with random

initialization and the common components across implementa-

tions are identified by cluster analysis [20]. The selected sixteen

common components were further inspected to determine which

fMRI components were likely to be of neurophysiological origin.

We detected seven components that appeared to be associated

with artifacts, such as head motion, cerebrospinal fluid, large

vessels and dispersion of clusters (see Figure S2). Nine FNs were

selected for further investigation.

Three primary features are presented in Figure 7 for each

component. The spatial distribution in an axial view corresponds

to one slice of the fMRI FN. The intensities of each map were

transformed to z scores. Voxels with absolute z scores higher than

three were considered as activated and other detailed information

(active regions, Brodmann’s area (BA) and the corresponding

network) are listed in Table 2. The corresponding time course is

shown in the bottom insert, with five runs separately illustrated

with different colors. The top right insert is the average BOLD

signal for each FN.

Matching between Modalities
Based on the FNs of the above processes, NESOI fuses EEG

and fMRI FNs in the spatial domain for combining the EEG-FNC

and fMRI-FNC into an mFNC in the following section. EEG

Multimodal FNC

PLoS ONE | www.plosone.org 7 September 2011 | Volume 6 | Issue 9 | e24642



Figure 7. Visualization of the nine functional networks of fMRI in real data test. Three features are shown for each network: fMRI spatial
distribution in an axial view (top left insert); the average BOLD signal change (top right insert. Blue lines = mean value; semitransparent lines =
standard error); the corresponding BOLD time course in each run, five runs are colored with different colors (bottom insert). Axes are the same for all
features and are shown on IC1. IC1, IC2 and IC3 are stimulus sensitive functional networks, as their average BOLD signals have strong activations
about five seconds after the stimulated onset.
doi:10.1371/journal.pone.0024642.g007

Figure 6. Visualization of the eight functional networks of EEG in real data test. For each network, three features are shown: scalp
topography (top left insert); EEG single trial ERP image (top right insert, trials are smoothed by a 10-trials moving average for visualization); and the
average EEG signal change (bottom insert. Red lines = ERP; semitransparent lines = standard error). Axes are the same for all features and are shown
on subplot of IC1. IC2 and IC7 are stimulus sensitive functional networks, as their ERPs show a strong activity between 100 and 600 ms. The stimulus
onset was at 0 ms, the stimulus reversal occurred at 500 ms.
doi:10.1371/journal.pone.0024642.g006

Multimodal FNC
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source distribution and its corresponding hyperparameters are

illustrated in Figure 8. In Figure 8(a), each row shows the relative

contributions of the fMRI FNs in the topmost row to an EEG

topography in the leftmost column. The grayscale of each row is

normalized to emphasize the maximum with white color. The

sources reconstructed from EEG ICs 2, 5 and 8 are displayed on

the inflated cortex in Figure 8(b).

Obviously, only a few fMRI FNs are helpful for EEG source

reconstruction. A straightforward consequence is that the relation-

ship between EEG and fMRI is a sparse matching. EEG IC1 is

matched to fMRI IC7 and they have some similar activations in the

frontal areas. EEG IC2 is supported by fMRI IC2, which reflects the

neural activity in primary visual cortex and a small area of visual

association cortex. EEG IC5, 6 and 7 correspond to fMRI IC1, 5

and 2, respectively. FMRI IC3 has a task-related activation after the

stimulus onset, but it does not support any EEG IC. This FN reveals

that an fMRI visible source is invisible for EEG.

Another interesting result is the estimated hyperparameters of

EEG IC3, 4 and 8, each having the largest value for MSP priors

sampled sparsely from an EEG specific subspace [18,26]. They

will be referred as EEG-specific FNs in the following investigation.

The brain region, Brodmann’s area and MNI coordinates

corresponding to the largest active position of each EEG FN after

source reconstruction are listed in Table 3.

Exploring Influences between Functional Networks
According to Figure 8 and Table 3, three categories of FNs

emerged: EEG-specific FNs (red oval in Figure 9), fMRI-specific

FNs (blue oval in Figure 9), and EEG-fMRI common FNs (the

brown intersection area). The matched FNs estimated by NESOI

Table 2. The active regions and corresponding networks of the fMRI independent components in real data test.

fMRI IC Region Brodmann area Networks

1 Primary and visual association cortex 17, 18, 19 Association Visual Network

2 Primary visual cortex and a small area of visual association cortex 17, 18 Primary Visual Network

3 Visual association cortex and part of Broca’s area 19, 44 Peristriate Visual Network

4 Primary and auditory association cortex 41, 42 Auditory Network

5 Orbitofrontal area, inferior and dorsolateral and prefrontal cortex 11, 47, 46 Prefrontal Network

6 Occipitotemporal areas 37 Visual-temporal Network

7 Inferior temporal and prefrontal gyrus 47, 20 Ventral temporal Network

8 Temporopolar areas 38 Temporopolar Network

9 Prefrontal area, posterior cingulate regions, the inferior temporal gyrus and angular gyrus 11, 23, 37, 39 Default Mode Network

doi:10.1371/journal.pone.0024642.t002

Figure 8. The results of NESOI in real data test. (a) The hyperparameters quantify the support from fMRI FNs (the topmost panel) to each EEG
FN (the leftmost panel). The hyperparameters of FN IC2, 5 and 8 are highlighted with red dashed lines. (b) Three EEG source distribution displayed on
the inflated cortex for EEG IC2, 5 and 8. The maps are shown with a threshold of 1% quantile of the spatial distribution.
doi:10.1371/journal.pone.0024642.g008
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are illustrated in a white oval. A Granger casual connectivity network

was constructed with time courses of EEG and fMRI FNs separately.

The VAR model order estimated by BIC is three for EEG and one for

fMRI FNs. The edges with statistical significance values are labeled

with red arrows when they are estimated from EEG signal, and are

labeled with blue arrows when from fMRI. And all information in

Figure 9 illustrates the mFNC derived from the real data.

For the EEG-fMRI common FNs (in the intersection area of the

large red and blue ovals), the links between components are

slightly different in the neuroelectric and hemodynamic domains.

Only one edge is identified from the fMRI information. The fMRI

IC2 is subdivided into two sub FNs for EEG: EEG IC2 and IC7

(in NESOI, fMRI IC2 supports both EEG IC2 and IC7, see

Figure 8). Furthermore, EEG sub FNs revealed more information

about signal flow: EEG IC7 was found to Granger-cause EEG

IC2. Information flow from EEG IC7 to EEG IC6 was also

reconstructed, which indicates that the frontal areas are activated

by central occipital areas.

Generally speaking, both EEG and fMRI evidences are in

accordance with the information processing of visual hierarchy.

The occipital primary visual cortex (EEG IC3, IC7 and fMRI IC2)

is the first stage of visual processing. Stimulation in the left visual

field yields the activation in the right occipital cortices (see fMRI

IC2), and this is consistent with the retinotopic organization of

early visual cortex. Then, visual information flows further to the

visual association cortex (EEG IC5 and fMRI IC1). A wide variety

of visual primitives are processed here [35] and extended bilateral

activation can be found in fMRI IC1.

EEG and fMRI specific information also reveal some interesting

links between distributed brain regions. EEG IC3 has the largest

Table 3. Summary of source imaging results of NESOI in real data test.

EEG IC Largest active position Brodmann area MNI coordinates Matched fMRI IC

1 Superior Frontal Gyrus 11 [-27.28 61.68 -9.36] fMRI IC7

2 Lingual Gyrus 18 [3.43 -74.84 -1.55] fMRI IC2

3 Fusiform Gyrus 37 [-55.27 -49.06 -19.30] N/A

4 Inferior Occipital Gyrus 17 [22.99 -95.58 -15.84] N/A

5 Lingual Gyrus 18 [24.95 -76.70 -13.28] fMRI IC1

6 Middle Temporal Gyrus 37 [52.25 -36.36 -15.00] fMRI IC5

7 Lingual Gyrus 19 [-26.32 -66.33 3.35] fMRI IC2

8 Middle Frontal Gyrus 47 [38.00 42.90 -11.85] N/A

doi:10.1371/journal.pone.0024642.t003

Figure 9. Multimodal functional network connectivity estimated from Granger causality analysis and NESOI in real data test. The left
red and right blue ovals identify the functional networks of EEG and fMRI respectively. The middle intersection area of the red and blue ovals defines
the ‘‘common substrate’’ of neuronal activity in the two modalities. Each small white oval represent the matched functional networks. Here the NESOI
results on the inflated cortex are adopted as the substitute of the scalp EEG pattern. fMRI FNs are displayed on one slice of the anatomical image
respectively. Red arrows depict connections for EEG and blue arrows for fMRI.
doi:10.1371/journal.pone.0024642.g009
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positive activation in the left occipital region, which may be the

projections of the opposite visual areas (such as EEG IC7). In the

estimated networks, many edges are sent out from EEG IC3.

Following the visual pathways, the activations in the left (EEG

IC3) and right (EEG IC7) occipital regions are translated to

bilateral and frontal areas (EEG IC4 and IC6). For fMRI-specific

FNs, a link is reconstructed from DMN (fMRI IC9) to primary

visual network (fMRI IC2). Previous studies have identified the

DMN as the task-negative network, which is active when the

individual is not focused on the outside world and the brain is at

wakeful rest. The link between DMN and primary visual network

may be the result of short rest between the simple visual stimulus

tasks. An arrow from fMRI IC8 to IC6 is reconstructed. However,

considering the overlapped temporopolar and occipitotemporal

regions in left hemisphere, this link may be the result of over-

separation of the ICA algorithm.

Graph Theoretical Analysis
Based on the Granger causality network estimated by GCA,

graph features of the networks were quantitatively characterized

by GTA.

As illustrated in Figure 10, causal densities and flows were

calculated in each modality. There are nine links between the

eight EEG FNs. In these FNs, EEG IC3 is an active node, with five

edges flowing to other FNs. Another high causal density note is

EEG IC7, which is matched to the high causal density node of

fMRI IC2. From a causal flow perspective, EEG IC3 and EEG

IC7 are the main causal ‘sources’ and they affect other FNs. In

contrast, EEG IC2, 4 and 6 are the main causal ‘sinks’ with higher

in-degree than out-degree, indicating that they are Granger-

caused by the other nodes.

The connections between the nine fMRI FNs decreased to five.

In these FNs, fMRI IC2 communicates widely and it has three

edges connected to other nodes. For causal flow, fMRI IC2, 8 and

9 are the main causal ‘sources’, in which the difference between

out-degree and in-degree is 1, and fMRI IC1 is the main ‘sink’, in

which the difference between out-degree and in-degree is -2 (see

Figure 10).

In summary, Granger causal interactions among EEG networks

have larger causal density than their fMRI counterparts. One

possible explanation is that more samples were included into the

GCA for EEG than for fMRI. Increasing the sample size makes

the statistical significance easy to pass the threshold when keeping

the SNR [36]. An alternative explanation is that the sensitivity to

explore the influence among fMRI ICs decreases rapidly with low

temporal resolution, which has been systematically investigated

before [31,37].

Discussion

In this study, we proposed a novel method to fuse EEG and

fMRI in network space where functional network connectivity was

Figure 10. Causal density and causal flow of each EEG and fMRI functional networks in real data test. X-axis represents the index of
IC.
doi:10.1371/journal.pone.0024642.g010
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explored using Granger causality in each modality, and then the

two groups of connectivities are matched using spatial rather than

temporal information. This method has the potential to recon-

struct the entire network without missing functional networks that

are remain undetected by a single modality. Below we discuss its

properties and limitation.

Functional Connectivity
Functional connectivity analysis is particularly valuable for the

investigation of coherent activity in distant brain areas. Most

previous studies have applied a region-of-interest (ROI) based

cross-correlation analysis approach [38]. The networks extracted

by this method can also be used in mFNC. However, the result is

ROI dependent. In this study, we defined networks by means of

spatial ICA, a data-driven approach that is capable of separating

independent patterns without prior knowledge about their activity

waveforms or locations [6]. As functional networks are spatially

independent, they may be temporal correlated, which provides the

theoretical basis for the following causality analysis.

Both task- and non-task-related functional networks are

extracted by spatial ICA from EEG and fMRI signals. For

EEG, as presented in Figure 6, eight FNs were selected for further

investigation. Both EEG IC2 and IC7 represent task-related

functional networks since they show occipital activities with peaks

between 100 and 600 ms after stimulus onset. They may be the

result of overseparation from a single spatial pattern, and NESOI

does match them with the same network: fMRI IC2. The spatial

matching procedure enables mFNC to be robust for the over-

separating problem of ICA. EEG IC5 has a negative-going wave

with a peak at 200 ms post-stimulus in the central occipital area,

which may also reflect a stimulus response. EEG IC1 has a positive

activation around the lateral frontal area, which may reflect a later

processing. For fMRI, considering the average BOLD signal

change, three FNs are positively related to tasks: fMRI IC1, 2 and

3. The amplitudes of the time courses of ICs are larger than ten

percent compared to the unit variance (see Figure 7). However, the

localization of IC1, 2 and 3 are a little different: IC2 is located in

the primary visual cortex and a small area of visual association

cortex, while IC1 extends slightly to extrastriate visual cortex. For

IC3, activation further extends to bilateral BA19 and a small

region in Broca’s area (BA44). The fMRI IC9 consisted of multiple

areas: the prefrontal, anterior cingulate, and the inferior temporal

gyri. This pattern of brain regions is known as the default-mode

network (DMN), as described in [39].

Spatial Matching between EEG and fMRI
In mFNC, fMRI FNs are matched to EEG FNs in the spatial

domain using a EEG source inversion method. Spatial matching

may be a good alternative for the popularly utilized temporal

matching in simultaneous EEG and fMRI recording [16]. Because

EEG needs to be down-sampled to the temporal resolution of

fMRI, matching in the temporal domain may neglect a large

amount of temporal information in EEG signal. Furthermore, as

the exact relation between time-courses of BOLD and EEG is

complex [40], temporal correlation has the potential risk of

producing misleading results. The spatial matching between EEG

and fMRI FNs using NESOI leads to a robust and flexible

mapping in the common substrate.

In mFNC, there are some modality-specific FNs which are

invisible for one modality. This enables our method to access the

uncoupled regions implicated in EEG and fMRI signal. The

discordance may be associated with the distance between the

neuronal population, whose electrical activity generates the EEG

signal, and the vascular tree, which provides the blood supply to

these neurons [41]. If the electrophysiological activity is transient,

it might not induce any detectable metabolic activity changes. In

contrast, a number of physiological processes can cause hemody-

namic BOLD changes, without EEG correlates. Such example

includes neurotransmitter synthesis, glial cell metabolism, or

maintenance of the steady-state transmembrane potential. This

differential sensitivity to neuronal activity can also arise whenever

hemodynamic activity is caused by non-synchronized electrophys-

iological activity or if the latter has a closed source configuration

that is invisible to EEG.

Exploring Influences between Functional Networks
In general, GCA analysis may be employed for all time series at

a unified temporal scale. In this work, the interaction between

neuronal populations in mFNC is explored separately by causality

analysis within each single modality for two reasons. First, EEG

and fMRI data must undergo typical preprocessing in this

implementation, including convolution or deconvolution to

compensate for the hemodynamic lag before entering the joint

data space. Therefore, GCA analysis of all time series ignores the

potential bias induced by model mismatches due to variable

hemodynamic delays. Second, as we assumed that the matched

EEG-fMRI common FNs represent the same neuronal popula-

tions, loading both the EEG and fMRI time-courses may lead to

an ill conditioned matrix for Granger causality analysis and

confusion in interpretation.

There are several potential obstacles in applying Granger

causality to fMRI signals. First, BOLD is an indirect measure of

neural dynamics and temporal information may be distorted by

hemodynamic blurring of the neuronal responses [31]. Second, the

hemodynamic response function is known to vary between subjects

and such variability has the potential to introduce artifacts when

assigning causality [37]. Third, another bottleneck is that the fMRI

signals have relatively poor temporal resolution at the order of

seconds. However, dynamic interactions between neuronal popu-

lations usually take place at a time scale of millisecond. Previous

literature indicated that the sensitivity to detect interactions between

neuronal populations decreases rapidly with increasing sampling

interval (i.e., the whole volume repeat time) [31]. In our method, the

spatially matched EEG and fMRI FNs are assumed to represent the

same neuronal populations. This assumption allows mFNC to

explore the interactions among FNs with different modalities. The

autonomous FNs estimated by fMRI GCA may also have

information flows when we consult EEG GCA. fMRI network

connectivity, in a way, is temporally improved with the help of EEG.

For example, there may be an arrow from fMRI IC2 to fMRI IC5

when we consider the EEG information (see the arrow from EEG

IC7 to EEG IC6 in Figure 9).

Multimodal Functional Network Connectivity
Functional segregation (i.e. the brain as an ensemble of

functionally segregated areas) and functional integration (i.e.

functionally specialized areas are integrated and psychological

functions are caused by distributed interactions) are the two main

principles of brain function. They both find support with recent

developments in functional neuroimaging. As demonstrated in our

previous work [18], NESOI is actually a localization method to

find functionally segregated neural sources related to a special task.

Although localized sources might be sufficient to explain some

aspects of pathophysiology, they are not sufficient to fully account

for all possible symptoms, clinical course, or treatment consider-

ations, which instead may be more related to the (dys)function of

distributed networks [42].

Multimodal FNC
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In this work, we attempt to develop an analysis procedure to

reveal both functional segregation and functional integration

simultaneously. The implicit generative model of mFNC entails a

number of assumptions about brain responses. First, brain activity

is generated by a set of spatial independent patterns. Each pattern

contains multiple regions with temporally coherent activity.

Second, these patterns are functionally connected and their

temporal dynamics can be modeled as an autoregressive process.

Third, EEG and fMRI observe parts of these patterns. In contrast

with the models in [43,44,45], EEG and fMRI do not need to

share a common substrate.

In the real data test, mFNC unveiled the comprehensive

relationships among FNs during a visual stimulus task. Because

of the retinotopic organization of early visual cortex, stimulation

in the left visual field yields the activation in the right occipital

cortices. The visually evoked P100 is identified in EEG IC2 and

IC7. After source imaging, their locations are mainly overlapped

with fMRI IC2, which is located in the primary visual cortex.

Then, visual information flows further to the visual association

cortex (EEG IC5 and fMRI IC1). EEG IC5 has a negative-

going wave that peaks at 200 ms post-stimulus around the

central occipital area. As can be seen from the average BOLD

signal change at the time of stimulus onset, fMRI IC1 is the task

related component, and is partially located in extrastriate visual

cortex. A wide variety of visual primitives are processed here

[35]. We also find an electrophysiological activation (EEG IC3)

in the opposite visual areas. However, this component has no

matching fMRI source. Previous studies have identified the

DMN as the task-negative network. In mFNC, an edge between

DMN and primary visual network is identified and thought to

result from the short rest between the simple visual stimulus

tasks. In Figure 9, the neuroelectric interaction between EEG

IC7 and IC5, and the hemodynamic interaction between fMRI

IC2 and IC1, both indicate that there is a bottom-up visual

process. The occipital primary visual cortex is the source of

visual processing, and its information is flowing to the visual

association cortex. Overall, mFNC reveals comprehensive

relationships among functional brain networks, which may be

helpful to explore the neuroelectric and metabolic responses

during checkerboard stimulation. Consequently, we conclude

that mFNC provides a unification of different views provided by

functional segregation and integration, and may therefore

represent an approach that is more akin to actual brain

processing.

Methodological Limitations
We should notice that there are limitations to this approach. As

the procedure of mFNC entails a number of different algorithms,

any potential problem of them may distort the final result. First,

temporal ICA has by far dominated EEG analysis to date. The

choice of spatial or temporal ICA should be made according to the

characteristics of the underlying signals to be estimated [46].

Spatial ICA of EEG is used here to extract statistically

independent spatial components. Although the results reported

in the current study are encouraging, one has to note that for

single trial EEG data, the ICA assumptions may be inappropriate,

and an alternative choice is imposing constraints on the cortex

rather than on the scalp [47]. Second, one of the open problems

with ICA is how to determine the optimal number of components.

Our approach was to contain as many components as the input

data, and to implement the ICA several times. The common

components across multiple implementations are identified by

cluster analysis [20,48]. However, there are some popular criteria

for this issue, such as the minimum description length which has

been modified to account for spatial correlation of fMRI data [49].

Third, we employed GCA in event-related single trial data, which

implies the assumption that time courses are jointly wide sense

stationary. It could be argued that this assumption is inadequate for

non-stationarity processes, though our GCA is performed in

accordance with many event-related studies [31]. Last but not the

least, the generative model of mFNC contains a number of implicit

assumptions, which may be obstacles for its application. For

example, multiple brain regions may partially overlay in an

experiment and the spatial independent assumption is inappropriate

in this condition. Our method also may fail if the interactions

among neuronal populations are highly nonlinear [50].

Conclusion
In summary, the novelty of mFNC is that temporal causality is

explored separately within EEG and fMRI signals and the

common networks between modalities are matched using spatial

information. Synthetic data studies demonstrated the potential of

mFNC to reveal the correct networks if EEG and fMRI have the

same spatial location of neural sources. Analysis of experimental

showed that mFNC allows networks to be found that are in

accordance with current knowledge of visual processing in the

human brain. In addition, mFNC showed some connections that

are driven by the high spatial resolution of fMRI and the high

temporal resolution of EEG. Compared with the FNC derived

from the fMRI modality alone, the presented exploratory analysis

showed that mFNC revealed a more complete dynamic picture of

the complex brain-state fluctuations underlying cognitive and

perceptual processes. A particularly useful application of mFNC

would be to examine abnormal relationships among brain

networks in psychiatric patients to better understand their

neurobiological basis. Combined with single-trial analysis, mFNC

might also be used to identify plasticity effects induced by various

experimental manipulations. More importantly, this could accel-

erate the comparative study of the EEG default mode network

[51,52] and the fMRI default mode network [39].

Supporting Information

Text S1 Restricted Maximum Likelihood algorithm.
(DOC)

Figure S1 Excluded EEG independent components. For

each component, scalp topography (first column), single trial ERP

image (second column) and the average EEG (third column) are

shown.

(TIF)

Figure S2 Excluded fMRI independent components.
Sagittal, coronal and axial views of the spatial map are listed for

each component. These are scaled to z scores and shown in a

maximum intensity projection format. Blue to green represent z

values ranging from min to -3.0, and yellow to black represent z

values ranging from 3.0 to max.

(TIF)

Acknowledgments

The authors thank the two anonymous reviewers for their constructive

comments which improved the manuscript considerably.

Author Contributions

Conceived and designed the experiments: XL DO CQ CP APB DY.

Performed the experiments: XL DO CQ. Analyzed the data: XL. Wrote

the paper: XL DO JH CP APB DY.

Multimodal FNC

PLoS ONE | www.plosone.org 13 September 2011 | Volume 6 | Issue 9 | e24642



References

1. Friston KJ, Frith CD, Fletcher P, Liddle PF, Frackowiak RS (1996) Functional
topography: multidimensional scaling and functional connectivity in the brain.

Cerebral Cortex 6: 156–164.
2. Buchel C, Friston KJ (1997) Modulation of connectivity in visual pathways by

attention: cortical interactions evaluated with structural equation modelling and
fMRI. Cerebral Cortex 7: 768–778.

3. Valdes-Sosa PA, Sanchez-Bornot JM, Lage-Castellanos A, Vega-Hernandez M,

Bosch-Bayard J, et al. (2005) Estimating brain functional connectivity with sparse
multivariate autoregression. Philos Trans R Soc Lond B Biol Sci 360: 969–981.

4. Valdes-Sosa PA, Sanchez-Bornot JM, Sotero RC, Iturria-Medina Y, Aleman-
Gomez Y, et al. (2009) Model driven EEG/fMRI fusion of brain oscillations.

Hum Brain Mapp 30: 2701–2721.

5. Calhoun VD, Adali T (2006) Unmixing fMRI with independent component
analysis. IEEE Eng Med Biol Mag 25: 79–90.

6. McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, et al. (1998)
Analysis of fMRI data by blind separation into independent spatial components.

Hum Brain Mapp 6: 160–188.

7. Jafri MJ, Pearlson GD, Stevens M, Calhoun VD (2008) A method for functional
network connectivity among spatially independent resting-state components in

schizophrenia. Neuroimage 39: 1666–1681.
8. Demirci O, Stevens MC, Andreasen NC, Michael A, Liu J, et al. (2009)

Investigation of relationships between fMRI brain networks in the spectral
domain using ICA and Granger causality reveals distinct differences between

schizophrenia patients and healthy controls. Neuroimage 46: 419–431.

9. Babiloni F, Cincotti F, Babiloni C, Carducci F, Mattia D, et al. (2005)
Estimation of the cortical functional connectivity with the multimodal

integration of high-resolution EEG and fMRI data by directed transfer function.
Neuroimage 24: 118–131.

10. Trujillo-Barreto N, Martinez-Montes E, Melie-Garcia L, Valdes-Sosa P (2001) A

symmetrical Bayesian model for fMRI and EEG/MEG neuroimage fusion.
Int J of Bioelectromag 3: 1.

11. Eichele T, Calhoun VD, Debener S (2009) Mining EEG-fMRI using
independent component analysis. Int J Psychophysiol 73: 53–61.

12. Goldman RI, Stern JM, Engel J, Jr., Cohen MS (2002) Simultaneous EEG and
fMRI of the alpha rhythm. Neuroreport 13: 2487–2492.

13. Moosmann M, Ritter P, Krastel I, Brink A, Thees S, et al. (2003) Correlates of

alpha rhythm in functional magnetic resonance imaging and near infrared
spectroscopy. Neuroimage 20: 145–158.

14. Martinez-Montes E, Valdes-Sosa PA, Miwakeichi F, Goldman RI, Cohen MS
(2004) Concurrent EEG/fMRI analysis by multiway Partial Least Squares.

Neuroimage 22: 1023–1034.

15. Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, et al. (2005)
Trial-by-trial coupling of concurrent electroencephalogram and functional

magnetic resonance imaging identifies the dynamics of performance monitoring.
Journal of Neuroscience 25: 11730–11737.

16. Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007)
Electrophysiological signatures of resting state networks in the human brain.

Proc Natl Acad Sci U S A 104: 13170–13175.

17. Lei X, Qiu C, Xu P, Yao D (2010) A parallel framework for simultaneous EEG/
fMRI analysis: Methodology and simulation. Neuroimage 52: 1123–1134.

18. Lei X, Xu P, Luo C, Zhao J, Zhou D, et al. (2011) fMRI Functional Networks
for EEG Source Imaging. Human Brain Mapping 32: 1141–1160.

19. Comon P (1994) Independent component analysis, a new concept? Signal

Processing 36: 287–314.
20. Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, et al. (2002)

Dynamic brain sources of visual evoked responses. Science 295: 690–694.
21. Granger C (1969) Investigating causal relations by econometric models and

cross-spectral methods. Econometrica: Journal of the Econometric Society 37:
424–438.

22. Ding M, Chen Y, Bressler SL (2006) Granger Causality: Basic Theory and

Application to Neuroscience; Schelter B, Winterhalder M, Timmer J, editors.
Berlin: Wiley-VCH.

23. Haykin S (2002) Adaptive filter theory: Upper Saddle River. NJ: Prentice Hall.
24. Geweke J (1984) Measures of conditional linear dependence and feedback

between time series. Journal of the American Statistical Association 79: 907–915.

25. Phillips C, Mattout J, Rugg MD, Maquet P, Friston KJ (2005) An empirical
Bayesian solution to the source reconstruction problem in EEG. Neuroimage 24:

997–1011.
26. Friston K, Harrison L, Daunizeau J, Kiebel S, Phillips C, et al. (2008) Multiple

sparse priors for the M/EEG inverse problem. Neuroimage 39: 1104–1120.

27. Friston K, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W (2007)

Variational free energy and the Laplace approximation. Neuroimage 34:
220–234.

28. Seth AK (2005) Causal connectivity of evolved neural networks during behavior.
Network: Computation in Neural Systems 16: 35–54.

29. Yao D (2000) Electric potential produced by a dipole in a homogeneous

conducting sphere. IEEE Trans Biomed Eng 47: 964–966.

30. Yao D (2001) A method to standardize a reference of scalp EEG recordings to a

point at infinity. Physiol Meas 22: 693–711.

31. Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over
the brain using Granger causality and fMRI. Neuroimage 25: 230–242.

32. Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis

of functional magnetic resonance imaging in human V1. Journal of
Neuroscience 16: 4207–4221.

33. Ostwald D, Porcaro C, Bagshaw AP (2010) An information theoretic approach
to EEG-fMRI integration of visually evoked responses. Neuroimage 49:

498–516.

34. Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM (2005) Removal
of FMRI environment artifacts from EEG data using optimal basis sets.

Neuroimage 28: 720–737.

35. Grill-Spector K, Malach R (2004) The human visual cortex. Annu Rev Neurosci

27: 649–677.

36. Sackett DL (2001) Why randomized controlled trials fail but needn’t: 2. Failure
to employ physiological statistics, or the only formula a clinician-trialist is ever

likely to need (or understand!). CMAJ 165: 1226–1237.

37. Deshpande G, Sathian K, Hu X (2010) Effect of hemodynamic variability on

Granger causality analysis of fMRI. Neuroimage 52: 884–896.

38. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in
the motor cortex of resting human brain using echo-planar MRI. Magn Reson

Med 34: 537–541.

39. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, et al. (2001)

A default mode of brain function. Proc Natl Acad Sci U S A 98: 676–682.

40. Scheeringa R, Fries P, Petersson K-M, Oostenveld R, Grothe I, et al. (2011)
Neuronal Dynamics Underlying High- and Low-Frequency EEG Oscillations

Contribute Independently to the Human BOLD Signal. Neuron 69: 572–583.

41. Beisteiner R, Erdler M, Teichtmeister C, Diemling M, Moser E, et al. (1997)

Magnetoencephalography May Help to Improve Functional MRI Brain
Mapping. European Journal of Neuroscience 9: 1072–1077.

42. Friston KJ, Frith CD (1995) Schizophrenia: a disconnection syndrome? Clin

Neurosci 3: 89–97.

43. Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S, et al. (2007)
Symmetrical event-related EEG/fMRI information fusion in a variational

Bayesian framework. Neuroimage 36: 69–87.

44. Luessi M, Babacan SD, Molina R, Booth JR, Katsaggelos AK (2011) Bayesian

symmetrical EEG/fMRI fusion with spatially adaptive priors. Neuroimage 55:
113–132.

45. Ou W, Nummenmaa A, Ahveninen J, Belliveau JW, Hamalainen MS, et al.

(2010) Multimodal Functional Imaging Using fMRI-Informed Regional EEG/

MEG Source Estimation. Neuroimage.

46. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) Spatial and temporal
independent component analysis of functional MRI data containing a pair of

task-related waveforms. Hum Brain Mapp 13: 43–53.

47. Valdes-Sosa PA, Vega-Hernandez M, Sanchez-Bornot JM, Martinez-Montes E,

Bobes MA (2009) EEG source imaging with spatio-temporal tomographic
nonnegative independent component analysis. Hum Brain Mapp 30:

1898–1910.

48. Esposito F, Scarabino T, Hyvarinen A, Himberg J, Formisano E, et al. (2005)
Independent component analysis of fMRI group studies by self-organizing

clustering. Neuroimage 25: 193–205.

49. Li YO, Adali T, Calhoun VD (2007) Estimating the number of independent

components for functional magnetic resonance imaging data. Hum Brain Mapp
28: 1251–1266.

50. Marinazzo D, Liao W, Chen H, Stramaglia S (2010) Nonlinear connectivity by

Granger causality. Neuroimage.

51. Chen AC, Feng W, Zhao H, Yin Y, Wang P (2008) EEG default mode network

in the human brain: spectral regional field powers. Neuroimage 41: 561–574.

52. Qin Y, Xu P, Yao D (2010) A comparative study of different references for EEG
default mode network: The use of the infinity reference. Clinical Neurophys-

iology 121: 1981–1991.

Multimodal FNC

PLoS ONE | www.plosone.org 14 September 2011 | Volume 6 | Issue 9 | e24642


