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Abstract
Amosaic of intact native and human-modified vegetation use can provide important habitat

for top predators such as the puma (Puma concolor), avoiding negative effects on other

species and ecological processes due to cascade trophic interactions. This study investi-

gates the effects of restoration scenarios on the puma’s habitat suitability in the most devel-

oped Brazilian region (São Paulo State). Species Distribution Models incorporating

restoration scenarios were developed using the species’ occurrence information to (1) map

habitat suitability of pumas in São Paulo State, Southeast, Brazil; (2) test the relative contri-

bution of environmental variables ecologically relevant to the species habitat suitability and

(3) project the predicted habitat suitability to future native vegetation restoration scenarios.

The Maximum Entropy algorithm was used (Test AUC of 0.84 ± 0.0228) based on seven

environmental non-correlated variables and non-autocorrelated presence-only records (n =

342). The percentage of native vegetation (positive influence), elevation (positive influence)

and density of roads (negative influence) were considered the most important environmen-

tal variables to the model. Model projections to restoration scenarios reflected the high posi-

tive relationship between pumas and native vegetation. These projections identified new

high suitability areas for pumas (probability of presence >0.5) in highly deforested regions.

High suitability areas were increased from 5.3% to 8.5% of the total State extension when

the landscapes were restored for� the minimum native vegetation cover rule (20%) estab-

lished by the Brazilian Forest Code in private lands. This study highlights the importance of

a landscape planning approach to improve the conservation outlook for pumas and other

species, including not only the establishment and management of protected areas, but also

the habitat restoration on private lands. Importantly, the results may inform environmental

policies and land use planning in São Paulo State, Brazil.
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Introduction
Humans now dominate the earth, negatively impacting on the survival of many wildlife species
[1]. However, a variety of habitat types in human-modified landscapes can be used by wildlife,
with the pattern of utilization varying according to species’ life-histories [2]. These human-
modified landscapes are heterogeneous mosaics of land uses such as agricultural lands (crop-
lands and pastures), urban areas, roads, watercourses and remnant patches of native vegetation
[3] which can be managed for the conservation of biodiversity, even if most of the native vege-
tation has been converted to human land uses [4]. Adopting a landscape-scale approach is now
recognized as vital to conserving wildlife outside protected areas; it is especially relevant to the
conservation of large carnivore populations which require large territories for movement and
foraging [5].

Large carnivores are particularly sensitive to habitat loss and fragmentation [6]. However,
some species utilize the land use matrix such as agricultural crops for hunting and dispersal
movements. For example, puma (Puma concolor), gray wolf (Canis lupus lupus) and maned
wolf (Chrysocyon brachyurus) have been found in many different types of land-use around the
world, such as pasture, croplands and even urban areas [6], [7], [8]. This coexistence of large
carnivores and humans causes conflicts, such as retaliatory killing by humans due to livestock
predation, for example, of lynx (Lynx linx) [9], wolf (Canis lupus) [10], lion (Panthera leo),
leopard (Panthera pardus) and spotted hyena (Crocuta crocuta) [11], puma and jaguar
(Panthera onca) [12], [13]. It is crucial, therefore, to incorporate human-modified landscapes
into a new conservation paradigm to resolve conflicts between people and large predators
around the globe [14].

In the Neotropics, the jaguar and the puma (originally coexisted across the entire jaguar
range, but now jaguars are officially extinct in El Salvador, Uruguai [15] and in the United
States (some individuals occasionally cross from Mexico into the southern United States) [16].
In Brazil, they have practically disappeared from the northeast, south and the highly-frag-
mented Atlantic forest regions [17]. A high extinction risk of the jaguar has recently been
reported in the highly-fragmented Atlantic rainforest biome [18], [19]. Jaguars are already
locally extinct in many areas of São Paulo State, Brazil. However, the puma still survives in this
threatened region and is now the only top predator. This species has been considered a trigger
for a trophic cascade effect [20], with population and geographic range declines resulting in sig-
nificant cascading trophic interactions and substantial effects on other species and ecological
processes [21]. With this in mind, effective recovery strategies for predators such as the puma
may be pivotal to improving biodiversity conservation in general [22].

The puma can be found in different types of land cover with various levels of human modifi-
cation (e.g., [23], [24], [25], [26], [27]). However, the species is believed to avoid highly-modi-
fied areas [28] and to prefer habitats containing proportionally more native vegetation cover
[24]. It remains unclear whether avoidance of highly-modified habitats is direct effect of poor
habitat quality or the result of prey avoiding human activity. For example, Sweanor et al. [29]
suggest that a landscape containing more native vegetation and less human activities must be a
better scenario for puma conservation. Strategies to restore native vegetation at the landscape-
scale may improve the conservation outlook for puma.

The puma is well documented in North America, but there is a lack of studies to provide
information about the genetics and ecology of pumas in South America, especially in Brazil. It
is argued that the species have only recently recolonized south and southeast regions, following
decrease in logging activities after depletion of the Atlantic rainforest in the 1960s [27].
Although there are evidences that puma may act as source–sink metapopulation structure
within these areas (e.g. [25], [30]), dispersing cougars do not necessarily follow the path of least
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resistance (e.g. [31]). The first estimate of the abundance of pumas in a human-dominated
landscape in São Paulo State was published last year [32].

This study aims to explore the effects of restoration scenarios on the puma’s habitat suitabil-
ity in human-modified landscapes. To achieve this, species distribution models (SDMs) incor-
porating restoration scenarios were developed using the specie’s occurrence information to (1)
map habitat suitability of pumas in São Paulo State, Southeast, Brazil; (2) test the relative con-
tribution of environmental variables ecologically relevant to the species habitat suitability and
(3) project the predicted habitat suitability onto future native vegetation restoration scenarios.

Mapping habitat suitability for species using species distribution models have been increas-
ingly applied as conservation planning tools for predicting impacts of climate change and land
use changes on biodiversity (e.g. [33], [34], [35], [36]). These models can provide insights into
systematic conservation planning, informing the decision making process [37]. São Paulo State
was considered an appropriate study area to conduct this study because it is the most populous
state in Brazil [38] and large areas of highly fragmented native vegetation [39].

Methods

Study area
The study incorporated the entire territory of São Paulo State, Southeast, Brazil (248 209 km2).
It is the most developed state in Brazil with a human population estimated at approximately
43.65 million inhabitants in 2013 and varying from 6 persons /km2 in small towns to 7 398 per-
sons/km2 in the capital São Paulo [38]. During the 20th century, São Paulo State experienced
rapid land use changes due to human population growth and agricultural development [40].
During the last decade, many cattle pastures have been converted to sugar cane plantations
[41]. São Paulo State is covered by two Atlantic Forest sub-regions (Serra do Mar and Interior).
Approximately 4.7 million ha of native vegetation patches remain, with over 2.94 million ha
(62.5%) clustered in a 100 km buffer inland from the Atlantic Ocean Coast (calculated in Arc-
GIS 10.1 based on Sparovek et al. [42]). São Paulo State is delimited by the Atlantic Ocean
(Southeast boundary), and three main rivers: Paranapanema River (Southwest boundary),
Paraná River (West boundary) and Grande River (North boundary) (Fig 1). These rivers were
not tested as effective barriers to the puma dispersion in the region, although large water-
courses were considered by experts as effective barriers to puma dispersal in Southwest United
States [43].

A few studies have found that average home range size in the study area varies from 51 to
140 km2 in the São Paulo North East region [44] and 114 km2 in São Paulo Central East region
[45] with density varying from 0.30 to 0.74/100 km² in the East Coast [46]. Importantly,
pumas have been observed in mosaics of native vegetation and exotic forest plantations domi-
nated by Pinus and Eucalyptus spp. in this area [47]. Those areas usually are under certified
timber management.

Species occurrence records
Presence-only puma records for the period 2001–2012 (n = 495) in São Paulo State were down-
loaded from the Species Link network [48] and provided by the Puma Conservation National
Act Plan research collaborators. All data used (including from Species Link network) were col-
lected and provided by specialists or government staffs (e.g. IBAMA, ICMBio). We avoid rec-
ords derived from museum and those ones which the data provider could not be easily
identified to support data accuracy. Duplicate records were removed in ArcGIS 10.1, which left
343 spatially independent records for the analysis (S1 Table). Instead of reducing the effect of
sampling bias by spatially filtering the occurrence dataset, we develop a sampling probability
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surface called bias grid to reduce sampling bias in geographic space when some areas in the
landscape are sampled more intensively than others [49]. We followed Clements et al. [50] to
develop a bias grid weighted by a Gaussian Kernel with a standard deviation (SD) based on the
estimated puma’s dispersal distance divided by the weighted number of terrestrial cells in the
neighborhood [51], thereby avoiding the effect of the coastline. A Gaussian function was
applied using ArcGIS 10.1: Exp (— ([d] ^ 2) / (2 � SD ^ 2) ) where d = the distance between
each 10,000 background points and presence points measured in GME tool version 0.7.2.1 RC2
[52], and standard deviation (SD) = maximum dispersal distance of pumas described by
Maehr et al. as 68.4 km [53]. The final values were interpolated using the Natural Neighbor
algorithm to create a smooth surface from points and converted to ASCII format (S1 Fig).

Environmental variables
The ecological relationships considered in the literature to be relevant for pumas were consid-
ered as potential explanatory continuous variables (n = 13) to guide the species distribution
modelling (SDM) (S2 Table). The variables were: (1) percentage of native vegetation, (2) dis-
tance to native vegetation, (3) edge density of native vegetation patches, (4) percentage of exotic
forest crops, (5) distance to exotic forest crops, (6) distance to protected areas,(7) watercourse
density, (8) distance to watercourses, (9) distance to roads, (10) road density, (11) elevation
and (12) slope and (13) distance to urban areas.

A Pearson’s correlation analysis was applied to test the independence between each pair of
environmental variables using the package Hmisc 3.10 in R 2.15.1 [54]. Variables were
excluded from the analysis if their correlation index was� ± 0.5 (S3 Table), following Booth
et al. [55]. These authors suggested that, if a pair of variables has a correlation coefficient� ±
0.5, then they should be considered proxies of one another, and one of the variables should be

Fig 1. Study area map. Land use and pumas’ occurrence records (2001–2012) in São Paulo State, Southeast, Brazil. This figure was elaborated by the first
author using software ArcGIS 10.1 and IrfanView 4.37.

doi:10.1371/journal.pone.0145232.g001
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removed. The variables showing the highest gain to the models in preliminary Maxent runs
were retained from a group of correlated variables.

The following environmental variables were subsequently selected as predictors: percentage
of native vegetation, percentage of exotic forest crops, edge density, watercourse density, road
density, elevation, and slope. Distance to protected areas, distance to native vegetation and dis-
tance to roads were highly correlated with percentage of native vegetation and they were there-
fore excluded from the analysis. Distance to urban areas and distance to roads were also
excluded due to their high correlation with road density. Distance to watercourses was
excluded because it was correlated with density of watercourses.

All environmental variables selected (Table 1) were extracted by the mask of São Paulo
State, projected to South American Datum 1969 Albers Equal-Area Conic Projection spatial
reference defined by custom to minimize area distortion and resampled to the largest cell size
of all input datasets (~90 x 90 meters) in ArcGIS 10.1. They were then converted to ASCII grid
format for the analysis.

Restoration Scenarios
The restoration scenarios were created based on the land use binary maps (urban areas, native
vegetation and exotic crops) of São Paulo State [42]. Firstly, areas with� 70% percentage of

Table 1. Environmental variables used to develop the models for pumas in São Paulo State, Brazil
(See S4 Table for the environmental variables not used to develop the models).

Environmental variable Description and source

Percentage of native
vegetation

Geotiff binary map (values 0 or 1) of natural vegetation in Brazil*. Sum of
natural vegetation cells (value 1) divided by the total number of cells with
respect to the upper-left corner of a 10 x 10 km rectangle neighborhood*
using Focal Statistics and multiplied by 100 (%).

Percentage of exotic forest
crops

Geotiff binary map (values 0 or 1) of eucalyptus and/or pine plantations in
Brazil. Sum of cells (value 1) divided by the total number of cells with
respect to the upper-left corner of a 10 x 10 km rectangle neighborhood**
using Focal Statistics and multiplied by 100 (%).

Edge density of vegetation Geotiff binary map (values 0 or 1) of natural vegetation in Brazil* converted
to a polygonal feature to performing area and perimeter calculations on
attribute table. Perimeter divided by area using Python Field Calculator.
Final values converted into raster image (m/m2).

Elevation Geotiff continuous map of digital elevation model of São Paulo State map
originally in the South American Datum 1969***. Raster continuous
dataset projected to Albers Equal-Area Conic Projection using Data
Management tool Project Raster (bilinear resampling technique) (m).

Slope Slope percentage rise calculated from Elevation map in Albers Equal-Area
Conic (meters) using Spatial analyst tool Surface (%).

Road density Kernel density of roads in São Paulo State**** with respect to the length
per square map unit in ~ 100 km2 neighborhood** (m/m2).

Watercourse density Kernel density of water bodies in São Paulo State with respect to the length
per square map unit in ~ 100 km2 neighborhood** (m/m2).

*Land use binary maps (urban areas, native vegetation and exotic crops) originally in World Geodetic

System 1984 (cell size 0.00077 x 0.00083) developed by Sparovek et al. [37].

**Density and connectivity variables were based on the puma’s average home range of 100 km2 as found

within the study region [44], [45].

*** Elevation and Slope continuous maps originally in South American Datum 1969 (cell size 0.00083 x

0.00083) developed by Weber et al. based on the Shuttle Radar Topography Mission—SRTM [56]

**** Road density was based on state and federal highways. It does not include unpaved roads.

doi:10.1371/journal.pone.0145232.t001
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agriculture lands were selected (based on the sum of natural vegetation cells divided by the
total number of cells with respect to the upper-left corner of a 10 x 10 km rectangle neighbor-
hood using Focal Statistics and multiplied by 100) to represent areas that potentially could be
restored to native vegetation. Secondly, areas with native vegetation percentage values
of� 10%,� 20%,� 30% were selected as areas with restoration needs. Finally, these areas of
potential restoration and restoration needs were overlapped.

Three scenarios were then created simulating native vegetation increases across the land-
scape. These represented steps in a future restoration process, when native vegetation would be
restored by 10%, 20% and 30%. Changes of percentage of native vegetation did not influence
changes in any other variables used in the modelling process.

The values of the restoration scenarios were selected based on ecological assumptions
reflecting the plasticty of the puma to use landscapes with moderate levels of anthropogenic
modification [57]. Specifically, landscapes with less than 20–30% of forest cover tend to hold
depleted faunal communities in the Brazilian Atlantic Forest [58], [59], [60], thereby negatively
affecting the foraging ecology of the species. Furthermore, studies suggest extinction thresholds
are observed below 30% of remaining habitat [61] and the distance among patches increases
exponentially around 10–20% of remaining habitat [62]. In addition to these ecological
assumptions, the minimum native vegetation cover rule in private lands established by the Bra-
zilian Forest Code is 20% in the study region [63]. A similar modelling process and scenarios
analysis based on these code specifications was applied by Ferraz et al. [64].

Model development
The Maximum Entropy Software (Maxent v. 3.3.3 k) [65], was applied to develop a species dis-
tribution model for pumas and to make projections for future restoration scenarios. Maxent
has shown a better perform than other presence-only data modelling methods (e.g. GARP) due
to its ability to fit complex responses and to select a relevant set of variables [66]. The Maxent
algorithm uses the environmental variables that are ecologically relevant to the species from
the presence-only data and a background sample (a random sample of available environmental
conditions) to calculate a habitat suitability index, indicating where the species is most likely to
occur [67]. The logistic output format estimated by Maxent (continuous values from 0 to 1)
can be interpreted as the probability that the species was present, conditional on the environ-
mental conditions, but it does not correspond to an explicit model of species occurrence [68]
[69]. Refer to Elith and Leathwick [70] for further details on SDMs and Elith et al. [71] for fur-
ther details on the Maxent algorithm.

Maxent performs well even for modelling incomplete data, limited sample size and biased
data [67], [68], [69], which are common problems in studies involving large carnivores. Max-
ent outperformed other algorithms (ENFA and SVM) in predicting large carnivore distribution
[72]. This algorithm has been recently applied to model large carnivores, such as jaguars [73],
[64], [17], [19], pumas [74], lions and leopards [72].

Although Maxent is particularly easy to use, it requires that users make informed decisions
when preparing data, choosing settings and interpreting outputs [71]. In this study, the SDM
was generated by bootstrapping (n = 10) using 70% of the dataset for training and 30% for test-
ing models [75]. Maxent’s default setting sampled 10,000 background points from the study
area and set the maximum number of iterations to 500 and the regularization multiplier to
one.

The area under the receiver operating characteristic curve (AUC) was used to evaluate the
discriminative ability of Maxent models. AUC values greater than 0.75 (a no better than ran-
dom AUC = 0.5) were considered able to distinguish between presences and potentially
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unsampled locations [76]. A Jacknife test was applied to measure relative importance of each
environmental variable. Maxent measured this by “gain”, which represented how much better
the distribution fitted the sample points than the uniform distribution did (uniform distribu-
tion gain = 0). The average sample likelihood was exp (x) times higher than that of a random
background pixel if Maxent’s gain was x.

Maxent estimated the environmental variables’ contributions to the SDM by “percent con-
tribution” and “permutation importance” values (from 0 to 100%). For the first estimate, the
increase in regularized gain was added by Maxent to the contribution of the corresponding var-
iable or subtracted from it if the change to the absolute value of lambda was negative in each
iteration of the training algorithm. For the second estimate, the values of that variable on train-
ing presence and background data were randomly permuted for each environmental variable
in turn. The model was reevaluated on the permuted data, and the resulting drop in training
AUC was normalized to percentages. Those values are only heuristically defined as dependent
on the particular path that the Maxent code used to get to the optimal solution.

Maxent’s distribution (original) was ‘clamped’ at constant probabilities and projected into
novel environments (in this case, restoration scenarios), extrapolating the current conditions
to novel combinations of environmental variables [51]. The option ‘projections layer’ file/
directory was assigned containing the same environmental variables but a different target per-
centage of vegetation for each restoration scenario (percentage of native vegetation
value� 10%,� 20%,� 30%).

Zonal Statistics
Threshold-dependent evaluations were avoided in this study because it has been challenged as
unnecessary for conservation planning purposes [77]. Maxent’s average distribution model
(i.e. probability of presence values) was categorized into three frequency distribution classes
(i.e. low 0.00–0.17, medium 0.17–0.31, medium-high 0.31–0.50 and high 0.50–0.99) by Jenks'
natural breaks classification method using ArcGIS 10.1 Spatial Analyst tool Reclassify. Jenks'
classification is a data clustering method well suited for grouping data with large variances and
seeks to reduce variance within groups and maximize variance between groups [78].

A cross-tabulated analysis was used to explore how the landscape habitat suitability changes
when native vegetation increases in scenarios because just one variable was changed (i.e. per-
centage of vegetation). Geotiff binary maps of land cover classes (i.e. native vegetation, exotic
forest crops, urban areas and agricultural land) were overlayed to a single raster dataset, creat-
ing a land cover map [42]. Fully protected areas in Brazil (municipal, state and national) were
combined into a single output polygon feature [79]. A 10 km buffer distance was calculated to
accommodate possible analytical edge effects for pumas [43] and the transition zone between
protected areas and the surrounding landscape. A 10 km buffer from fully protected areas and
also sustainable reserves were combined into a single output polygon feature. The ArcGIS 10.1
Spatial Analyst tool was applied to tabulate the probability of presence areas with land use and
protected areas.

Results
The ensemble predictions showed a continuous potential distribution for pumas in São Paulo
State, Brazil. All model outputs had a high discriminative ability with an average AUC of
0.84 ± 0.02 for the testing data and 0.88 ± 0.02 for the training data. Maxent’s average model
logistic output revealed a continuous distribution of pumas in São Paulo State (Fig 2). Table 2
shows the model results of low, medium and high habitat suitability and the cross tabulated
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area analysis with different land cover types (see S5 Table for protection levels cross tabulation
analysis).

The puma’s distribution was positively influenced by percentage of native vegetation (Fig
3a), elevation (Fig 3b) percentage of exotic forest crops and slope. It responded negatively to
road density (Fig 3c), watercourse density and edge density of native vegetation. Percentage of
native vegetation, elevation and density of roads were considered the three most important
environmental variables to the model prediction. They had the highest relative contributions,
the highest regularized training gain when used in isolation in the Jackknife test and also the
highest AUC values when used in isolation. Percentage of native vegetation had the highest
permutation importance and the highest test gain when used in isolation in the Jackknife test.
Elevation dropped regularized training gain the most when omitted in the modeling process.
Road density dropped the test gain the most when omitted in the modeling process (Table 3).

Maxent’s projections of predicted puma’s habitat suitability in restoration scenarios showed
an increase of high suitability areas for pumas (>0.5) in all novel environments (percentage of
native vegetation value� 10%,� 20%,� 30%) compared to the original species distribution

Fig 2. The puma habitat suitability in São Paulo State, Brazil and its projection in three restoration
scenarios: (a) original Maxent distribution model average, (b)�10% percentage of native vegetation
restoration scenario, (c)�20% percentage of native vegetation restoration scenario, and�30%
percentage of native vegetation restoration scenario (d). This figure was elaborated by the first author
using softwares ArcGIS 10.1 and IrfanView 4.37.

doi:10.1371/journal.pone.0145232.g002

Table 2. Cross-tabulated areas between the four classes of Puma concolor habitat suitability (HS) (i.e. low HS (values� 0.17), mediumHS
(0.17� values� 0.31), medium-high HS (0.31� values� 0.50) and high HS (values > 0.50) and four land cover zones (i.e. native vegetation, exotic
forest crops, agriculture and others—urban areas and water bodies pixels) calculated using ArcGIS 10.1 Spatial Analyst Zonal tool.

Land cover Low HS (km2) Medium HS (km2) Medium-high HS (km2) High HS (km2)

Native vegetation 16719 (26%) 11589 (10%) 9888 (17%) 9288 (70%)

Forest crops 1468 (2%) 2529 (2%) 2802 (5%) 974 (7%)

Agriculture 38612 (60%) 94284 (83%) 42656 (75%) 2861 (21%)

Other 8093 (12%) 4379 (5%) 1392 (3%) 113 (2%)

Total in São Paulo 64892 (100%) 112781 (100%) 56739 (100%) 13237 (100%)

doi:10.1371/journal.pone.0145232.t002
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scenario (Fig 4). The new high suitability areas occur especially in Northeastern (Fig 4a), and
also in Central region (Fig 4b) of São Paulo State. The results showed no new high suitability
areas emerging in the Coastal region and São Paulo City Metropolitan region (Fig 4c).

The SDM projection to scenario 1 (�10% native vegetation cover) showed 15637 km2 as
high suitability areas for pumas (probability of presence values> 0.50), an increase of 2400km2

(18%) in the original high suitability areas for pumas (13236 km2). These new high suitability

Fig 3. Marginal response curves showing how the logistic prediction changed as each of the three environmental variables that contributed the
most to the models were varied: native vegetation (a), elevation (b) and density of roads (c).

doi:10.1371/journal.pone.0145232.g003

Table 3. Environmental variable importance to the modeling process evaluated by percent contribution, permutation importance and training gain
(Jackknife test). Three highest values are indicated in bold.

Variable Percent
contribution

Permutation
importance

Training gain with
only the variable

Drop in training gain
without the variable

Test gain with
only the variable

Drop in test gain
without the
variable

Percentage of native
vegetation

23.61 37.09 0.24 0.05 0.54 0.08

Elevation 26.49 11.38 0.28 0.15 0.34 0.06

Road density 23.98 16.19 0.25 0.08 0.29 0.09

Slope 7.11 8.50 0.03 0.07 0.05 0.05

Watercourse density 5.01 4.98 0.13 0.04 0.23 0.04

Percentage of exotic
forest crops

7.45 12.59 0.11 0.07 0.16 0.08

Edge density 6.34 9.27 0.23 0.02 0.47 0.03

doi:10.1371/journal.pone.0145232.t003
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areas have emerged especially in highly deforested areas in Northeastern region of São Paulo
State (Fig 4a).

The SDM projection to scenario 2 (�20% native vegetation cover) showed 21 404 km2 as
high suitability areas for pumas (probability of presence values> 0.50), an increase of 8167
km2 (62%) in the high suitability areas for pumas. It has a 5767 km2 additional difference of
high suitability areas comparing to the scenario 1 (�10% native vegetation cover). These new
high suitability areas have emerged particularly in Northeastern (Fig 4a) and Central region
(Fig 4b).

The SDM projection to scenario 3 (�30% native vegetation cover) showed 22 800 km2 as
high suitability areas for pumas, an increase of 9564 km2 (72%) in the high suitability areas for
pumas. It has a 1396 km2 additional difference of high suitability areas comparing to the sce-
nario 2 (�20% native vegetation cover). The new high suitability areas have not emerged clus-
tered in new regions. The additional pixels with probability of presence values> 0.50 have
been spread in the landscape around areas emerged in scenarios 1 and 2.

Discussion

Habitat suitability and environmental variables
Although São Paulo has a high level of habitat loss and fragmentation, the models generated in
this study showed the puma still has a continuous potential distribution in the state. However,

Fig 4. High probability of puma presence (original) in São Paulo State, Brazil and high probability of
puma presence projected in three restoration scenarios (�10% percentage of native vegetation,
�20% percentage of native vegetation, and�30% percentage of native vegetation) zoomed in for a
close-up of three different landscape regions: (a) Northwestern region, (b) Central region and (c)
Southeastern region. This figure was elaborated by the first author using softwares ArcGIS 10.1 and
IrfanView 4.37.

doi:10.1371/journal.pone.0145232.g004
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there were significant differences in São Paulo State territory with respect to the puma’s habitat
suitability. These differences were particularly due to differing levels of fragmentation and hab-
itat loss (represented by percentage of native vegetation response), human induced land use
changed (represented by road density response) and topography (represented by the elevation
response) in São Paulo State.

Despite the puma’s high capacity to adapt to various environments and not a strictly forest
dependent species (Occurrence records found from 0 to 100% native vegetation–S1 Table), the
high positive relationship between pumas and native vegetation showed in this study concurs
with a previous study that found that the puma’s habitat contains proportionally more natural
habitat than modified land cover types [24]. This confirms that habitat loss as the major driver
of population decline of the puma (sensu [62]). Nevertheless, rural areas in São Paulo State are
highly suitable for this adaptable cat in this study, especially nearby native vegetation patches
(e.g. São Paulo metropolitan region–Fig 4c). Indeed, there is evidence in Southern California
that pumas incorporate rural and peri-urban development areas into their home ranges, appar-
ently perceiving these areas as non-habitat [57]. In the study area, there is evidence that pumas
consume complementary resources derived from the agricultural matrix in Campinas Metro-
politan Region and Ribeirão Preto, São Carlos and Rio Claro Region [80].

The strong positive relationship between puma probability of presence and elevation might
be responsible for the lower values in the South and Coast region. Although the native vegeta-
tion cover is higher than 30% in the São Paulo South and Coast region, the modelling showed
very low suitability for pumas (probability of presence� 0.1) in these areas (S2 Fig). Although
low elevation does not limit species presence (Occurrence records found from 0 to 1934 m ele-
vation–S1 Table), the data used has shown few records in low elevations (five presence records
from 0 to 100 m and six presence records from 100 to 300 m). This may be because pumas
have used higher elevations more often than lower elevations in the study area, as was reported
in South California [57]. In addition, there are urban areas and major roads in these regions
that could be influencing the final habitat suitability map (represented by the road density vari-
able). Further investigation is necessary to confirm and clarify the low suitability for pumas in
this area.

The strong negative relationship between puma probability of presence and road density
(Occurrence records found from 0 to 1.56 x 10−4 m/m2 –S1 Table) agrees with previous studies
indicating that pumas tend to avoid paved roads [81] and also indirectly confirms evidence
that pumas tend to avoid human-disturbed areas [28]. In this study, higher road densities are
correlated to urban areas, representing not only dispersion but also human settlements and
habitat availability (S2 Table). Although our modelling highlights the low probability of puma
presence in the São Paulo and Campinas metropolitan region, the most developed in the study
area, high suitability areas were found in their surroundings when covered by native vegetation
patches (S3 Fig).

It is necessary to be aware that the puma’s responses to the environmental variables could
change in different regions and landscape configurations (e.g., regions with more native vegeta-
tion habitats than human-modified land as occurs in the Amazon). Combining datasets over
large spatial scales is necessary to generate global models for the species and to infer the relative
importance of different areas for puma conservation. Long-term species monitoring programs
are also crucial to improve the accuracy of the distribution modelling process.

Restoration scenarios
Currently, there is noclearly defined threshold limiting regardinghow much native vegetation
is suitable for the maintenance of puma populations. We therefore based our restoration
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scenarios on ecological assumptions (e.g. [59], [60], [61], [62]) and the environmental legisla-
tion [63]. Nevertheless, nothing guarantees that restored areas will be occupied by pumas.

The projected impacts of habitat restoration for pumas were positive, improving the habitat
suitability for the species in Central and North-western region and maintaining the suitability
in Coastal and South regions (Fig 4). The restoration benefit varies both in shape and rate of
change considering each restoration scenario. Restoration�20% native vegetation has the
highest restoration improvement rate in all evaluated scenarios, doubling the improvement
rate of the�10% scenario. Surprisingly,�30% restoration scenario showed almost no
improvement in the on the puma’s habitat suitability compared to�20% restoration scenario.
This reflects the large reduction in the distance among patches between the 10–20% and 20–
30% restoration scenarios [61].

This study used simplified restoration scenarios to explore the habitat suitability response
when habitat restoration is projecting in high fragmented human-modified landscapes. It is
important to realize that the alternative scenarios do not pretend to establish future population
dynamics for the puma in the study region. While Maxent modeling for the current land use
configuration evaluated the original model performance very well, it was assumed that the res-
toration scenarios projections based on the original model were also well predicted. Araújo
et al. [82] questioned this assumption (especially for projections under climate change scenar-
ios) arguing the evaluation procedure does not incorporate uncertainty in the projections. Fur-
thermore, the land use based models implemented in this study make a number of simplifying
assumptions that may bias the projections [83]. Exploring these represent important avenues
for future researches (e.g. [84]).

No method was applied for determining which future is more likely. For example, this study do
not face important challenges of the restoration process, such as detecting barriers regarding loca-
tions to restore [85], evaluating cost-effective outcomes [86], integrating biological and social-eco-
nomic values [87] and conforming to socio-political issues. In addition, a conservation planning
approach incorporating multiple actions (e.g. restoration, reversing defaunation, conflict manage-
ment, protected areas implementation, certified timber management) would provide insights
about best solutions for the species conservation. These are important focuses for further research.

Conservation planning implications
The results presented in this study reinforce the argument that although large protected areas
are usually the main strategy to safeguard biodiversity, native vegetation on private lands has
an important conservation value [88]. These small patches extend the amount of habitat avail-
able for puma, increase landscape connectivity and possibly facilitate dispersion movements by
acting as stepping-stone habitats for pumas (e.g., [43]). Importantly, these results highlight the
importance of private proprieties as an essential habitat component for pumas, such as shown
for amphibians [89] and birds [64] in Brazil.

Only 24% (~3189 km2) of the total high suitability areas for pumas are fully protected by
law in São Paulo State (S3 Table). Therefore, high suitability areas for pumas might be consid-
ered for new full protected areas sites and also for expanding the existing protected areas. How-
ever, the diffuse high suitability areas for pumas shown in this study suggests that a new
conservation approach is necessary in tropical rural landscapes, beyond the protection of few
areas minimally impacted by past or present human activities [2]. In addition, areas in a 10 km
buffer distance from fully protected areas are especially important, comprising an additional
33% (~4 389 km2) of high suitability areas for pumas (S3 Table). This transition zone should
be considered in the protected areas management plans [90] as the minimum necessary to
accommodate edge effects for the species [43].
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The restoration scenarios indicate the need to effectively adhere the Brazilian Forest Code
[63], restoring at least 20% of private land in São Paulo State in the agri-environment scheme
called Legal Reserve for improving habitat suitability for pumas. In 2010, approximately 98%
of the private rural proprieties in São Paulo State did not comply with this mandatory practice
[91]. Locating offset sites for Legal Reserves out of the State should be avoided even if located
in the same biome [92], considering the restoration needs. Furthermore, agriculture activities
should be managed and regulated in order to reduce their negative impact on pumas (e.g.
Agro-environmental zoning for the Sugar and Alcohol Sector). In addition, economic instru-
ments such as payment for environmental services (PES) must be encouraged in order to
enhance the restoration process (e.g. the Puma Corridor proposed to conserve the water and
biodiversity in Campinas region). Surely, the maintenance and improvement of conservation
policies in national and regional scales are crucial for restoration scenarios to become reality.

Usually, species responses to land use change scenarios that destroy habitat in urban and
agricultural landscapes should be assessed by EIA and SEA processes [93]. In a similar proce-
dure, an approach applied here that estimates species responses to habitat restoration process,
could be incorporated into environmental law procedures. Studies such as that presented here
need to inform revisions in the legislation and minimize risks of environmental setbacks with
critical and irreversible consequences. One such example occurred recently in the Brazilian
Forest Code [63] when the legislation was considered overprotective of the environment by
political reviewers [94].

Conclusions
This case study highlights the importance of a landscape planning approach that includes not
only the establishment and management of protected areas, but also restoration and protection
of habitat on private lands for the conservation of pumas. In addition, it shows how specific
native vegetation restoration targets might improve the suitability of areas for pumas and high-
lights existing legal mechanisms to promote landscape recovery in São Paulo State, Brazil.
Importantly, the results directly inform the decision-making process by guiding environmental
policies and land use planning, and assisting species’ conservation. They serve as a useful
model to guide similar process for other large-carnivore species world-wide.

Supporting Information
S1 Fig. Gaussian weighted bias grid surface for puma’s occurrence records in São Paulo
State. This figure was elaborated by the first author using software ArcGIS 10.1.
(TIF)

S2 Fig. Very low habitat suitability (� 0.1 probability of presence) corresponding to low
elevation rate (� 100 meters) in São Paulo State South and Cost region. This figure was
elaborated by the first author using softwares ArcGIS 10.1 and IrfanView 4.37.
(TIF)

S3 Fig. Very low habitat suitability (� 0.1 probability of presence) and high habitat suit-
ability (� 0.5 probability of presence) in São Paulo City Metropolitan region. This figure
was elaborated by the first author using softwares ArcGIS 10.1 and IrfanView 4.37.
(TIF)

S1 Table. Localities and environmental variables values for the 342 puma’s occurrence rec-
ords. The values are from each environmental variable pixel coincident with the occurrence
records points of the puma (Puma concolor) in São Paulo State used for SDM. Latitude (LAT)
and Longitude (LONG) in decimal degrees, South America Albers Equal Area Conic
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Projection). Species Distribution Model (SDM), Percent of native vegetation (VEG), edge den-
sity (EDG), forest crops (FOR), road density (ROAD), Elevation (ELV), Slope (SLO) and
Water density (WAT).
(DOCX)

S2 Table. Ecological relationships relevant for pumas published in the literature that were
considered as potential explanatory variables (n = 13) to guide the species distribution
modelling (SDM).
(DOCX)

S3 Table. Pearson’s correlation analysis of the environmental variables.
(DOCX)

S4 Table. Environmental variables not used to develop the models for pumas in São Paulo
State, Brazil. All variables were considered correlated to others (Pearson’s correlation�±0.5).
(DOCX)

S5 Table. Cross-tabulated areas calculated using ArcGIS 10.1 Spatial Analyst Zonal tool
between the four probability of Puma concolor presence classes (i.e. low (values� 0.17),
medium (0.17� values� 0.31), medium-high (0.31� values� 0.50 and high
(values> 0.50) habitat suitability and full protected areas (FPA), 10 km buffer zone from
full protected areas (10KM), sustainable reserves (Áreas de Proteção Ambiental—APA)
and Non-Protected Areas (NPA).
(DOCX)
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