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Abstract

The human brain is organized into a collection of interacting networks with specialized functions to support various
cognitive functions. Recent research has reached a consensus that the brain manifests small-world topology, which
implicates both global and local efficiency at minimal wiring costs, and also modular organization, which indicates
functional segregation and specialization. However, the important questions of how and when the small-world topology
and modular organization come into existence remain largely unanswered. Taking a graph theoretic approach, we attempt
to shed light on this matter by an in vivo study, using diffusion tensor imaging based fiber tractography, on 39 healthy
pediatric subjects with longitudinal data collected at average ages of 2 weeks, 1 year, and 2 years. Our results indicate that
the small-world architecture exists at birth with efficiency that increases in later stages of development. In addition, we
found that the networks are broad scale in nature, signifying the existence of pivotal connection hubs and resilience of the
brain network to random and targeted attacks. We also observed, with development, that the brain network seems to
evolve progressively from a local, predominantly proximity based, connectivity pattern to a more distributed,
predominantly functional based, connectivity pattern. These observations suggest that the brain in the early years of life
has relatively efficient systems that may solve similar information processing problems, but in divergent ways.
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Introduction

The human brain is a complex system that is capable of

integrating massive amount of information with startling efficien-

cy. A comprehensive description of the architecture of the

anatomical connectivity patterns is therefore fundamentally

important in cognitive neuroscience and neuropsychology, as it

reveals how functional brain states emerge from their underlying

structural substrates and provides new mechanistic insights into

the association of brain functional deficits with the underlying

structural disruption [1].

Principled means of assessing early brain development

contribute positively to assessing mental health in fetuses and

neonates. On T1-weighted images, however, most white matter

in the neonatal brain is unmyelinated and therefore exhibits

lower intensity than gray matter. This ambiguous image

contrast, in addition to the dynamic change of image

appearance caused by rapid myelination in the first year of

life, confounds analysis of brain growth in this essential period of

development. Diffusion tensor imaging (DTI), on the other

hand, yields a different kind of contrast that is based on the

characterization of water diffusion patterns and allows more

straightforward characterization of developing white matter

fiber tracts. The fractional anisotropy of white matter fibers, for

instance, increases with age, reflecting increasing organization

and myelination. The application of DTI to the examination of

neonatal brain development can therefore provide valuable

information on the neurodevelopmental origins of psychiatric

illness [2]. Structural brain changes associated with psychosis

and other major psychiatric illnesses are thought to develop

early during fetal or neonatal life [3].

Although there has been a great deal of recent interest in the

study of childhood and adolescent brain development, very little is

known about the brain network in the first years of life, which is

perhaps the most dynamic phase of postnatal brain development.

The current study is the first attempt to characterize brain growth

in this period of life using network graphs with connectivity

quantified using DTI fiber tractography. We compute various

measures, such as global and local efficiency [4–6], of the

backbone brain connectivity network, observe how these measures

change with growth, and compare them with comparable regular

and lattice networks. We seek to validate whether the pediatric

brain exhibits the small-world property commonly observed in

previous studies on adult subjects [7–14]. We corroborate our

findings with measures, such as fiber length, to add another

dimension of validation for our observations. We also study the

topology of the brain network by modularity [15,16] based

separation of the connection nodes into different communities. We

observe how these communities evolve with time and infer

pertinent physiological implications. This report, while confirming

many findings from previous studies, sheds new light on the

developmental mechanism of the human brain.
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Materials and Methods

Data Acquisition and Post-Processing
This study involved 39 subjects (18 males, 21 females) in three

age groups: 2-week-olds (gestational age, mean + SD:

41:63+1:71 weeks), 1-year-olds (94:15+2:32 weeks), and 2-

year-olds (145:22+4:83 weeks). This dataset was provided to us by

Dr. John Gilmore of the University of North Carolina from his

neonatal project on early brain development [17]. Informed

written consent was obtained from the parents and the

experimental protocols were approved by the Institutional Review

Board of the University of North Carolina (UNC) School of

Medicine. None of the subjects was sedated for MRI. Before the

subjects were imaged, they were fed and fitted with ear protection.

The neonates were swaddled. All subjects slept during the imaging

examination. For each subject, diffusion-weighted images were

acquired using a Siemens 3T head-only scanner (Allegra; Siemens

Medical System) at 2 weeks, 1 year, and 2 years. Diffusion

gradients with a b-value of 1,000s=mm2 were applied in six non-

collinear directions, (1,0,1), ({1,0,1), (0,1,1), (0,1,{1), (1,1,0),
and ({1,1,0). A b~0 reference scan was also acquired. Forty-five

contiguous slices with a slice thickness of 2mm covered a field of

view (FOV) of 256|256mm2 with an isotropic voxel size of 2mm.

Ten acquisitions were used to improve the signal-to-noise ratio

(SNR) in the images. The acquisition typically takes 6.5 minutes.

A weighted least squares estimation method was used to construct

the diffusion tensors [18,19]. All images were visually inspected

before analysis to ensure no bulk motion.

Spatial Normalization
For each subject, the images at the 2-week and 1-year time points

were registered to the image at the 2-year time point using the DTI

non-rigid registration algorithm described in [20,21]. The DTI

registration algorithm uses regional tensor distribution information

and tensor edge information to hierarchically guide registration of a

pair of DT images. To leverage longitudinal information for more

accurate spatial alignment, we first estimated the correspondences

of the 2-week-time-point images with respect to their 1-year-time-

point counterparts. Correspondences to the 2-year-time-point

images were then estimated by concatenating the deformation

fields with those of the 1-year-time-point images with respect to the

2-year-time-point images. Correspondences of all the 2-year-time-

point images with respect to a template (i.e., the 2-year-time-point

DT image of a randomly selected subject) were then determined,

allowing all images from the different age groups to be analyzed

based on a common stereotaxic space. The estimated deformation

fields were stored for use in subsequent processing steps (see Fig. 1).

Fiber Tractography
Whole-brain streamline fiber tractography [22] was then performed

on each DT image in its native space with minimal seed point FA of

0.2, minimal allowed FA of 0.1, maximal turning angle of 700, minimal

fiber length of 20 mm and maximal fiber length of 200 mm. The

motivation for a low FA value allowance was so that unmyelinated

white matter fibers could be extracted. The fibers were warped to the

common stereotaxic space using the deformation fields determined as

described in the previous section, allowing us to correct for factors such

as brain size and inter-subject spatial variation.

Brain Parcellation
The Automated Anatomical Labeling (AAL) template [23] was

co-registered to the template DT image to parcellate the brain space

into 78 cortical regions (39 for each hemisphere; subcortical and

cerebellar regions excluded; see Table 1 for details). We note that

each region mask is not a pure cortical GM mask but includes tissues

from both cortical GM and subcortical WM. The latter allowed us

to determine which fibers were linked to a specific cortical region.

Connectivity
Two regions were considered as anatomically connected if fibers

passing through their respective masks were present. For each

subject, the number of fibers passing through every pair of regions

was counted. These fiber counts were however taken as only an

indication of the existence, and not weight, of an anatomical

connection. For analyzing the brain network topology, we took a

classical unweighted approach [4,5,24], since it was not obvious

how the edge weights, i.e., the number of connection fibers, should

be interpreted when computing the minimum path length [24].

Given the variability of brain anatomy, it is not surprising that

anatomical connectivity between regions differs across subjects. In

this study, we focused on the connections that were most consistent

across subjects, i.e., the backbone network [13,25]. To identify

highly consistent connections, we computed the reciprocal of the

coefficient of variation (i.e., the ratio of the mean to the standard

deviation) of the fiber count for each pair of regions (total:

78|77=2~3003 region pairs). In line with the convention of the

signal processing society, we call this measure the signal-to-noise

ratio (SNR). This connectivity SNR measure 1) is independent of

the total number of fibers reconstructed during tractography (DT

images of neonates tend to produce less fibers) and 2) caters for the

fact that different regions might be connected with different

numbers of fibers. Intuitively, a region pair that is connected with

a consistent number of fibers is considered to exhibit high

connectivity. We thresholded the resulting SNR matrix with a

threshold that gave us a connectivity matrix with a specific

network cost, indicating the degree of connection sparsity.

However, considering that different thresholds would affect the

number of connections in the resulting brain networks, we

performed our analysis by applying different network costs. See

Fig. 2 for an illustration of the connectivity matrices. The

connectivity matrices are generated with a network cost of 0.21,

where all the nodes are fully connected, as shown in Fig. 3. A fully

connected network has no isolated nodes.

Fiber length information was also collected at the same time by

taking the points on a fiber closest to the respective centroids of the

connected regions as endpoints of a fiber segment. The average

length of the connecting fibers were recorded for each pair of

regions. Note that all fiber lengths were computed in the

stereotaxic space to allow comparison across age groups in a

common frame of reference.

Network Metrics
Representing a network as an unweighted graph G with N

nodes, its metrics for global and local efficiency can be computed

as [5,6]

Eglob~
1

N

XN

i~1

Eglob(i), Eglob(i)~
1

N{1

X
fj:j=i[Gg

1

li,j
, ð1Þ

Eloc~
1

N

XN

i~1

Eloc(i), Eloc(i)~
1

NGi
(NGi

{1)

X
fi’,j’:i’=j’[Gig

1

li’,j’
, ð2Þ

where li,j is the shortest path length between nodes i and j, Gi is a

subgraph comprising nodes directly connected to node i, and NGi

is the number of nodes, or degree of connections, of Gi. Eglob(i)
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and Eloc(i) are nodal efficiency metrics. Specifically, Eglob

measures the efficiency of parallel information transfer in the

network, whereas Eloc measures the local efficiency of information

transfer in the immediate neighborhood of each node.

To measure how expensive it is to construct a network [6], we

computed the cost of the network, defined as the total number of

edges in a graph, divided by the maximum possible number of

edges N(N{1)=2:

Kcost~
1

N(N{1)

X
i[G

Ki, ð3Þ

where Ki is the degree of each node i, i.e., the number of nodes in

subgraph Gi.

A module of G is a subset of nodes which are more densely

connected to each other in the same module than to nodes

outsides the module. For a configuration of modular organization

M with NM modules, its modularity Q(M) is defined as [15]

Q(M)~
XNM
s~1

hs

H
{

Ts

2H

� �2
" #

ð4Þ

where H is the total number of edges in G, hs is the total number of

edges in module s, and Ts is the sum of the degrees of the nodes in

Figure 1. Obtaining the Connectivity Matrix. A schematic digram illustrating the major processes involved in generating the final connectivity
maps. Streamline fiber tractography was performed on each diffusion tensor image and a connectivity matrix was computed based on the AAL [23]
ROIs. The fiber count matrices were constructed by enumerating the number of fibers connecting each region pair. The connectivity matrix,
indicating consistent connections, was generated by thresholding the fiber count statistics.
doi:10.1371/journal.pone.0024678.g001
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module s. The modularity of a graph is defined as the largest value

of modularity measures associated with all possible configurations

of modules, which can be found by optimization algorithms [15].

We adopted a fast modularity optimization algorithm [16], which

has been demonstrated to be capable of achieving solutions with

quality comparable to existing algorithms, including simulated

annealing [26,27].

Topological roles of nodes in terms of their intra-modular and

inter-modular connectivity patterns can be quantified by the

normalized intra-modular degree and the participation coefficient

[26]. The normalized intra-modular degree zi measures how

dense a node i connects to other nodes in the same module, and

the participation coefficient pi measures how a node i connects to

nodes in other modules. Denoting the module to which node i

belongs as mi, the normalized intra-modular degree and the

participation coefficient are defined respectively as [26]

zi~
ki,mi

{�kkmi

skmi

, ð5Þ

Table 1. Regions of Interest Based on the Automated Anatomical Labeling (AAL) Template.

Region Abbrev Region Abbrev

Left Precentral Gyrus PreCG-L Right Precentral Gyrus PreCG- R

Left Superior Frontal Gyrus (dorsal) SFGdor -L Right Superior Frontal Gyrus (dorsal) SFGdor -R

Left Orbitofrontal Cortex (superior) ORBsupb-L Right Orbitofrontal Cortex (superior) ORBsupb-R

Left Middle Frontal Gyrus MFG-L Right Middle Frontal Gyrus MFG-R

Left Orbitofrontal Cortex (middle) ORBmid-L Right Orbitofrontal Cortex (middle) ORBmid-R

Left Inferior Frontal Gyrus (opercular) IFGoperc-L Right Inferior Frontal Gyrus (opercular) IFGoperc-R

Left Inferior Frontal Gyrus (triangular) IFGtriang-L Right Inferior Frontal Gyrus (triangular) IFGtriang-R

Left Orbitofrontal Cortex (inferior) ORBinf-L Right Orbitofrontal Cortex (inferior) ORBinf-R

Left Rolandic Operculum ROL-L Right Rolandic Operculum ROL-R

Left Supplementary Motor Area SMA-L Right Supplementary Motor Area SMA-R

Left Olfactory OLF-L Right Olfactory OLF-R

Left Superior Frontal Gyrus (medial) SFGmed-L Right Superior Frontal Gyrus (medial) SFGmed-R

Left Orbitofrontal Cortex (medial) ORBmed-L Right Orbitofrontal Cortex (medial) ORBmed-R

Left Rectus Gyrus REC-L Right Rectus Gyrus REC-R

Left Insula INS-L Right Insula INS-R

Left Anterior Cingulate Gyrus ACG-L Right Anterior Cingulate Gyrus ACG-R

Left Middle Cingulate Gyrus MCG-L Right Middle Cingulate Gyrus MCG-R

Left Posterior Cingulate Gyrus PCG-L Right Posterior Cingulate Gyrus PCG-R

Left ParaHippocampal Gyrus PHG-L Right ParaHippocampal Gyrus PHG-R

Left Calcarine Cortex CAL-L Right Calcarine Cortex CAL-R

Left Cuneus CUN-L Right Cuneus CUN-R

Left Lingual Gyrus LING-L Right Lingual Gyrus LING-R

Left Superior Occipital Gyrus SOG-L Right Superior Occipital Gyrus SOG-R

Left Middle Occipital Gyrus MOG-L Right Middle Occipital Gyrus MOG-R

Left Inferior Occipital Gyrus IOG-L Right Inferior Occipital Gyrus IOG-R

Left Fusiform Gyrus FFG-L Right Fusiform Gyrus FFG-R

Left Postcentral Gyrus PoCG-L Right Postcentral Gyrus PoCG-R

Left Superior Parietal Gyrus SPG-L Right Superior Parietal Gyrus SPG-R

Left Inferior Parietal Lobule IPL-L Right Inferior Parietal Lobule IPL-R

Left Supramarginal Gyrus SMG-L Right SupraMarginal Gyrus SMG-R

Left Angular Gyrus ANG-L Right Angular Gyrus ANG-R

Left Precuneus PCUN-L Right Precuneus PCUN-R

Left Paracentral Lobule PCL-L Right Paracentral Lobule PCL-R

Left Heschl Gyrus HES-L Right Heschl Gyrus HES-R

Left Superior Temporal Gyrus STG-L Right Superior Temporal Gyrus STG-R

Left Temporal Pole (superior) TPOsup-L Right Temporal Pole (superior) TPOsup-R

Left Middle Temporal Gyrus lef t MTG-L Right Middle Temporal Gyrus MTG-R

Left Temporal Pole (middle) TPOmid-L Right Temporal Pole (middle) TPOmid-R

Left Inferior Temporal Gyrus ITG-L Right Inferior Temporal Gyrus ITG-R

doi:10.1371/journal.pone.0024678.t001
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pi~1{
XNM
m~1

ki,m

Ki

� �2

, ð6Þ

where ki,mi
is the number of edges connecting the i-th node to

other nodes in its module mi, referred to as the intra-modular node

degree; �kkmi
and skmi

are the mean and standard deviation of

intra-modular node degrees of all nodes in module mi, ki,m is the

number of edges of the i-th node to m-th module, and Ki is the

number of edges that connect node i to all other nodes, i.e., the

degree of node i.

Betweenness is a measure of the centrality of a node in a

network. It is calculated as the fraction of shortest paths between

node pairs that pass through the node of interest. Betweenness, in

some sense, measures the influence of a node over the spread of

Figure 2. Connectograms. Connectivity matrices characterizing the backbone connections. The network cost is 0.21, which ensures that all nodes
were full connected (see Fig. 3).
doi:10.1371/journal.pone.0024678.g002
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information throughout the network [28]. The betweenness

centrality [29] of a node i is defined as:

Bc(i)~
X

j=k=i[G

sj,k(i)

sj,k

ð7Þ

where sj,k is the number of shortest paths from node j to k, and

sj,k(i) is the number of shortest paths that traverse node i. The

quantity is normalized by (N{1)(N{2)=2 so that the greatest

possible value is 1.

To evaluate the vulnerability [30] of the network to the damage

of a particular node, we remove a node and its connections from

the network and computed the change in network global

efficiency:

V (i)~
Eglob{E

(i)
glob

Eglob
|100% ð8Þ

where E
(i)
glob is the global efficiency after removing node i. In most

cases, a node with high betweenness value will typically also have a

high vulnerability value, since its damage will cause a high degree

of disruption of information flow.

Permutation Test
To investigate the significance of the observed differences given

by a specific network metric between brains of two different age

groups, a permutation test were performed. First, the difference in

the measured metric values between the two groups was

calculated: this is the observed value of the test statistic. Then

the samples in both groups were pooled. Next, the difference in the

metric value was calculated and recorded for every permutation of

labels of these pooled samples, while maintaining the original

group sizes. The two-sided p-value of the test was then calculated

as the proportion of sampled permutations where the absolute

difference was greater than or equal to the absolute value of the

observed value of the test statistic. 1000 permutations were

performed for each test.

Results

Pediatic Brain Networks Have Small-World Topology
The brain networks were studied and compared with compa-

rable random networks and regular lattices over multiple network

costs in terms of their global and local efficiency [4–6]. We

required the random networks to have not only the same number

of nodes and edges, as proposed in [24], but also the same degree

distribution as the brain networks in concern. This was achieved

with the rewiring technique described in [31]. Preserving the

degree distribution allows us to rule this factor out from the set of

possible reasons of observed differences between the brain

networks and the respective random networks.

The top panels of Fig. 4 shows that the brain networks of all age

groups have local efficiency higher than the equivalent random

networks. This indicates that the networks are highly clustered or

cliquish, conferring a capability of specialized or modular

processing in local neighborhoods [32–34]. On the other hand,

the bottom panels of Fig. 4 indicates that all networks consistently

exhibit global efficiency higher than equivalent lattices, signifying

efficient distributed and integrated processing over the entire

network.

The two observations above indicate that the pediatric brain

networks exhibit small-world topology – a good compromise

between full connectivity, which would be very costly in terms of

wiring and power supply, and a lattice topology, which impairs

massively long distance communication. Fig. 5 shows that a vast

majority of the connection fibers lies in the short end of the length

spectrum, with only a small fraction accounting for longer

connections. This observation is in agreement with the results of

other recent studies on brain organization that suggest the brain

favors locally dense communication and minimizes the number of

long distance connections [35]. From the same figure, we can also

observe that longer connections, in general, increase with growth.

Table 2 shows that the difference in average fiber length

(measured in the common space) between the 2-week-olds and

the older age groups is statistically significant. This hints that there

is a local-to-distributed-organization growth trend in early developing

brains as suggested for more matured brains in [36,37].

Efficiency Increases With Growth
Unlike adult brains which are relatively stable structurally and

functionally, pediatric brains undergo rapid changes. The first year

of life is perhaps the most dynamic phase of postnatal brain

development, with rapid development of a wide range of cognitive

and motor functions [38]. From the point of view of brain

topological network, the neonatal brain has lower local efficiency

(permutation test, pƒ0:001), but similar global efficiency

(p&0:80), compared with that of 1-year-olds and 2-year-olds.

This observation parallels the fact that myelination happens

rapidly in the first year of life and begins to stabilize at the age of

two. Myelination has a direct impact on the impulse propagation

speed along the fiber, and the state of progressive myelination in

the first year of life implies that many connections are in progress,

and hence the overall lower efficiency.

Pediatic Brain Networks Exhibit Broad-Scale
Characteristic

There are three classes of small-world networks [39]: (a) scale-

free networks, characterized by a nodal connectivity distribution

that decays as a power law; (b) broad-scale networks, characterized

by a connectivity distribution that has a power law regime

followed by a sharp cutoff; and (c) single-scale networks,

characterized by a connectivity distribution with a fast (Gaussian

Figure 3. Largest Connected Component. The number of nodes of
the largest connected component in all networks stabilize and reach
the maximum possible value (78) at the network cost of 0.21, a value
which we used for our analysis, unless otherwise stated.
doi:10.1371/journal.pone.0024678.g003
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or exponential) decaying tail. Each network has different degree of

resilience to targeted attacks [8,40]. We examined the node degree

distributions of the early developing brain networks and found that

they observed a truncated power law. The networks were hence

broad-scale in nature. This is shown in Fig. 6, where we used

cumulative distributions to reduce the effects of noise [41].

Goodness-of-fit of the straight line in the double logarithmic plot

was tested using the coefficient of determination R2 (better fit

indicated by a value closer to 1), and the values given by the curves

of the 2-week-olds, 1-year-olds, and 2-year-olds were 0.9791,

0.9495, and 0.9475, respectively. Fitting a function p(x)
~xa{1 exp (x=xc) [13,39] to the degree cumulative distribution

gave R2 values of 0.9919, 0.9401, and 0.9475, respectively, again

validating that the degree distributions observed the truncated

power law, which is characteristic of broad-scale networks.

The Pediatric Brain Networks Have Nonrandom
Modularity and Exhibit Local-to-Distributed Organization

Modularity [15,16] of the early developing brain networks was

analyzed over a range of diffusivity thresholds and compared with

random networks. As shown in Fig. 7, the brain networks have

consistently higher modularities than comparable random net-

works. For a better idea of how the brain network is organized, we

detected brain network communities using a fast community

detection algorithm that partitioned the network into subnetworks

to achieve maximum network modularity [16]. The modularity

metric quantifies how different intra-modular links in a network

are from a random network with the same modular organization

[15]. The results, shown in Fig. 8 (see Table 3 for the constituent

regions in each community), indicate that the pediatric brain is

Figure 4. Network Efficiency. Local and global efficiency of pediatric brain networks of (a) 2-weeks-olds, (b) 1-year-olds and (c) 2-year-olds. All
networks exhibit small-world nature, which is characterized by local efficiency greater than comparable random networks, and global efficiency
greater than regular lattices [5,6]. There is a general trend of efficiency increase with age. The neonatal brain network shows significantly lower
efficiency compared to the other two age groups.
doi:10.1371/journal.pone.0024678.g004

Figure 5. Inter-Region Connection Fiber Length Distribution.
Cumulative distribution plots of the inter-region connection fiber
lengths indicate that there is a progressive maturation of long fibers
with growth. The dashed horizontal line marks the 0.90 frequency point
and indicates that only a small fraction of the fibers are long fibers.
doi:10.1371/journal.pone.0024678.g005

Table 2. Average Lengths of Connection Fibers (mm).

Age Group 2-week-olds 1-year-olds 2-year-olds

Fiber Length 40.22 66.16 62.45

p-value (w.r.t 2-week-olds) - ,0.001 ,0.001

p-value (w.r.t 1-year-olds) ,0.001 - 0.993

p-value (w.r.t 2-year-olds) ,0.001 0.993 -

doi:10.1371/journal.pone.0024678.t002
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organized into a number of internally densely connected

subnetworks with sparser connections relating them to work as

an organic whole.

To further study the role of each node, we computed the intra-

modular degree and participation coefficient of each node.

Following the approach in [26], nodes with zi greater than 2.5

are classified as module hubs, otherwise classified as non-hubs. Non-

hub nodes are divided into four different roles: (A) ultra-peripheral

nodes; (piƒ0:05); (B) peripheral nodes; that is, nodes with most links

within their module (0:05vpiƒ0:62); (C) non-hub connector

nodes; that is, nodes with many links to other modules

(0:62vpiƒ0:80); and (D) non-hub kinless nodes; that is, nodes

with links homogeneously distributed among all modules (piw0:80).

Hub nodes are divided into three different roles: (E) provincial hubs;

that is, hub nodes with the vast majority of links within their module

(piƒ0:30); (F) connector hubs; that is, hubs with many links to most

of the other modules (0:30vpiƒ0:75); and (G) kinless hubs; that is,

hubs with links homogeneously distributed among all modules

(piw0:75). The results, shown in Fig. 9, indicate relatively large

changes in nodal topological roles over age, reflecting dynamic

brain developmental pattern in the first years of life.

Interestingly, the precuneus (PCUN), which shows high

centrality and participation coefficient values, has been shown in

previous literature to play an important role in the default mode

network [42] and conciousness [43]. Its strategic location and

wide-spread connections suggest that the precuneus is a major

association area that may subserve a variety of behavioural

functions [43]. Further investigation is needed for more detailed

analysis of specific regions in relation to the dynamic growth

patterns of the brain in the first years of life.

Removal of High Betweenness Nodes Results in High
Degree of Information Disruption

Pathological development, related for instance to neonatal

stroke, can be simulated by destroying some network nodes. This

can be quantified by two measures: betweenness centrality and

vulnerability. Betweenness centrality is a measure for gauging the

importance of a node in the overall information flow, and network

vulnerabiliy measures the disruption of information flow when a

node is removed from the network. We found a linear correlation

between the betweenness and vulnerability in each age groups,

shown in Fig. 10, indicating the removal of a node with high

Figure 6. Node Degree Distributions. Single-scale, scale-free and broad-scale [39] are characterized by Gaussian/exponential decay, power law
decay, and truncated power law decay, respectively. The node degree distributions give good indication that the pediatric brain networks are broad-
scale in nature. In the double logarithmic plots, the degree distribution decays linearly before a sharp cutoff. The gradient magnitudes of the fitted
lines are 3.921, 2.784 and 2.764 for (a), (b) and (c), respectively.
doi:10.1371/journal.pone.0024678.g006
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Figure 7. Nonrandom Modularity. Comparing the modularities [15,16] of the brain networks with comparable random networks indicates non-
random network modularity.
doi:10.1371/journal.pone.0024678.g007

Figure 8. Network Communities. The spring-embedding visualization of networks is implemented with Kamada-Kawai layout algorithm using the
Pajek [57] software package (pajek.imfm.si/doku.php). The nodes and intra-modular connections are colored-coded by the communities detected by
the algorithm described in [16], while inter-modular connections are colored-coded with light-gray. The sizes of the vertices are weighted by the
(logarithmically scaled) node betweenness [29]. Descriptions of the abbreviated region labels can be found in Table 1. See Table 3 for the constituent
regions in each community.
doi:10.1371/journal.pone.0024678.g008
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betweenness centrality value will result in a high degree of

connection loss in the brain network.

Symmetry of Cerebral Hemispheres in the First Years of
Life

Structural asymmetries of the human brain appear to underlie

functional asymmetries. Cerebral asymmetries in the adult brain

include the right hemisphere being larger than the left

hemisphere, accounted for mainly by more white matter on the

right [44]. Adult patterns of cerebral asymmetry have also been

observed in older children [45]. For the pediatric subjects we

studied, we found that the node betweenness of the left and right

hemispheres were linearly correlated (Fig. 11) with an overall

asymmetry towards the right hemisphere. The Pearson correla-

tion coefficients of the left-right betweenness values for the three

age groups are 0.3890 (p~0:014), 0.4096 (p~0:0096), and

0.5113 (p~8:78|10{4), respectively. Cerebral symmetry ap-

pears to be less consistent for the 2-week-olds compared with the

1-year-olds and the 2-year-olds, judging from the slope and the

goodness of fit: 0.2843 (R2~0:1513), 0.6202 (R2~0:1678), and

0.4738 (R2~0:2615).

Sexual Dimorphism
Sexual dimorphism are present in the adult brain, with males

having larger brain volumes [44,46]. We studied how the

pediatric male and female brains differ from the point of view

of white-matter connectivity. Separating the subjects into male

and female (18 female subjects were randomly selected to match

the number of male subjects), we generated a backbone

connectivity network for each gender-age group. We then

computed the global and local efficiency for each of these

networks. The results, as shown in Table 4, indicate that males

generally have higher global and local efficiency compared with

females.

Discussion

Brain growth is not uniform: there is a differential growth

between subcortical and cortical regions, and between different

regions of the cortex. For example, there is a rapid burst of synapse

formation in the visual cortex between 3 and 4 months, with the

maximum density reached between 4 and 12 months. Synapto-

genesis starts at the same time in the prefrontal cortex, but the

synapse density increases much more slowly and does not reach its

peak until well after the first year [47]. Therefore, one would

expect that, in the course of development, there would be a

remodeling of the interaction between brain regions.

This report employs a graph theoretic approach, which

leverages connectivity information afforded by diffusion tensor

imaging (DTI) fiber tractography, to examine the development of

the brain network in the first years of life. We hope to gain deeper

insights into the seldom studied critical period of human brain

development, and accrue knowledge as the basis for understanding

the nature of the adult brain.

A number of recent studies employ diffusion MRI for

investigation of human brain anatomical networks, but none of

them involves pediatric subjects. The first effort by Hagmann et al.

[12] confirmed the small-world [24] nature of the anatomical

networks of individual brains. The network nodes are defined in a

subject-specific fashion at a fine-grained voxel level where the

white-matter-grey-matter boundary is partitioned into thousands

of ROIs. This approach, while allowing high resolution analysis of

brain connectivity, makes comparison across subjects rather

difficult owing to the requirement of high registration precision

to match across subjects the small ROIs. The second study,

conducted by Iturria-Medina et al. [14], models the brain using a

weighted, instead of the commonly used unweighted, anatomical

network. An Anatomical Connection Probability (ACP) matrix

[48], which measures the maximum probability of any two regions

to be connected at least by a single nervous fiber connection, is

Table 3. Constituent Regions in Each Community.

Age Group Community Regions

2-wk-olds 1 PreCG-L ORBsupb-L MFG-L ORBmid-L IFGoperc-L IFGtriang-L ORBinf-L ROL-L OLF-L ORBmed-L REC-L INS-L PHG-L
CAL-L LING-L SOG-L MOG-L IOG-L FFG-L PoCG-L SPG-L IPL-L SMG-L ANG-L HES-L STG-L TPOsup-L MTG-L TPOmid-L
ITG-L

2 SFGdor-L SFGdor-R ORBsupb-R ORBmid-R SMA-L SMA-R OLF-R SFGmed-L SFGmed-R ORBmed-R REC-R ACG-L
ACG-R MCG-L MCG-R PCUN-L PCL-L PCL-R

3 PreCG-R MFG-R IFGoperc-R IFGtriang-R ORBinf-R ROL-R INS-R PCG-L PCG-R PHG-R CAL-R CUN-L CUN-R LING-R
SOG-R MOG-R IOG-R FFG-R PoCG-R SPG-R IPL-R SMG-R ANG-R PCUN-R HES-R STG-R TPOsup-R MTG-R TPOmid-R
ITG-R

1-yr-olds 1 PreCG-R SFGdor-R ORBsupb-R MFG-R ORBmid-R IFGoperc-R SMA-L SMA-R OLF-R SFGmed-L SFGmed-R ORBmed-L
ORBmed-R REC-R ACG-L ACG-R MCG-L MCG-R PCL-L PCL-R

2 PreCG-L SFGdor-L ORBsupb-L MFG-L ORBmid-L IFGoperc-L IFGtriang-L ORBinf-L ROL-L OLF-L REC-L INS-L PHG-L
FFG-L PoCG-L IPL-L SMG-L ANG-L HES-L STG-L TPOsup-L MTG-L TPOmid-L ITG-L

3 IFGtriang-R ORBinf-R ROL-R INS-R PCG-L PCG-R PHG-R CAL-L CAL-R CUN-L CUN-R LING-L LING-R SOG-L SOG-R
MOG-L MOG-R IOG-L IOG-R FFG-R PoCG-R SPG-L SPG-R IPL-R SMG-R ANG-R PCUN-L PCUN-R HES-R STG-R TPOsup-
R MTG-R TPOmid-R ITG-R

2-yr-olds 1 PreCG-L SFGdor-L ORBsupb-L MFG-L ORBmid-L IFGoperc-L IFGtriang-L ORBinf-L ROL-L OLF-L REC-L INS-L PHG-L
LING-L MOG-L IOG-L FFG-L PoCG-L IPL-L SMG-L ANG-L HES-L STG-L TPOsup-L MTG-L TPOmid-L ITG-L

2 PreCG-R SFGdor-R ORBsupb-R MFG-R ORBmid-R IFGoperc-R IFGtriang-R ORBinf-R ROL-R INS-R PCG-R PHG-R CAL-R
CUN-R LING-R SOG-R MOG-R IOG-R FFG-R PoCG-R SPG-R IPL-R SMG-R ANG-R PCUN-R HES-R STG-R TPOsup-R MTG-
R TPOmid-R ITG-R

3 SMA-L SMA-R OLF-R SFGmed-L SFGmed-R ORBmed-L ORBmed-R REC-R ACG-L ACG-R MCG-L MCG-R PCL-L PCL-R

4 PCG-L CAL-L CUN-L SOG-L SPG-L PCUN-L

doi:10.1371/journal.pone.0024678.t003
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Figure 9. Betweenness Centrality, Intra-Modular Degree, and Participation Coefficient. The values are sorted based those of the 2-year-
olds. The role of each node, as defined in [26], is specified above the respective bar: (A) non-hub ultra-peripheral node; (B) non-hub peripheral node;
(C) non-hub connector nodes; and (D) non-hub kinless nodes; (E) provincial hubs; (F) connector hubs; and (G) kinless hubs. No node was found to
satisfy the conditions required by (F) and (G).
doi:10.1371/journal.pone.0024678.g009
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used to characterize the brain network. Under this framework,

however, nonzero connection probabilities are assigned to many

brain region pairs, even those, based on other studies, which are

unlikely to be connected (e.g., left frontal and right occipital

cortex). The most recent study was done by Gong et al. [13] and

involves 80 subjects of 18–31 years old. Their aim is to establish a

population-based anatomical network capturing the underlying

common connectivity patterns of the cerebral cortex (i.e.,

backbone) across young healthy adults, rather than a subject-

specific and very detailed network for an entire individual brain.

Consistent with other studies, they reported that the cortical

network exhibits a prominent small-world attribute. They also

observed that the network has an exponentially truncated power-

law topological distribution [39]. Gong and his colleagues [25]

further extended their work to study the age- and gender-related

differences in the cortical anatomical network.

Broad-Scale Networks
A broad-scale network is characterized by a partial observation

of the power-law before a sharp fall off in the node degree

distribution. This indicates that the brain network includes some

pivotal nodes (i.e., hubs) and edges (i.e., bridges) but prevents the

existence of huge hubs or bridges with too much load. A broad-

scale network is more resilient to targeted attack on its hubs than a

comparable scale-free network [49], but about equally resilient to

random error [8].

In the first years of life, the synaptic pruning process, which

removes more than half of the synapses up to puberty [50], may

perhaps defy the effect of the growth preferential attachment

mechanism [49] needed to form a scale-free network [49]. Further

support that the brain network is not scale-free is Achard et al.’s

[8] observation that under the growth preferential attachment

mechanism of a scale-free network, one would not expect the

relatively late-developing regions such as the dorsolateral prefron-

tal cortex to be among the hubs of the network. In this respect, our

observation is also consistent with Gong et al. [13], who

demonstrated that similar network architecture can be found in

matured subjects (18–31 years of age).

We should note here that, in contrast to our findings, Hagmann

et al. [12] found that the node degrees exhibit a distribution with

exponential tail. The authors further suggested that from a

developmental point of view, hubs do not seem to be favored.

Eguiluz et al. [51] found that the human brain functional network

had a scale-free nature at a voxel level.

Figure 10. Betweenness Centrality and Vulnerability. Removal of a node with high betweenness generally results in a significant disruption of
information flow in the brain network as indicated by a higher vulnerability value. The dashed lines indicate 95% confidence interval. The
betweenness centrality value is normalized by division by the total number of possible connections (78{1)(78{2)=2~3003.
doi:10.1371/journal.pone.0024678.g010
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The Small-World Nature of Pediatric Brain Networks
Although, from neurogenesis to myelination and gyrification,

the brain undergoes significant changes, the overall adult brain

patterns are present at 2 years of age [2]. It is hence not surprising

that the 2-year-old brain network, consistent with previous studies

[8,9,12–14,51], is small-world in nature as indicated by its local

and global efficiency. It is, however, important to note that the

neonatal brain network also shows characteristic higher local

efficiency than a comparable random network, and higher global

efficiency compared to a regular lattice, albeit with lower efficiency

compared to the other two age groups. Fig. 4 reveals that the lower

efficiency of the neonatal brain network might be a result of the

overall lower number of matured long fibers. This is perhaps not

surprising as it is a known fact that myelination is happening

rapidly during the first year of life, and the longer fibers might be

still in their developmental stage. As the brain develops, neural

fibers of farther reach begin to mature and hence results in higher

efficiency.

Figure 11. Inter-Hemispheric Correlation of Node Betweenness. Each circle gives the left and right betweenness value for each node. Each
age group shows a rightward assymetry - indicated by the slope values 0.2843, 0.6202, and 0.4738, respectively (1 indicates perfect symmetry). The
dashed lines indicate 95% confidence interval. The betweenness centrality value is normalized by division by (78{1)(78{2)=2~3003.
doi:10.1371/journal.pone.0024678.g011

Table 4. Network Efficiency of the Male and Female Brains.

Global Efficiency Local Efficiency

2-week-olds 1-year-olds 2-year-olds 2-week-olds 1-year-olds 2-year-olds

Male 0.5550 0.5626 0.5596 0.7574 0.7630 0.7828

Female 0.5673 0.5673 0.5673 0.7563 0.7563 0.7563

p-value 0.277 0.281 0.008 0.949 0.621 0.002

doi:10.1371/journal.pone.0024678.t004
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Local-to-Distributed Organization
It has been recently observed that from children to adults, the

organization of the brain functional network shifts from a local

anatomical emphasis to a more distributed architecture [36]. Our

observation from the fiber tractography based analysis of the brain

structural network provides direct supportive evidence for this

hypothesis. We first note that Fig. 5, as previously analyzed, indicates

an overall increase in maturation of fibers with longer lengths,

especially during the first year of life. This implies that matured

connections of the neonatal brain are predominantly short range,

signifying anatomical proximity. As the brain develops, long range

fibers also starts to matures. We note here that the change of fiber

lengths as measured by the tractography algorithm by no means

indicate that the change happens physically with the actual neuronal

fibers. Post-mortem studies indicate that the fibers do not grow after

birth and that axonal wiring between distant regions does not change.

Therefore, the change of connection length should not be taken as

changes in axonal length, but as changes in maturation processes.

Gender Effects on Network Properties
It is interesting to observe from Table 4 that the global and local

efficiency of the brain network begins to show significant gender

differences at the age of two. Gender effects on network properties have

been observed in recent related studies [25,52], albeit on adult subjects.

Of note, in contrast to the current study, the study in [25] observed

greater local efficiency in female compared with male subjects. To

resolve this discrepancy, subjects with age ranging from infancy to

young adulthood need to be scanned and studied. Significant brain

changes in this critical period of growth would alter the brain network

and hence its measured properties. Studying and understanding brain

structural changes in this period of time will shed new light on how the

results from the current study and those in [25] could be bridged.

Methodological Issues
DTI, while providing a convenient way of probing into the

brain microstructures, suffers from the well-documented limitation

of not being able to encode complex multi-directional diffusion

patterns. Ideally, imaging techniques such as High Angular

Resolution Diffusion Imaging (HARDI) [53] should be used. But

the noise created by the EPI sequence makes scanning with a long

duration difficult, especially pediatric subjects who wake up quite

easily. Nevertheless, the availability of a set of HARDI data for

pediatric subjects would surely be useful for a more precise

deliniation of white matter connectivity in the first years of life.

Tractography depends on connection of pixel-by-pixel informa-

tion and is hence sensitive to noise and pathway interruption by

secondary causes such as anatomy of adjacent tracts, merging

axons, and partial voluming. Probabilistic tractography [54] can

potentially ameliorate these problems by providing confidence

estimates of the reconstructed fiber trajectories. In [54] for instance,

the fibers are reconstructed by sampling a Bayesian posterior

distribution using a Markov Chain Monte Carlo (MCMC)

approach, resulting in a large number of trajectories; some genuine

and others inevitably spurious. The probability that a region is

traversed by an anatomically genuine fiber bundle is then

determined by normalizing the number of trajectories passing

through that region with respect to the total number of trajectories

initiated from the seed region. Global tractography methods [55,56]

reconstruct fiber trajectories by optimizing some global cost

functions and are hence more robust to inaccuracy in the estimation

of local fiber orientations, making them viable alternatives for

overcoming problems associated with conventional tractography

algorithms. Future work will be directed to evaluate how these

different tractography algorithms affect the outcome of the analysis.

Both structural and functional based brain network analyses

have been shown to provide valuable insights into the interactive

mechanisms of different brain functional regions. While structural

changes are more stable and more readily detectable, functional

changes provide neuronal activation information which is often

elusive structurally. Future work will hence hence be directed to

employ a more comprehensive description of brain connectivity

using information agglomerated from various imaging modalities

such as T1-weighted, diffusion-weighted, and functional imaging.

Concluding Remarks
To the best of our knowledge, this is the first report on the human

brain structural connectivity quantified by fiber tractography involving

pediatric subjects with longitudinal data. We employed a graph-

theoretic approach to capture the common connectivity patterns of 39

pediatric subjects at 3 different time points (2 weeks, 1 year and 2

years). The networks exhibit small-world nature with node degree

distributions indicating broad-scale characteristics. A study of the fiber

length distributions indicate that the brain favors dense local

connections over global long connections, consistent with the small-

worldness nature of the brain network. The network evolution pattern

over age gives supportive evidence for the brain local-to-distributed

organizational trend, in line with the results obtained in previous

studies performed on adult brains. We have also touched on issues such

as network vulnerability, cerebral asymmetry and sexual dimorphism.

Since structural growth underlies maturation of cognitive function, we

believe that this structural-connectivity-based study is contributive to

the better understanding of cognitive development.
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