
A Simple Method for Combining Genetic Mapping Data
from Multiple Crosses and Experimental Designs
Jeremy L. Peirce1,2*, Karl W. Broman3, Lu Lu1,2, Robert W. Williams1,2

1 Center for Neuroscience, Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United
States of America, 2 Center for Genomics and Bioinformatics, Department of Anatomy and Neurobiology, University of Tennessee Health Science
Center, Memphis, Tennessee, United States of America, 3 Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland

Background. Over the past decade many linkage studies have defined chromosomal intervals containing polymorphisms that
modulate a variety of traits. Many phenotypes are now associated with enough mapping data that meta-analysis could help
refine locations of known QTLs and detect many novel QTLs. Methodology/Principal Findings. We describe a simple
approach to combining QTL mapping results for multiple studies and demonstrate its utility using two hippocampus weight
loci. Using data taken from two populations, a recombinant inbred strain set and an advanced intercross population we
demonstrate considerable improvements in significance and resolution for both loci. 1-LOD support intervals were improved
51% for Hipp1a and 37% for Hipp9a. We first generate locus-wise permuted P-values for association with the phenotype from
multiple maps, which can be done using a permutation method appropriate to each population. These results are then
assigned to defined physical positions by interpolation between markers with known physical and genetic positions. We then
use Fisher’s combination test to combine position-by-position probabilities among experiments. Finally, we calculate genome-
wide combined P-values by generating locus-specific P-values for each permuted map for each experiment. These permuted
maps are then sampled with replacement and combined. The distribution of best locus-specific P-values for each combined
map is the null distribution of genome-wide adjusted P-values. Conclusions/Significance. Our approach is applicable to
a wide variety of segregating and non-segregating mapping populations, facilitates rapid refinement of physical QTL position,
is complementary to other QTL fine mapping methods, and provides an appropriate genome-wide criterion of significance for
combined mapping results.
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INTRODUCTION
The majority of traits that show variation based on genetic

influences are affected by multiple genes of small effect as well as

by environment. When compelling candidates for direct in-

vestigation are not available, QTL mapping provides an effective

approach to localizing regions of the genome that are likely to

mediate genetic variation in the phenotype. Mapping a QTL to an

interval of 20–60 Mb has become a relatively routine matter for

traits with at least moderate heritability, but narrowing the interval

to a small region that includes only a few candidate genes (1–5 Mb

at most) is still a highly challenging task.

A variety of methods for accomplishing the task of narrowing

a QTL interval have been proposed [1–5] and each has

advantages and disadvantages. Our complementary approach

combines the results for a variety of mapping studies, each of

which should add a degree of precision and significance to the final

result. In this paper we describe our method and provide an

implementation, which handles the problem of combining data

using different markers as well as converting from genetic to

physical maps and regularizing positions to be combined.

Our method calculates locus-specific P-values using the distribu-

tion of alleles at each locus. For large populations of genetically

independent animals, the negative log of these locus-specific P-values

is very similar to the more typically reported LOD scores, but for

smaller populations like recombinant inbred strains, and non-

independent populations such as advanced intercross lines, and

especially for populations with missing data, they are an important

innovation. For these populations, converting to locus-specific P-

values is more informative and allows us to apply Fisher’s

combination test to combination of QTL mapping results.

Since each QTL mapping effort originates from an independently

generated population, the pattern of alleles inherited in one

population is independent of the pattern of alleles inherited in

another population. Therefore under the null hypothesis of no

linkage, locus-specific P-values for any arbitrary point on the genome

are strictly independent between data sets. Given the independence

of our data sets, we chose to address the problem of combining

multiple testing results by using Fisher’s combination test.

Since Fisher’s combination test operates on P-values, our

approach first defines locus-specific P-values in the original and

permuted QTL maps, then combines QTL maps on a point-wise

basis using Fisher’s combination test. We then convert sample

permuted QTL maps from each data set to locus-specific P-values,

combine them, and order the best genome-wide combined P-

values from these samples to define the null distribution of

genome-wide adjusted P-values.
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Previous efforts to meta-analyze different mapping populations

have included taking the best P-value for each QTL interval and

combining these values using Fisher’s combination test [6] to

assess the combined likelihood of ethanol drinking QTLs between

C57BL/6J and DBA/2J. Unfortunately, this approach does not

really increase the resolution of the QTL map, though it does

improve confidence that a QTL exists in the region. Position-

specific combination of QTL maps using Fisher’s combination test

was, however, used earlier to combine data from two different

recombinant inbred (RI) strain sets [7] where the same markers

were typed or could be inferred, though calculation of genome-

wide adjusted significance was not considered.

Province [8] describes a correction necessary to account for

truncated LOD scores in combining QTL data with the clear

application of position-specific data combination by simple

addition of LOD scores. Other recent investigations have used

a variety of approaches to integrating genetic mapping data

including standardizing common phenotypes between crosses, [9]

multiple cross mapping (MCM), a method of identifying haplotype

blocks that segregate as expected in an initially defined QTL

interval among multiple strains, [10] and incorporation of

additional data on gene density, identity [11] and expression [12].

A more recent paper by Li and colleagues [13] describes

combination of multiple crosses using cross as a covariate, and

outlines a permutation method that retains stratification of

phenotypes by cross for determining genome-wide significance,

which should work well when simple shuffling of genotypes and

phenotypes within cross is sufficient to provide appropriate

randomization within data set. Our approach provides a general

method of integrating data even when this is not the case, for

instance with Advanced Intercross Lines (AILs), [14], recombinant

inbred intercrosses (RIX), and heterogeneous stocks (HS). Our

approach can also be used for intercrosses (F2), backcrosses (N2),

RIs and other datasets and is a simple method of integrating results

from studies using individually tailored approaches like composite

interval mapping. These methods can be used in a complementary

manner by combining appropriate crosses using the method of Li

and co-workers [13] and integrating other data sets using our

method.

Our simple method also has the advantage of not requiring

adjustment for use with crosses that represent different numbers of

effective tests across the genome. For instance, the number of

independent tests represented by an RI strain set will be greater

than the number represented by a standard F2, since the genetic

length of the RI genome is four times that of the F2 genome. [15]

AIL and HS data sets may have even more extreme expansions of

the genetic length of their genomes. Since a permuted QTL map is

sampled from each permuted data set and combined in the same

way as in the original combined data set, the effective number of

tests in the permutations will be equivalent to that in the original

data, so the genome-wide adjustment will be valid.

RESULTS

Distribution of locus-specific P-values
Under the null hypothesis of no genetic effect at a locus, the

distribution of P-values should be constant with a range of 0 to 1

[16]. In fact, across permutations at a given locus this is enforced

in the locus-specific P-value computation by ranking of values at

each locus between permutations, which results in an even

distribution of values at each position. In the permutations, where

no locus should be associated with a real genetic effect, this should

be the case among loci as well, and the distribution of P-values for

each permutation should also be constant and range from 0 to 1.

This is the case in a variety of tested permutations (RI, F2, and

AIL populations) at tested markers. Interpolation of P-values

between markers does seem to slightly reduce the number of P-

values observed at the very low and high ends of the distribution,

however.

The value of locus-specific P-values
In large data sets with independent observations—most F2

populations, for instance—the distribution of P-values under the

null hypothesis of no linkage is approximately the same for each

analyzed locus in the genome. The equivalent distribution of P-

values by locus under the null hypothesis means that any two

positions in the genome are equally likely to be the best P-value in

the genome in a given permutation of an original data set. This

assumption does not always hold in small data sets such as RI

populations and populations with non-independent observations

such as AILs. (Fig. 1) For consistency, however, we calculate locus-

specific P-values for all data considered in this paper.

Locus-specific P-values and missing data
fEven when using Sen and Churchill’s imputation [17] for missing

genotypes, the effect of missing data is apparent in the permuted

distribution of locus-specific P-values derived from simple reshuf-

fling permutations such as SimplePerm.py, described above.

There is a correlation (r = 0.52) between number of fraction of

missing genotypes for both the classic C57BL/6J (B6) x DBA/2J

(D2) RI (BXD RI) strains from The Jackson Laboratory and the

new BXD RI strains [18]. Dropping imputation for missing

genotypes results in an even higher (r = 0.73) for correlation with

the fraction of missing data. Where genotypes themselves are

being permuted and reconstructed, for instance with AIL data,

there is no significant correlation between permuted locus-specific

LOD score distribution and missing data in the original data set.

Figure 1. The need for locus-specific P-values. The 95% LOD score (the
LOD score equivalent to a locus-specific P = 0.05) was calculated using
10,000 permutations for markers on Chr. 1 for body weight in several
different populations. Each marker is indicated by a dot with
connecting lines interpolated between adjacent markers. TJL BXD are
BXD strains available from The Jackson Laboratory (The BXD strains
developed by Taylor and colleagues [26,27]). New BXD are the recently
developed BXD strains currently resident at UTHSC. [18] Note that the
maximum and minimum values of the 95th percentile LOD score vary
considerably for the AIL population, somewhat for the RI (New BXD and
TJL BXD) populations, (predicted by missing data pattern) and very little
for the 183 member F2 population tested. (There are only three widely
spaced markers genotyped for the F2 population on Chr. 1, so the
interpolation between points should not be interpreted as a meaningful
line. However, markers on all chromosomes were very similar, between
a 95% LOD of 1.2 and 1.4.)
doi:10.1371/journal.pone.0001036.g001
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Composite significance and intervals of Hipp1a and

Hipp9a
As an example of the composite mapping method, we mapped

bilateral hippocampus weight in two populations, each of which

has already been individually reported [14,19]. Hipp1a was

originally reported as significant in the BXD strain set [19]. As

the re-mapping of hippocampus weight QTLs in Fig. 2 shows, we

see a significant QTL on Chr. 1, but we also see a non-significant

indication of a QTL on Chr. 9. (best locus-wise P = 0.001). This

second QTL is individually significant in an AI population [14].

(Note that, for each population the best possible P-value is

P,0.0002 since 5000 permutations were done. It may be possible

to further improve composite resolution using much larger

permutations.) In the case of Hipp1a the 1-LOD support interval

(taken here as rough measure of confidence interval) is 34 Mb in

the BXD strains, 17.5 Mb for the AIL, and the composite map is

slightly better at 16.5 Mb, an average 51% improvement over the

individual maps. For Hipp9a the interval was 24.5 Mb for the

BXDs, 21.5 Mb for the AILs, and only 14.5 Mb for the composite

map–an average improvement of 37% over the individual

mapping efforts.

DISCUSSION
We have developed and implemented a simple method for

combining QTL mapping results from multiple QTL experiments.

The ready availability of dense marker maps and physical

positions as well as genetic positions for markers facilitates

incorporation of positional information. This method can

therefore be used not only to report combined probability of the

existence of a QTL locus more accurately than simply combining

the best P-values for multiple mapping approaches [6]. It is also

a valuable fine mapping technique and can be used in conjunction

with almost any high-resolution mapping method [1–5] as well as

for combination of multiple low-resolution mapping efforts.

Figure 2. Combined mapping for Hipp1a and Hipp9a. This figure shows mapping data for the hippocampus weight loci Hipp1a and Hipp9a using
34 BXD strains (BXD; shaded line) and 679 advanced intercross animals (AIL, thin solid line) as well as the composite map using the described method
(thick solid line). The genome-wide adjusted composite P = 0.05 threshold is 2log P = 3.5 (dark solid horizontal line). Since 5000 permutations were
used for each data set, the maximum 2log P,3.7 (graphed as 2log P = 3.7 for convenience) for each individual data set, so increasing the number of
permutations might increase the peak combined value and slightly improve the range of the combined interval. Bars underneath the peaks are
labeled AIL, BXD, and combined to indicate the l-LOD support interval of these mapping populations.
doi:10.1371/journal.pone.0001036.g002
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Narrowing intervals by combining mapping

populations
We have demonstrated that notable improvements in genome-wide

significance and QTL confidence interval are possible using our

method by using the example of two hippocampus weight loci. With

only two mapping populations for this phenotype, we saw improve-

ments of 37% to 51%, in 1-LOD confidence intervals. The

extensible nature of the method means that any number of available

mapping populations can be added to further improve the results.

In addition, combining loci that are barely significant or

narrowly miss the criteria for significance in multiple populations

can clearly lead to strong observations of new loci or improved

confidence in previously known loci. For instance, combining

mapping results at a locus significant at a point-wise P = 0.05 for

seven mapping populations or P = 0.01 for three mapping popula-

tions results in a Pcombined = 0.0001, which is very likely significant

genome-wide. Results from small mapping populations generated

using the same parental strains can therefore profitably be

combined using this method. Combining suggestive results

(P = 0.001) with small additional results (P = 0.01) also generates

much improved composite results. (Pcombined = 0.00012)

Crosses in multiple strains and phenotypes
While we have concentrated on multiple crosses using the same

progenitor strains, it would be simple to extend this method to

include crosses in other strains or, for that matter, other

phenotypes measured in independent crosses. The implicit

assumption in these situations is that measurement of an

equivalent trait is occurring despite the cross or phenotype

difference. In the case of multiple strains, this means the allele

difference causing the QTL occurs in the same gene between the

strains crossed in each population. Populations such as the BXD,

BXA/AXB, CXB, and BXH RI strain sets, when the common

allele (B6) may differ from the other strains, could fall in this

category. In the case of multiple phenotypes (which could also be

in multiple strains) the assumption is that the phenotypes are

measuring the effect of the same polymorphism between pro-

genitor strains for the cross.

The importance of physical position
Genetic positions are necessary for generating QTL maps using

methods such as interval mapping [20,21]. Ultimately, however,

the desired result of a QTL map is assignment of a probability that

a given segment of DNA, a physical position, is involved in

a phenotype. Additionally, genetic positions vary between crosses,

while physical positions are constant—a desirable property when

comparing between crosses is the fundamental goal.

Assigning a P-value to a physical position requires interpolation

of physical positions for markers (and intermediate markers

generated in interval mapping) with unknown physical positions.

It also requires interpolation between these markers and the

regular, set physical positions that are ultimately reported. For

dense marker maps such as those typical of RI strains, the

assumption that intermediate physical position can be linearly

interpolated from genetic positions and flanking physical positions

is reasonable. Some caution may be appropriate, however, when

interpolating physical positions for widely spaced markers.

Incorporating non-locus-specific P-values
Since locus-specific P-values are not required in the case of

sufficiently large RI sets, intercrosses (F2), and backcrosses (N2),

the process of explicitly computing QTL maps for each data set

and performing the permutation described could be approximated

by deriving P-values for each position in some more generic

manner, for example from the LOD score, and combining these

values as described to generate composite QTL maps and

genome-wide thresholds. This is particularly useful when a simple

cross with highly significant loci is being considered since the

software used to sort P-values (OutParser.py) runs in approxi-

mately N2 time with respect to number of permutations. When

converting LODs to P-values, however, under the null hypothesis

of no linkage, approximately half the genome will be associated

with LOD = 0 (because LODs are constrained to be positive in

typical QTL maps) which should equate to P>0.72 [8].

Approximation of genome-wide P-value thresholds
When the distribution of permuted P-values across the genome is

uniform, combination of multiple P-values for each locus should

result in a uniform combined P-value distribution across the

genome. We verified this empirically using a simple simulation,

sampling and combining multiple observations from uniform

distributions over 1000 permutations. Since in the ideal case each

combined permuted QTL map will have a P-value distribution

equivalent to a simple permuted QTL map, existing analytical

[22] methods for estimating genome-wide P-value thresholds may

be applicable where genetic lengths of the data sets being

combined are similar. In most such cases, the distribution of

permuted P-values is fairly uniform, so analytically determined

cutoffs should provide reasonably good estimates. When a genome-

wide permuted P-value is not required, the final step of combining

P-values takes only a few seconds.

Multiple mapping results from a single population
While any number of independent results can be combined using our

method, it is problematic to include mapping results from the same

reference population even when phenotyping was entirely in-

dependent. For instance, directly combining more than one QTL

map from the same RI or congenic population is problematic.

Instead it might be practical to combine the data gathered on the

population as appropriate and generate a single QTL map from the

combined data. This map could then be combined with any other

independent mapping experiments using our method.

Incorporation of congenic data
This method can be extended to incorporate data from a variety of

data sources, including congenic and consomic data. For a poly-

genic trait, a test of whether a modifying locus from the

introgressed parent is present in a given congenic segment

addresses only the association of that region and does not contain

information about the rest of the genome.

One simple approximate solution is to assume that the LOD = 0

for the remainder of the genome and apply Province’s method

(2001) to convert to P > 0.72. This is a highly conservative

assumption as our actual expectation is that there will be linkage in

other parts of the genome as well for a complex trait. Fortunately,

Fisher’s combination test does not penalize too heavily for failure

to observe association. P values for permutations could also be

simulated by assigning a P-value, evenly distributed between 0 and

1, to each point outside the congenic interval. In situations where

multiple congenics exist, combining the congenic interval results as

a single data source might also be a reasonable approach.

The importance of raw data archives
If meta-analysis of QTLs is limited to simple combination of

maximum significance values for a QTL interval, the common
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practice of reporting QTL significance in terms of this maximum

and of providing a figure representing the QTL interval is

sufficient. For position specific analyses with joint determination of

genome-wide significance thresholds, however, it is important to

have access to the original data as well as the specific parameters

used to perform the data analysis. Unfortunately, particularly in

the older QTL literature, public access to the primary data was

seldom a requirement of publication. The authors would strongly

advocate that journals require public access to such data both to

facilitate transparency and reproduction of results and to facilitate

more sophisticated meta-analyses. All data used in generating the

results for this paper is available at http://www.nervenet.org/

papers/CombineQTL.html or archived at www.genenetwork.org.

Summary
This method is a simple, easily extensible means of combining

QTL mapping results from a wide variety of mapping efforts, and

complements other fine mapping methods. The major advantages

of this method are its simplicity, incorporation of physical position

data and locus-specific P-values, and empirically estimated

genome-wide P-value thresholds.

METHODS

Assigning P-values associated with physical

positions
The first step in generating a composite QTL map is to assign P-

values to regular physical positions on the genome. This is done

using permuted QTL maps processed to determine locus-specific

P-values as described below. The details of the permutation

required to generate the permuted maps are assumed to have been

worked out before data is combined.

We use locus-specific P-values because in certain data sources

such as advanced intercrosses and small RI sets, the correspon-

dence between the likelihood typically reported in mapping output

(a LOD score for R/qtl, [23] for instance, or a LRS score in the

case of WebQTL [24,25]) and the P-value, as determined by

generation of permuted QTL maps, is not constant with respect to

position. This can be related to missing data patterns, distribution

of alleles and non-syntenic association.

Once all of the permuted maps are generated, we assign locus-

specific p-values to regularly spaced physical positions on each

chromosome for the original data. In order to derive locus-specific

P-values from raw LOD scores we let be the observed LOD at

locus j. For each permutation, Lperm(i,j) is the observed LOD at

locus j in permutation replicate i. The locus-specific P-value for

locus j is P(j) = proportion{ Lperm(i,j)’Lobs(j)}. This is the pro-

portion of the permutation replicates that have a LOD score

greater than or equal to the observed LOD score at locus j.

P-values at regular intervals were based on the known physical

and genetic positions of markers and their P-values as computed

above. First we linearly interpolated missing physical positions

using flanking genetic positions for the nearest markers with

complete information (assuming 0 cM and 0 Mb for the proximal

end of the chromosome and assuming linear extension for the

distal end of the chromosome using the ratio of physical to genetic

distance of the nearest proximal markers.) After we obtained

a complete set of physical positions, we linearly interpolated P

values at regular intervals on a grid of physical positions, allowing

values from the final marker to the end of the chromosome to

equal those at the final marker.

For sparsely genotyped data sets it is more accurate to linearly

interpolate using LOD scores based on an interval map and derive

locus-specific P-values from the interpolated LOD scores, though

this method is slower than the one described above. As genotype

density increases the order of these steps has less effect. We tested

the effect of this difference for our BXD RI data at 300 markers

and the average percent difference in P-value between methods

was only 12%. For all model data sets except our F2 data set,

which is sparsely genotyped, we therefore calculated locus-specific

P-values first. We provide an implementation for both methods.

Sample data sets and phenotypes
For calculating the LOD score equivalent to a locus-specific

P = 0.05 (referred to as 95% LOD) in Fig. 1, we used raw body

weight measurements from a previously described intercross [19],

as well as other previously described data [19] from the classic

BXD recombinant inbred (RI) strains [26,27], which are formed

by repeated intercrossing and inbreeding the progeny of C57BL/

6J and DBA/2J. In addition, we gathered new body weight data

for a recently described [18] set of BXD RI strains and from an

advanced intercross [14] using similar criteria.

For composite mapping of hippocampus weight QTLs shown in

Fig. 2, we used previously described observations in the classic

BXD RI strains [19] and observations made using the same

protocol from an advanced intercross, the construction of which is

described elsewhere [14]. For this example of combined mapping

data, we used the method and software described below.

Combining QTL data sources
At the end of the process outlined above, each data source will be

represented by a set of locus-specific P-values associated with

regular and defined physical positions. For each of these positions,

j, there will be k associated P-values, one from each data source.

Since by Fisher’s combination test 22 S ln P(k,j) for all k data

sources at locus j follows a chi-squared distribution with 2k degrees

of freedom in the case of the null hypothesis, (no association

between phenotype and genotype) we can easily associate each

position with a composite locus-wise P-value, Pcombined(j).

Generating genome-wide P-value thresholds
The combined map gives us a locus-specific combined P-value for

any given locus, Pcombined(j), but it is also important to have

a genome-wide threshold for error control at a specified genome-

wide P-value. Genome-wide LOD score thresholds for QTL

experiments are typically generated by permuting genotype or

phenotype, re-running the mapping phase of the experiment for

a large number of permutations [28], and creating an ordered list

of the highest LOD score in each permutation. The genome-wide

adjusted P-value is the proportion of this ordered list that is greater

than or equal to a given LOD score in the original QTL map.

The approach here is similar except that we are first converting

LOD scores to P-values for each permutation i. This is done as

described above except that observed LOD score at locus j, is the

value of the LOD score for a particular permutation in i, designated

ifixed, for which locus-specific P-values are currently being calculated.

We will term the LOD score for ifixed at locus j L(ifixed,j) and will

designate the permuted LOD scores for all permutations except ifixed

as Lperm(i’,j). This process is an excellent approximation of the locus-

specific P-value that would result from generating a set of

permutations of each ifixed, assuming that Lperm (i’,j) has a distribution

equivalent to Lperm(i,j), which should be true for large i.

In other words, for each permutation in i, the locus-specific P-

value at j is

P(ifixed,j)~proportionfLperm(i,j)§L(ifixed,j)g:

Combining Genetic Mapping Data
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After calculating locus specific P-values for all i permutations at all

j positions, P(i,j), in all k data sets, we can estimate the genome-

wide adjusted P-value. We do this by sampling a permuted map of

locus specific P-values, P(i), for each of k data sets and calculating

the combined P-value, Pperm, combined(j), for each corresponding

locus between sampled permuted maps as described above using

Fisher’s combination test.

We then record the minimum Pperm, ombined(j) value from each

combined map. This permutation is repeated to create an ordered

list of best P-values, Pbest. For a given Pcombined(j) value in the

original data set, the genome-wide adjusted P-value, Padjusted, for

the combined data is

Padjusted(j)~ProportionfPbest§Pcombined(j)g

Typically, however, the ordered list is simply used to calculate

a genome-wide threshold, often set the 95th percentile value for

Pbest (genome-wide adjusted P = 0.05).

Software
All software described is available at http://www.nervenet.org/

papers/CombineQTL.html. For the customized analyses above,

we wrote scripts using Python 2.4 as well as simple R scripts to

automate use of R/qtl. Further integration with R/qtl as well as

other QTL mapping programs should be relatively straightfor-

ward, providing that automation of the mapping functionality itself

is achievable as it is with R/qtl. Permutations generated for

advanced intercross lines were created using a custom python

script designed for the purpose, the operation of which is described

elsewhere [14]. Permutation of populations with independent

samples, such as F2, N2, and RI (phenotypic averages) populations

can all be accomplished by simply shuffling the list of phenotypes.

A Python script that does this and writes a file of permuted

phenotypes, SimplePerm.py, is included.

We wrote a set of two Python scripts, OutParser.py, and
OutParserLI.py to parse the mapping output files from R/qtl

and to generate a map of locus-specific P-values at regular, user

defined intervals on a physical scale. These versions differ only in

that OutParser.py calculates locus-specific P-values at markers

then interpolates to regular positions, while OutParserLI.py (LOD

Interval) reverses the order of these steps. OutParserLI.py is

somewhat slower but preferable for sparsely genotyped data sets.

These scripts require a data file, markerphyspos.txt in the

example files, which contains genetic positions for each marker

(and/or interpolated marker if interval mapping has been

performed) in the R/qtl output file as well as physical positions

for as many markers as possible. Because the locus-specific P-

values will often be used in combination with a similar set of

values, defined at the same intervals, in another population (see

description of CombineMaps.py below), the P values at the

ends of each chromosome must be handled carefully. (If different

data sources are associated with different markers, the beginning

and ending points of each chromosome may well be different.) The

assumption we have made is to repeat the most proximal actual

marker value to the most proximal end of a given chromosome

and likewise to repeat the most distal value to the distal end.

Further, each chromosome is defined as 200 Mb in length (This is

just slightly longer than the longest actual mouse chromosome.

The user can adjust this value.) to ensure that values from each

new data set can be easily accommodated and to eliminate the

need for a separate file specifying length of each chromosome.

This is also a convenient convention for plotting composite maps

as the ‘‘unused’’ regions can be easily masked and graphs from

multiple data sources, which may differ slightly in chromosome

length and markers, can easily be lined up and overlaid.

CombineMaps.py combines QTL maps of locus-specific P-

values from different data sources. In order to generate combined

maps of original data the program simply applies Fisher’s

combination test to the locus-specific P-values at equivalent

physical positions for each defined position in the genome. The

program also implements the method described above for finding

genome-wide adjusted P-values. It does this by sampling with

replacement from the set of permuted QTL maps for each data

source. These maps are combined as described above and the best

combined locus-specific P-value is recorded. This list of best P-

values can be sorted (easily done in Excel or in Unix using ‘‘sort –n

filename.sortedfilename’’) to allow genome-wide interpretation of

locus-specific P-values.

ACKNOWLEDGMENTS
We thank Arthur Centeno for computer support, Amanda E. Birmingham

for assistance in optimization and presentation of the associated software,

and Pamela Franklin for administrative assistance.

Author Contributions

Conceived and designed the experiments: KB JP. Analyzed the data: KB

RW JP. Contributed reagents/materials/analysis tools: LL. Wrote the

paper: JP. Other: Provided support, advice, and editing: RW LL. Wrote

code: JP.

REFERENCES
1. Darvasi A, Soller M (1995) Advanced intercross lines, an experimental

population for fine genetic mapping. Genetics 141: 1199–1207.

2. Zou F, Gelfond JA, Airey DC, Lu L, Manly KF, et al. (2005) Quantitative trait

locus analysis using recombinant inbred intercrosses (RIX): theoretical and

empirical considerations. Genetics.

3. Iakoubova OA, Olsson CL, Dains KM, Ross DA, Andalibi A, et al. (2001)

Genome-tagged mice (GTM): two sets of genome-wide congenic strains.

Genomics 74: 89–104.

4. Bolivar VJ, Cook MN, Flaherty L (2001) Mapping of quantitative trait loci with

knockout/congenic strains. Genome Res 11: 1549–1552.

5. Darvasi A (1998) Experimental strategies for the genetic dissection of complex

traits in animal models. Nat Genet 18: 19–24.

6. Belknap JK, Atkins AL (2001) The replicability of QTLs for murine alcohol

preference drinking behavior across eight independent studies. Mamm Genome

12: 893–899.

7. Williams RW, Strom RC, Goldowitz D (1998) Natural variation in neuron

number in mice is linked to a major quantitative trait locus on Chr 11. J Neurosci

18: 138–146.

8. Province MA (2001) The significance of not finding a gene. Am J Hum Genet

69: 660–663.

9. Walling GA, Visscher PM, Andersson L, Rothschild MF, Wang L, et al. (2000)

Combined analyses of data from quantitative trait loci mapping studies.

Chromosome 4 effects on porcine growth and fatness. Genetics 155:

1369–1378.

10. Hitzemann R, Malmanger B, Cooper S, Coulombe S, Reed C, et al. (2002)

Multiple cross mapping (MCM) markedly improves the localization of a QTL

for ethanol-induced activation. Genes Brain Behav 1: 214–222.

11. Park YG, Clifford R, Buetow KH, Hunter KW (2003) Multiple cross and inbred

strain haplotype mapping of complex-trait candidate genes. Genome Res 13:

118–121.

12. Hitzemann R, Malmanger B, Reed C, Lawler M, Hitzemann B, et al. (2003) A

strategy for the integration of QTL, gene expression, and sequence analyses.

Mamm Genome 14: 733–747.

13. Li R, Lyons MA, Wittenburg H, Paigen B, Churchill GA (2005) Combining data

from multiple inbred line crosses improves the power and resolution of

quantitative trait loci mapping. Genetics 169: 1699–1709.

Combining Genetic Mapping Data

PLoS ONE | www.plosone.org 6 October 2007 | Issue 10 | e1036



14. Peirce JL, Broman KW, Lu L, Chesler EJ, Zhou G, et al. Genome Reshuffling

for Advanced Intercross Line Permutation. submitted.
15. Haldane JBS, Waddington CH (1931) Inbreeding and linkage. Genetics 16:

357–374.

16. Fisher R (1925) Statistical methods for research workers. London: Oliver and
Lloyd.

17. Sen S, Churchill GA (2001) A statistical framework for quantitative trait
mapping. Genetics 159: 371–387.

18. Peirce JL, Lu L, Gu J, Silver LM, Williams RW (2004) A new set of BXD

recombinant inbred lines from advanced intercross populations in mice. BMC
Genet 5: 7.

19. Lu L, Airey DC, Williams RW (2001) Complex trait analysis of the
hippocampus: mapping and biometric analysis of two novel gene loci with

specific effects on hippocampal structure in mice. J Neurosci 21: 3503–3514.
20. Lander ES, Botstein D (1989) Mapping mendelian factors underlying

quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

21. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from
incomplete data via the EM algorithm. J Roy Statist Soc B 39: 1–38.

22. Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for

interpreting and reporting linkage results. Nat Genet 11: 241–247.

23. Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in

experimental crosses. Bioinformatics 19: 889–890.

24. Chesler EJ, Lu L, Wang J, Williams RW, Manly KF (2004) WebQTL: rapid

exploratory analysis of gene expression and genetic networks for brain and

behavior. Nat Neurosci 7: 485–486.

25. Wang J, Williams RW, Manly KF (2003) WebQTL: web-based complex trait

analysis. Neuroinformatics 1: 299–308.

26. Taylor BA (1989) Recombinant inbred strains. In: Lyon ML, Searle AG, eds.

Genetic Variants and Strains of the Laboratory Mouse. Oxford: Oxford UP. pp

773–796.

27. Taylor BA, Wnek C, Kotlus BS, Roemer N, MacTaggart T, et al. (1999)

Genotyping new BXD recombinant inbred mouse strains and comparison of

BXD and consensus maps. Mamm Genome 10: 335–348.

28. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative

trait mapping. Genetics 138: 963–971.

Combining Genetic Mapping Data

PLoS ONE | www.plosone.org 7 October 2007 | Issue 10 | e1036


