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Abstract
Sheep are thought to have been one of the first livestock to be domesticated in the Near

East, thus playing an important role in human history. The current whole mitochondrial

genome phylogeny for the genus Ovis is based on: the five main domestic haplogroups

occurring among sheep (O. aries), along with molecular data from two wild European mou-

flons, three urials, and one argali. With the aim to shed some further light on the phyloge-

netic relationship within this genus, the first complete mitochondrial genome sequence of a

Cypriot mouflon (O. gmelini ophion) is here reported. Phylogenetic analyses were per-

formed using a dataset of wholeOvismitogenomes as well as D-loop sequences. The

concatenated sequence of 28 mitochondrial genes of one Cypriot mouflon, and the D-loop
sequence of three Cypriot mouflons were compared to sequences obtained from samples

representatives of the five domestic sheep haplogroups along with samples of the extant

wild and feral sheep. The sample included also individuals from the Mediterranean islands

of Sardinia and Corsica hosting remnants of the first wave of domestication that likely went

then back to feral life. The divergence time between branches in the phylogenetic tree has

been calculated using seven different calibration points by means of Bayesian and Maxi-

mum Likelihood inferences. Results suggest that urial (O. vignei) and argali (O. ammon)
diverged from domestic sheep about 0.89 and 1.11 million years ago (MYA), respectively;
and dates the earliest radiation of domestic sheep common ancestor at around 0.3MYA.
Additionally, our data suggest that the rise of the modern sheep haplogroups happened in

the span of time between six and 32 thousand years ago (KYA). A close phylogenetic rela-

tionship between the Cypriot and the Anatolian mouflon carrying the X haplotype was

detected. The genetic distance between this group and the other ovine haplogroups sup-

ports the hypothesis that it may be a new haplogroup never described before. Furthermore,

the updated phylogenetic tree presented in this study determines a finer classification of
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ovine species and may help to classify more accurately new mitogenomes within the estab-

lished haplogroups so far identified.

Introduction
The knowledge of species origin has always been an essential element for informed genetic
diversity conservation. In particular, the evolution of domestic species has been intensively
investigated during the last few decades. According to Vigne [1], archaeozoological findings
suggest that the earliest detected domestications occurred in the Near East during the 11th mil-
lennium before present (BP). In such a context, sheep and goats were the first livestock to be
domesticated near the region known as Fertile Crescent [2]. In this area, the domestication of
the Asian mouflon (Ovis gmelini) probably gave rise to the domestic sheep (O. aries) [1, 3–7],
although the contribution of other wild species such as urial (O. vignei), argali (O. ammon) and
European mouflon (O. a.musimon) has been suggested [8–10].

To date, five sheep haplogroups (HPGs) have been identified, including the last discovered
HPG E [11]. The latter is the rarest haplogroup together with HPG D, whereas HPG C is the
third more widespread, with samples retrieved in Asia, Fertile Crescent, Caucasus and the Ibe-
rian Peninsula. HPGs A and B are the most common ovine haplogroups; the first being more
recurrent in Middle East, Asia, and Europe, whileHPG B in European sheep [11]. Furthermore,
molecular investigations based on the analysis of a partial sequence of the mitochondrial D-
loop region [12] supported the occurrence of a new ovine haplotype, never observed before
among domestic sheep; this was detected in Anatolian mouflons whose gene pool is composed
of two differentmtDNA haplotypes, one belonging to HPG A and one closely related toHPGs
C and E, named by the authors as haplotype X.

Analyses based on comparisons of the wholemtDNA sequence, which significantly improve
the resolution power of phylogenetic analyses if compared with single genes or small DNA frag-
ments, clearly confirmed that neither urial nor argali sheep are the maternal ancestor of the
domestic sheep [13]. In addition, the European mouflon should not be considered a truly wild
sheep; instead, it more likely represents a remnant from early domestication events which has
readapted to feral life [14–16].

Some authors described the Asian mouflon (O. gmelini) and the urial (O. vignei) as a single
“moufloniform” species (O. orientalis) [17–18]; instead, the classification that distinguishes the
Asian mouflon from urial was followed in this study [14, 19].

Currently, the revised taxonomy of O. gmelini [20] differentiates the taxa into several “sub-
species”. The Armenian mouflon (O. g. gmelinii) from western Iran and easternmost Turkey, is
considered the most probable ancestor of domestic sheep along with the Anatolian mouflon
(O. g. anatolica) endemic to central Anatolia. A third subspecies has been assigned to the
Cyprus mouflon (O. g. ophion), also known as agrino, a wild sheep found exclusively in the
Mediterranean island of Cyprus. The agrino is the only wild representative of the Caprinae
subfamily on the island, and the largest animal of the local wild fauna [21]. The mouflon popu-
lation in Cyprus currently counts ~3,000 individuals living in the mountainous area of the
Paphos forest, a region of 620,000 hectares located in the North West of the island and classi-
fied as a Special Protection Area since 2005.

The IUCN [22] included the Cypriot mouflon in the list of species considered as "vulnerable"
due to poaching, habitat loss and fragmentation caused by the presence of road networks, and
infection by pathogens (see [23] for details). To make matters worse, climate models predict
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that climate change will lead to higher temperatures and less rainfall in the Eastern Mediterra-
nean with deleterious impact on the agricultural system and animal health [24].

The presence of mouflon in Cyprus is believed to date back to around 10,000 years ago (YA)
[2]. Recent paleontological findings [25] indicated that the first sheep (O. aries) were intro-
duced in Cyprus during the first half of the 10th millennium BP, then replaced 500 years later
by bigger sheep presumably introduced in the island from Syria. Based on the shape and size of
the horns of these prehistoric animals, these sheep were similar to the wild sheep of the nearby
mainland [25–26].

To date, only small portions of themtDNA and nuclear DNA of the Cyprus mouflon are
available. These segments include the complete sequence of the mitochondrial Cytochrome b
gene (Cyt B) (GB#FR873149) [23], and the entire sequence of the alpha 1 (GB#EU938070.1),
alpha 2 (GB#EU938071) [27] and beta (GB#DQ352469) [28] nuclear globin genes. Based on
partial Cyt B sequence analyses, O. g. ophion clustered with the ovine HPGs E and C, whereas
its D-loop belonged toHPG B [12, 29].

The aim of this study was to shed some light on the evolutionary pathway that led to the
emergence of current sheep haplogroups including as a new resource the Cyprus mouflon
mitogenome. Mitochondrial DNA was used to infer evolutionary history and phylogeographic
relationships among current species of the Ovis genus. In such a context, 27 mitogenome
sequences were used to obtain a wholemtDNA genome-based phylogenetic tree of Ovis species.
Such analysis was combined to a molecular dating to infer the evolutionary divergence timing
among Ovis species providing a possible coalescence time for the rise of the current sheep hap-
logroups. To achieve a more comprehensive picture of the phylogenetic relationships among
ovine haplogroups we analysed 35 additional D-loop sequences. The D-loop of three agrinos
were sequenced and compared with the homologous region from representative samples of the
five ovine haplogroups identified so far.

Animal species domestication has been carried out through the cross-breeding persistence
with wild population [30], including Cyprus mouflon. This process started after the last glacia-
tions when the increasing temperature determined abrupt environmental changes with the
extinction of some species and the success of others [31]. The Cyprus mouflon would well rep-
resent the species which adapted to new environment. The present study, providing new infor-
mation on the genetics of the Cyprus mouflon, would help to improve the efficiency of
selection on breed traits linked to reproductive performance and to maintain good productive
skills in arid environments.

Materials and Methods
The Ethics Committee of the University of Sassari, Italy, approved this study.

Peripheral blood samples were obtained from five Sardinian, three Cypriot and two Corsi-
can mouflons and two Sardinian and two Chios sheep. The dataset was implemented down-
loading from Genbank 26 whole mitogenomes and 21 D-loop sequences (see Table 1 for
details).

Furthermore, the data matrix included tenmtDNA whole genome sequences from sheep
representing the five main mitochondrial haplogroups (A, B, C, D, E) (two sequences per hap-
logroup). The water buffalo [32], the Tibetan antelope [33], the Rocky Mountain goat [34], the
Southern antelope, the white screwhorn antelope, the nilgai antelope, the blue wildebeest, the
waterbuck, the red lechwe, the Siberian musk deer [35] and the cattle sequences were used as
outgroups for the phylogenetic tree analysis (see Table 1 for scientific names and Genbank
accession numbers).
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Table 1. List of the species and the sequences included in phylogenetic analyses.

a) Whole mitogenome (28H)

Scientific name Common name HPG Code Geographic origin GB #

Addax nasomaculatus White screwhorn antelope - - - NC_020674

Bos taurus Cattle - - - NC_006853

Boselaphus tragocamelus Nilgai antelope - - - NC_020614

Bubalus bubalis Water buffalo - - - AY488491

Connochaetes taurinus Blue wildebeest - - - NC_020699

Hippotragus niger Sable antelope - - - NC_020713

Kobus ellipsiprymnus Waterbuck - - - NC_020715

Kobus leche Red lechwe - - - NC_018603

Moschus moschiferus Siberian musk deer - - - JN632662

Oreamnos americanus Rocky Mountain goat - - - FJ207535

Pantholops hodgsoni Tibetan antelope - - - DQ191826

Redunca arundinum Southern reedbuck - - - NC_020794

Ovis ammon Argali - AWS Kazakhstan HM236188

Ovis aries Domestic sheep A RA_1 Australia HM236174

Ovis aries Domestic sheep A RA_2 Australia HM236175

Ovis aries Domestic sheep B RB_1 Turkey HM236176

Ovis aries Domestic sheep B RB_2 Turkey HM236177

Ovis aries Domestic sheep C RC_1 Turkey HM236178

Ovis aries Domestic sheep C RC_2 Turkey HM236179

Ovis aries Domestic sheep D RD_1 Turkey HM236180

Ovis aries Domestic sheep D RD_2 Turkey HM236181

Ovis aries Domestic sheep E RE_1 Israel HM236182

Ovis aries Domestic sheep E RE_2 Turkey HM236183

Ovis aries musimon European mouflon B EUM Germany HM236184

Ovis canadensis Bighorn - BWS Canada JN181255

Ovis gmelini ophion Cyprus mouflon - CYM Cyprus KF312238*

Ovis vignei Urial - UWS Kazakhstan HM236189

b) D-loop

Scientific name Common name HPG Code GB#

Ovis aries Domestic sheep A RA_1 Turkey DQ852286

Ovis aries Domestic sheep A RA_2 Turkey DQ852287

Ovis aries Domestic sheep B RB_1 Turkey DQ852282

Ovis aries Domestic sheep B RB_2 Turkey DQ852285

Ovis aries Domestic sheep C RC_1 Turkey DQ852284

Ovis aries Domestic sheep C RC_2 Turkey DQ852283

Ovis aries Domestic sheep D RD_1 Turkey DQ852288

Ovis aries Domestic sheep D RD_2 Turkey DQ852289

Ovis aries Domestic sheep E RE_1 Israel DQ852280

Ovis aries Domestic sheep E RE_2 Israel DQ852281

Ovis aries Chios sheep B& CHS_1 Chios KR011777*

Ovis aries Chios sheep B& CHS_2 Chios KR011778*

Ovis aries Sardinian sheep B& SAS_1 Sardinia KR011770*

Ovis aries Sardinian sheep B& SAS_2 Sardinia KR011771*

Ovis aries musimon European mouflon B& EUM_1 Germany HM236184

Ovis aries musimon European mouflon B& EUM_2 Germany HM236185

Ovis aries musimon Sardinian mouflon B& SAM_1 Sardinia KR011772*

(Continued)
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Genomic DNA was extracted using the GenElute blood genomic DNA kit (Sigma-Aldrich)
according to the manufacturer's protocol. Sample quality and DNA concentration were deter-
mined via spectrophotometry using a ND-8000 (NanoDrop Technologies, Thermo Fisher Sci-
entific Inc., Wilmington, DE). The DNAmean concentration obtained was 125 ng/μL.

Mitogenome amplification and sequencing
To perform amplification experiments, specific primers were designed for the most conserved
regions belonging to all Ovis species mitogenomes available in databases.

A primer pair was selected when the average size of the amplicon was 1,100 base pairs (bp)
long to allow sequencing reactions by means of the same primer. Each adjacent fragment had
at least 100 bp of overlap to ensure complete sequencing coverage and the average annealing
temperature was approximately 56°C.

A total of 21 primer pairs were selected with an average overlapping of 212 bp long frag-
ments; the amplifications involved also two nested PCR reactions (see S1 Table for details).

PCR and sequencing reaction were performed according to the protocols provided by Piras-
tru et al. [27] and Manca et al. [28]. The annealing conditions for each primer are specified in
S1 Table.

The failure of the sequencing reaction for some amplicons, required the design of 5 addi-
tional sequencing primers to complete the whole mitogenome sequence (S1 Table).

Raw sequencing data were processed by Sequencing Analysis Software 5.3.1 (Applied Bio-
system) and the quality value of each base in the electropherograms was assessed by the KB
base-calling algorithm. Processed sequences were visualized using FinchTV 1.4.0 (Geospiza
Inc.) and assembled into contigs, after identifying overlapping areas on Clustal X 2 [36]. Gene

Table 1. (Continued)

Ovis aries musimon Sardinian mouflon B& SAM_2 Sardinia KR011773*

Ovis aries musimon Sardinian mouflon B& SAM_3 Sardinia KR011774*

Ovis aries musimon Sardinian mouflon B& SAM_4 Sardinia KR011775*

Ovis aries musimon Sardinian mouflon B& SAM_5 Sardinia KR011776*

Ovis aries musimon Corsican mouflon B& COM_1 Corsica KR011781*

Ovis aries musimon Corsican mouflon B& COM_2 Corsica KR011782*

Ovis gmelini ophion Cyprus mouflon - CYM_1 Cyprus KR011779*

Ovis gmelini ophion Cyprus mouflon - CYM_2 Cyprus KF312238*

Ovis gmelini ophion Cyprus mouflon - CYM_3 Cyprus KR011780*

Ovis gmelini anatolica Anatolian mouflon X$ ANM_1 Turkey KF677264

Ovis gmelini anatolica Anatolian mouflon X$ ANM_2 Turkey KF677265

Ovis gmelini anatolica Anatolian mouflon X$ ANM_3 Turkey KF677266

Ovis gmelini anatolica Anatolian mouflon A& ANM_4 Turkey KF677267

Ovis gmelini anatolica Anatolian mouflon A& ANM_5 Turkey KF677268

Ovis gmelini anatolica Anatolian mouflon A& ANM_6 Turkey KF677269

Ovis ammon Argali wild sheep - AWS Kazakhstan HM236188

Ovis canadensis Bighorn wild sheep - BWS Canada JN181255

Ovis vignei Urial wild sheep - UWS Kazakhstan HM236189

HPG: haplogroup; GB#: Genbank accession number.
$ X for the Anatolian mouflon O. g. anatolica represents an haplotype whose haplogroup was not described by Demirci et al.[12].

* Sequences obtained in the present study.
& HPG inferred by phylogenetic analysis.

doi:10.1371/journal.pone.0144257.t001
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arrangement was identified by comparing the sequences to that of O. aries (GB# NC_001941).
Double peaks of similar height, which may be interpreted as evidence of mitochondrial pseudo-
genes in the nucleus (Numts) or heteroplasmy, were not observed in any of the
electropherograms.

Protein coding genes were detected by means of ORF Finder software (http://www.ncbi.
nlm.nih.gov/gorf.html) by setting the type of mitochondrial code to the vertebrate genetic
code. The tRNA genes were identified by the online program tRNA-scan SE (http://lowelab.
ucsc.edu/tRNAscan-SE) using the mito/chloroplast genetic code and the default search mode.

In order to assess the number and the length of tandem repeats in the control region, which
differentiate ovine haplogroups, the D-loop sequences were tested using Tandem Repeat Finder
3.01 [37]. The physical map of the Cyprus mouflon mitogenome was generated by means of
OGDraw 1.2 [38]. The geographical distribution of sheep samples analyzed in the present
study is shown in Fig 1.

Phylogenetic analysis of whole genome
In order to carry out phylogenetic analysis in accordance with a clock-like model we used the
concatenated sequences of the 12 protein-coding genes, 14 transfer RNA genes and two ribo-
somal RNA genes, all located on the H-strand. Hereafter, we will refer to these mitochondrial
segments as a unique molecular marker called 28H. The D-loop sequence was analysed as a sin-
gle marker due to its higher nucleotide substitution frequency. Additionally, mutations are not
randomly distributed across the length of the locus, making rate heterogeneity an important
issue in calculating divergence date estimates [39–41].

Fig 1. Sampling plan.World map with enlargement on the Mediterranean basin, indicating the geographical
distribution of samples used in the present study.

doi:10.1371/journal.pone.0144257.g001
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Sequences were aligned using the programme CLUSTALW [42], implemented in the BioE-
dit 7.0.5.2 software package [43]. The genetic variation within the genus Ovis was assessed esti-
mating the number of polymorphic sites (S), number of haplotypes (H), haplotype diversity
(h), and nucleotide diversity (π) using the software package DnaSP 5.10 [44].

MEGA 6.06 [45] was used to choose the nucleotide substitution model. According to the
lowest BIC scores (Bayesian Information Criterion), AICc value (Akaike Information Criterion,
corrected), Maximum Likelihood value (lnL), and the number of parameters, the general time-
reversible (GTR) [46] was selected for the three codon positions of the dataset. Non-uniformity
of evolutionary rates among sites was modeled by using a discrete Gamma distribution (+G)
with 6 rate categories and by assuming that a certain fraction of sites are evolutionarily invari-
able (+I).

Phylogenetic relationships among individuals were investigated by means of Bayesian Infer-
ence (BI) and Maximum Likelihood (ML) analysis using the 28H segment. MrBayes 3.2.4 [47]
was used for BI. In order to search for the optimal evolutionary model combination for each
gene, the 28H region was split up in 28 different segments corresponding to the mitochondrial
genes that compose it. Two independent runs, each consisting of four Metropolis-coupled
reversible-jump Markov chain Monte Carlo chains were performed. A Dirichlet distribution
with quasi-flat priors (1, 2, 1, 1, 2, 1) was assumed for estimating the substitution frequency
parameters. Analyses were carried out for 5 million generations and the trees were sampled
every 10 generations. Convergence of chains was checked by ensuring that the standard devia-
tion of split frequencies reached and stabilized at a value< 0.01 and by verifying the stationar-
ity of the generations/log probability graph [48]. For each run, the first 25% sampled trees were
discarded.

AML tree reconstruction was performed using a GTRmodel by TREEPUZZLE 5.2 [49]. A
priori tests for the detection of a phylogenetic signal were performed using the likelihood map-
ping option and the reliability of each branch was estimated by bootstrapping (10,000 puzzling
steps). Molecular dating was carried out assuming seven different calibration points (CPs)
based on fossil records that provide ages for nodes inside Bovidae [50] (see Table 2 for details).

Estimates of divergence times were obtained using the Bayesian approach implemented in
BEAST 1.7.5 [51].

Sequences were analysed under the GTR+G+Imodel of sequence evolution, with 4 gamma
categories, a Yule process speciation rate, and empirical base frequencies. We assumed a log-
normal relaxed molecular clock with uncorrelated rates [51], setting the priors for multiple cal-
ibration points used in this study (Table 2) as described in Bibi et al. [50]. Four independent
runs were carried out with the following settings: 20,000,000 steps, drawing data to file every
2,000 steps in order to obtain 10,000 records and trees. The output of two independent runs

Table 2. Calibration points used for molecular datings.

Calibrated node/branch Name Age type 95% range (MYA)

Crown Kobus CP-1 Minimum 2.0–3.0

Crown Hippotragini CP-2 Minimum 3.6–6.5

Crown Reduncini CP-3 Minimum 5.1–7.0

Stem Hippotragini CP-4 Minimum 6.4–13.0

Stem Caprini CP-5 Minimum 8.9–13.0

Stem Bovini CP-6 Minimum 10.2–16.0

Crown Bovidae CP-7 Approximate 16.0–20.0

MYA: million years ago.

doi:10.1371/journal.pone.0144257.t002
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was analysed using Tracer 1.5 [52], applying a post-processing burn-in of 10% thus discarding
the first 1,000 records for each run. Analysis of log files indicated for all parameters conver-
gence of independent runs and the combined effective sample size (ESS) was>200. Subse-
quently, a maximum clade credibility (MCC) tree was created by (i) using a logcombiner [51]
to merge tree files from each independent run after removing 10% of initial trees as burn-in
and subsequently resampling of states to obtain a final sample of 9,000 trees, and (ii) using a
tree annotator to create the consensus tree.

Time to the most recent common ancestors (TMRCAs) was also estimated using two other
methods based on the Maximum Likelihood framework. The first one is the RelTime method
implemented in MEGA 6.06 and does not assume any specific lineage rate of evolution [45].
Divergence times for all branching points in the topology were calculated using Maximum
Likelihood based on GTR+G+Imodel, and allowing for all the possible local clocks. 95% confi-
dence intervals around each estimate were computed following the method of Tamura et al.
[42]. With the second method, which is implemented in the APE R-package (R Core Team
2015) [53], TMRCAs was estimated using the Penalised Likelihood and Maximum Likelihood
algorithm developed by Paradis et al. [54]. The algorithm is an improvement of the penalized
likelihood method developed by Sanderson [55] and is available in the function Chronos.
Divergence times were estimated assuming the strict model for substitution rates along the tree
and setting the smoothing parameter to the default value.

Phylogenetic analysis of D-loop region
The phylogenetic analysis of themtDNA control region was performed on a dataset including
35 Ovis sequences (21 from wild and 14 from domestic sheep), 14 of which were obtained in
this study (see Table 1B for details). Sequences were aligned and the genetic variation was
assessed as above reported.

The data matrix, including ten sheep D-loop sequences representing the five main mito-
chondrial haplogroups (two per each HPG), was used to carry out both a Bayesian and Maxi-
mum Likelihood analyses according to methodologies above reported.

Due to the larger number of sequences available for this marker, the presence of a genetic
structure among haplogroups was also assayed by the Bayesian model-based clustering algorithm
implemented in BAPS 5.3 [56]. Clustering was performed using the module for linked molecular
data and applying the codon linkage model, which is appropriate for sequencing data. The analy-
sis was run ten times with a vector of K values = 2 to 22, each with six replicates. Haplotypes were
organized into haplogroups according to the genetic structure evidenced by Bayesian clustering.

A 95% statistical parsimony network analysis was performed using the software package
TCS 1.21 [57], aimed at searching for possible disconnections between groups of individuals,
further inferring the genetic relationships among the haplotypes. Gaps were treated as a fifth
character state.

Statistical parsimony is an alternative method for network construction that joins haplo-
types within a parsimony connection limit, the latter being the maximum number of differ-
ences not due to reversion between haplotypes for which a 95% confidence exists.

The software package Network 4.5.0.1 (www.fluxus-engineering.com) was used to construct
a median-joining network [58] to be superimposed on the sample map in order to infer the
genetic relationships among the haplotypes and analyze the occurrence of discrete geographic
genetic clusters. Transitions and transversions were equally weighted (default option).

The pairwise genetic distances corrected according to the Kimura two-parameter model
(K2P) [59] were estimated between individuals by means of the software MEGA 6.06 [45] with
1,000 bootstrap replicates.
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Results
We determined the complete nucleotide sequence of the mitogenome of the Cyprus mouflon
(GB# KF312238) (Fig 2).

ThemtDNAmolecule of O. g. ophion was 16,620 bp long, very similar in length to what was
found for the domestic sheep (16,616 bp). Analyzing both the H and L strand 13 protein coding
genes, 12S and 16S ribosomal RNA, 22 transfer RNA genes and a D-loop were identified. Loca-
tions of the various features and the molecule gene content are displayed in Fig 2 and summa-
rized in Table 3, together with the inferred start and stop codons as determined by comparison
with the homologous gene sequences of domestic sheep.

The percentage composition in bases of the L-strand is 33.6% A, 25.8% C, 13.1% G, and
27.4% T, in accordance with those obtained for O. aries [60]. As commonly observed in mam-
mal mitogenomes,ND6 and eight tRNA genes are encoded in the L-strand, and all protein-cod-
ing genes have the ATG start codon, except for ND2 and ND3 genes, that begin with ATA. Cyt
B is the only gene that stops with AGA instead of the TAA codon which is incomplete in the
ND2, ND4, COIII (T) and ND3 (TA) genes. The origin of the light strand replication (OL) is
located at the 5,164–5,195 nt region, and has the same sequence as the domestic sheep [60].

ThemtDNA sequence of the Cyprus mouflon matches with those of other members of the
Caprinae sub-family, and features like incomplete stop codons, overlapping coding regions,
and different start codons lie within the range of mammalianmtDNA variation [60–61].

Whole genome (28H): phylogenetic analyses and molecular dating
The complete Cyprus mouflonmtDNA sequence was compared with the homologous
sequences of the five sheepmtDNA haplogroups identified by Meadows et al. [13] (see Table 1
for details).

Overall, 27 sequences representative of bovid species were included into the dataset and the
M.moschiferus sequence was used as outgroup (Fig 3).

Fig 2. Structural organization of Cyprusmouflonmitogenome. Arrows indicate the reading frame
orientation of each strand.

doi:10.1371/journal.pone.0144257.g002
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Among 15 individuals belonging to six species within the Ovis genus, 15 haplotypes, defined
by 1,094 polymorphic sites (S), were found. Overall, high values of total mean haplotype and
nucleotide diversity, were obtained (h = 1 and π = 0.016, respectively). A lower value of

Table 3. Organization of the Cyprusmouflonmitochondrial genome.

Gene Location Size Start codon Stop codon 3’ spacer/overlap

tRNA-Phe 1 68

12S rRNA 69 958

tRNA-Val 1,027 67

16S rRNA 1,094 1,575

tRNA-Leu 2,669 75 AA-base spacer

NADH 1 2,746 957 ATG TAA 1-base overlap

tRNA-Ile 3,702 69 3-base overlap

tRNA-Gln (L) 3,768 72 AT-base spacer

tRNA-Met 3,842 69

NADH 2 3,911 1,042 ATA Taa*

tRNA-Trp 4,953 67 A-base spacer

tRNA-Ala (L) 5,021 69 A-base spacer

tRNA-Asn (L) 5,091 73

OL 5,164 32

tRNA-Cys (L) 5,196 68

tRNA-Tyr (L) 5,264 68 C-base spacer

COX I 5,333 1,545 ATG TAA 3-base overlap

tRNA-Ser (L) 6,875 71 AAC-base spacer

tRNA-Asp 6,951 68 T-base spacer

COX II 7,020 684 ATG TAA AAT-base spacer

tRNA-Lys 7,707 68 T-base spacer

ATP 8 7,776 201 ATG TAA 40-base overlap

ATP 6 7,937 681 ATG TAA 1-base overlap

COX III 8,617 784 ATG Taa*

tRNA-Gly 9,401 69

NADH 3 9,470 347 ATA TAa* T-base spacer

tRNA-Arg 9,818 68

NADH 4L 9,886 297 ATG TAA 7-base overlap

NADH 4 10,176 1,378 ATG Taa*

tRNA-His 11,554 69

tRNA-Ser 11,623 60 A-base spacer

tRNA-Leu 11,684 70

NADH 5 11,754 1,821 ATA TAA 17-base overlap

NADH 6 (L) 13,558 528 ATG TAA

tRNA-Glu (L) 14,086 69 ACTA-base spacer

Cyt B 14,159 1,140 ATG AGA CAA-base spacer

tRNA-Thr 15,302 70 1-base overlap

tRNA-Pro (L) 15,371 66

D-loop 15,436 1,184

In the Gene column (L) indicates a gene encoded on the L-strand.

* Incomplete stop signals.

doi:10.1371/journal.pone.0144257.t003
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nucleotide diversity (π = 0.006) was found among the individuals of the species O. aries. Esti-
mates of genetic diversity for the whole genome are reported in Table 4.

The BI tree analysis identified two main clusters of domestic sheep (I and II in Fig 3) sup-
ported by high posterior probabilities (Prob� 0.99). Cluster I comprised of the sequences of
Cypriot mouflon and sheep HPGs C and E, the latter was included into a well-supported sub-
cluster.

Cluster II included two well-supported main groups, one of them including HPG D, and the
other bothHPGs A and B together with the European mouflon, closely associated toHPG B.
Among the other Ovis species, the most phylogenetically related to Cluster I and II was the
urial.

TheML analysis (tree not shown) was consistent with BI, showing both the same topology
and the same highly supported nodes at the main groups retrieved (for the corresponding boot-
strap values, see Fig 3).

To quantify the divergence among haplogroups, pairwise genetic distances between groups
were calculated under the K2Pmodel (S2 Table).

The rate variation among sites was modeled with a gamma distribution (shape parame-
ter = 0.05). The lowest level of genetic differentiation was observed between HPG C and E
(0.003 ± 0.0005), closely followed byHPG A and B (0.005 ± 0.001). The genetic distance
between O. g. ophion sequences and the other haplogroups range from 0.005 ± 0.001 (with
HPG C and E) to 0.011 ± 0.001 (withHPG B and D).

The divergence times of splitting events within the genus Ovis, resulting from multiple
point calibration (see Table 2 for further details), are reported in Table 5 and Fig 3.

The ancestor of the genus Ovis lived about 2.66MYA. Argali and urial split from domestic
sheep 1.11 and 0.89MYA, respectively.

The two mainmtDNA lineages detected into the domestic sheep radiation (clusters I and II
in Fig 3), started 0.3MYA. The split event between the group HPG D and the groups HPGs A
and B, within cluster II, occurred 0.24MYA.HPGs A and B diverged from each other about

Fig 3. Rooted tree obtained by Bayesian inference for 28H dataset showing two clusters of sheep
haplogroups.Nodal supports are indicated below the nodes (posterior probability for BI / bootstrap values
forML). Molecular dating in million years are indicated above the nodes. Sample codes are listed in Table 1.

doi:10.1371/journal.pone.0144257.g003
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0.17MYA. Results indicated that the divergence between lineages representing HPG B sheep
and European mouflon occurred 21 thousand years ago (KYA).

Within cluster I, the divergence between O. g. ophion (Cyprus mouflon) and Ovis groups
HPGs C and E occurred about 0.17MYA.HPGs C and E diverged from each other about 0.12
MYA. The rise of all current haplogroups was estimated to have occurred around 5–35 KYA.

D-loop region: features and phylogenetic analyses
A total of 14 complete D-loops from two Sardinian and two Chios sheep, two Corsican, three
Cypriot and five Sardinian mouflons were here sequenced (GB# KR011770-82).

All samples from Sardinia, Corsica and Chios islands harboured a 1,179 bp long D-loop
region, except for one indel occurring in a specimen of Corsican mouflon (1,180). Instead, the
three Cypriot mouflons showed a 1,184 bp long D-loop segment, with four copies of a 76 bp
long repeat motif, located within a fragment of 304 bp long ranging from the 15,654 nt to the
15,957 nt, referring to the wholemtDNA domestic sheep sequence (GB# NC_001941) [60].
Repeat units of 76 bp are typical of sheep belonging to theHPGs C and E [12].

As it was already described for O. aries [60], each repeat contains two octamer sequences of
mirror symmetry (TTAATGTA, TACATTAA) which can form stable stem loops. The D-loop

Table 4. Genetic diversity estimates obtained for whole genome (28H) (a) andD-loop (b) datasets.

a) Whole mitogenome (28H) 14,426 bp

Scientific name Common name N S h H π

Ovis ammon Argali 1 0 1 0 0

Ovis aries Domestic sheep 10 229 10 1 0.006

Ovis aries musimon European mouflon 1 0 1 0 0

Ovis canadensis Bighorn 1 0 1 0 0

Ovis gmelini ophion Cyprus mouflon 1 0 1 0 0

Ovis vignei Urial 1 0 1 0 0

TOT 15 1,094 15 1 0.016

b) D-loop 1,160 bp

Scientific name Common name N S h H π

Ovis aries Domestic sheep 10 82 6 0.911 0.029

Ovis aries Chios sheep 2 16 2 1 0.014

Ovis aries Sardinian sheep 2 10 2 1 0.009

TOT 14 99 10 0.956 0.027

Ovis aries musimon European mouflon 2 0 1 0 0

Ovis aries musimon Sardinian mouflon 5 14 4 0.900 0.006

Ovis aries musimon Corsican mouflon 2 6 2 1 0.005

TOT 9 29 7 0.944 0.009

Ovis gmelini ophion Cyprus mouflon 3 7 3 1 0.004

TOT 3 7 3 1 0.004

Ovis gmelini anatolica Anatolian mouflon 6 42 2 0.600 0.023

TOT 6 42 2 0.600 0.023

Ovis ammon Argali wild sheep 1 0 1 0 0

Ovis canadensis Bighorn wild sheep 1 0 1 0 0

Ovis vignei Urial wild sheep 1 0 1 0 0

TOT 35 645 23 0.976 0.138

N: sample sizes; S: number of polymorphic sites; h: number of haplotypes; H: haplotype diversity; π: nucleotide diversity; bp: base pairs.

doi:10.1371/journal.pone.0144257.t004

Ovis gmelinii optionWhole mtDNA andOvis Phylogeny

PLOS ONE | DOI:10.1371/journal.pone.0144257 December 4, 2015 12 / 23



region exhibits the typical structure with three domains: ETAS (extended terminal associated
sequences), central and CSB (conserved sequence blocks). All blocks of conserved sequences
may be identified by comparing them with the respective O. aries consensus sequence. The
CSB1 has been found at position 16,417–16,444 nt, the CSB2 + 3 at position 16,477–16,488 nt,
whereas a termination-associated sequence (TAS-A) was identified at position 16,006–16,020
nt. The marked sequence conservation of both CSBs and TAS in virtually all mammals supports
their hypothesized function [62]. The origin of H-strand replication (OH), and the promoters
for H- and L-strand transcription (HSP, LSP) have also been identified and located at positions
16,398, 16,589 and 16,489 nt respectively.

The complete Cyprus mouflon D-loop sequence was compared with the homologous
sequences of the five sheepmtDNA haplogroups identified by Meadows et al. [13] (see Table 1
for details). Three Anatolian mouflon (O. g. anatolica) sequences, representative of each clade
(haplogroup A and haplotype X) previously described for this species by Demirci et al. [12],
were included into the dataset. The bighorn, the argali and the urial wild sheep sequences were
used as outgroups.

Among 35 individuals belonging to seven species within the genus Ovis, 23 haplotypes,
defined by 645 polymorphic sites (S), were found. Overall high values of total mean haplotype
and nucleotide diversity, were obtained, h = 0.976 and π = 0.138, respectively. The Anatolian
mouflon (O. g. anatolica) showed the lowest average value of haplotype diversity (h = 0.600),
whereas the lowest nucleotide diversity values were found among individuals belonging to the
two species O. a.musimon and O. g. ophion. Estimates of genetic diversity for the whole
genome are reported in Table 4.

BI tree analysis identified two different maternal lineages in the radiation of domestic sheep
(Fig 4).

Results were consistent with clusters (I and II) identified in the 28H BI andML tree analysis
(Fig 3). Accordingly, cluster I grouped HPGs C and E, while cluster II included HPGs A, B and
D. In accordance with Demirci et al. [12], our results showed that cluster I exclusively grouped

Table 5. Molecular dating in million years obtained in the present study for the main splitting events withinOvis genus based seven calibration
points (CP).

BEAST MEGA AV

Median 95% HPD Div.time CI 95%

Ovis 2.19 1.52–2.87 3.12 0.158–6.083 2.655

Argali/Sheep 1.01 0.69–1.37 1.214 0.059–2.369 1.112

Urial/Sheep 0.87 0.58–1.20 0.907 0.043–1.771 0.889

Domestic sheep 0.34 0.24–0.46 0.256 0.011–0.501 0.298

HPG A + HPG B/HPG D 0.26 0.18–0.37 0.21 0.005–0.29 0.235

HPG A/HPG B 0.19 0.11–0.27 0.14 0.002–0.42 0.165

Ovis aries musimon/HPG B 0.02 0.01–0.04 0.021 -0.007–0.050 0.021

Ovis gmelini ophion/HPG C+E 0.17 0.11–0.24 0.172 0.004–0.340 0.171

HPG E/HPG C 0.12 0.07–0.17 0.122 0.000–0.243 0.121

HPG B 0.006 0.007–0.015 0.005 -0.006–0.016 0.006

HPG E 0.03 0.01–0.06 0.033 -0.006–0.071 0.032

HPG C 0.03 0.01–0.05 0.027 -0.006–0.061 0.029

HPG D 0.01 0.001–0.02 0 0–0 0.005

HPG A 0.02 0.01–0.04 0.02 -0.007–0.047 0.020

AV: average value.

doi:10.1371/journal.pone.0144257.t005
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individuals with 76 bp long repeat units, while cluster II grouped individuals with 75 bp long
repeat units only.

Within cluster I, two groups were observed. One including theHPG E, and the second
including the HPG C together with some Anatolian and all Cypriot mouflons. In the latter, a
well-supported genetic structure was evident between HPG C and the mouflons belonging to
Anatolia and Cyprus. A further sub-structure was also evident between Anatolian and Cypriot
specimens.

The Sardinian, Corsican and European mouflons grouped together within cluster II in a sin-
gle group along with the domestic sheep from Sardinia and Chios islands and the HPG B
sequences. Within the same cluster, the remaining Anatolian mouflons are included in a sec-
ond group along withHPG A sequences. TheML analysis (tree not shown) was consistent with
BI, showing both the same topology and the same highly supported nodes at the main groups
retrieved (for the corresponding bootstrap values, see Fig 4). Consistently with the BI andML
tree, Bayesian assignment analysis evidenced the occurrence of four genetic groups hereafter
named as G 1 (yellow in Fig 4 and S1 Fig), G 2 (red in Fig 4 and S1 Fig), G 3 (blue in Fig 4 and
S1 Fig), G 4 (green in Fig 4 and S1 Fig) (S3 Table; Fig 4 and S1 Fig).

Cluster G 1 included all mouflons from Cyprus, three Anatolian mouflons along with
sequences belonging to sheep HPGs C and E. Cluster G 2 includes the remaining Anatolian
mouflons (three individuals) along with sheep HPG A sequences. Cluster G 3 grouped all the
mouflons from Sardinia, Corsica, and continental Europe, along with all the domestic sheep
from Sardinia and Chios and sequences belonging to sheep HPG B. Cluster G 4 included indi-
viduals representative ofHPG D exclusively.

The statistical parsimony network analysis retrieved seven disconnected clusters within the
Ovis genus. Three main clusters (α, β, γ in Fig 4) encompassed 78% of the individuals, while
four additional minor clusters correspond to one or two individuals representative of the
domestic sheep HPGs C, E and D and of one Anatolian mouflon individual. Cluster α was
exclusive of Anatolian and Cypriot mouflons. Cluster β encompassed domestic sheep hap-
logroup A individuals and some Anatolian mouflons. Cluster γ corresponded to the Bayesian
genetic group G 3 above reported.

In accordance with the statistical parsimony network analysis, the median-joining network
highlighted the occurrence of three main groups of haplotypes likely sharing a central common

Fig 4. Rooted tree obtained by Bayesian inference forD-loop region and the corresponding 95%
statistical parsimony networks. Bayesian groups inferred by the Bayesian assignment test are also
represented through coloured boxes (G 1 in yellow, G 2 in blue, G 3 in red, G 4 in green). Nodal supports are
indicated above the nodes (posterior probability for BI / bootstrap values forML). Groups retrieved using the
95% statistical parsimony networks are shown on the right. Each black dot in the networks represents a point
mutation. Haplotypes in the network are coloured according to the groups of individuals analyzed (see
Table 1 for details). Sample codes are given in Table 1.

doi:10.1371/journal.pone.0144257.g004
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ancestor (CCA) (Fig 5). A group (N1) exclusively encompassed haplotypes from western
Europe and Aegean Sea (Chios) along with individuals representative of the domestic sheep
HPG B. It corresponds to the Bayesian genetic group G 3 and the statistical parsimony network
cluster γ, respectively, and diverged for 18 point mutations from the CCA. A further group
(N2) encompassed domestic sheep haplogroup A individuals and some Anatolian mouflons. It
corresponds to the Bayesian genetic group G 2 and diverged for 16 point mutations from the
CCA. The last group (N3) encompassed all Cypriot and some Anatolian mouflons along with
individuals representative of the domestic sheep HPGs C, E and D. It corresponds to the cluster
I inML and BI tree analysis and diverged for 6 point mutations from the CCA. Notably, this
group diverged from the CCA for a number of point mutations (22) comparable with the other
groups if considering only Cypriot and Anatolian mouflons along withHPGs C and E. Pairwise
genetic distances between groups were calculated using the K2P correction model (S4 Table).
The lowest level of genetic differentiation was observed between HPG C and E (0.018 ± 0.004),
closely followed byHPG A and B (0.0345 ± 0.006). The genetic distance between Cypriot and
Anatolian mouflons carrying the haplotype X was 0.013 ± 0.003. Into cluster II ofML and BI
tree analysis, the average variability between the group composed of Cypriot and Anatolian
mouflons carrying the haplotype X and the sheep HPG C and E was 0.0235 ± 0.004 and
0.0195 ± 0.0045, respectively. This value is higher than the distance between HPG C and E.

Discussion
The evolution and taxonomy of the genus Ovis is still a debated topic, and the relationship
between the extant wild sheep and domestic sheep remains unsolved [63]. In the last decades,

Fig 5. A median-joining network superimposed on the sample map. It highlights the geographic
distribution of D-loop haplotypes. N1, N2 and N3 indicate the three main groups evidenced in this analysis.
CCA indicate the likely common ancestor. The capital letters (A, B, C, D and E) inside white spots on the
network correspond to the five sheep haplogroups used as references. Small red plots on the nodes,
correspond to median vectors representing hypothetic connecting sequences, calculated with a maximum
parsimony method. The long branches leading to isolated haplotypes were shortened and indicated with ‘‘\\”.
The numbers of mutations between haplotypes that are greater than one are reported on the network
branches. Sample codes are given in Table 1.

doi:10.1371/journal.pone.0144257.g005
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different wild sheep have been proposed as potential ancestors of domestic sheep, such as the
urial, argali and European mouflon. However, based on analyses performed by means of
mtDNA sequences and endogenous retrovirus [10, 16] none of them can be conclusively con-
firmed as being the living ancestor of sheep. The Asian mouflon (O. gmelini) is currently con-
sidered as the next closest extant species to domestic sheep [5–7,12].

Cyprus mouflon mitogenome
In this study the first Asian mouflon mitogenome from a Cypriot individual (O. g. ophion) was
provided and compared with those from other Ovis species. ThemtDNAmain structural fea-
tures (see [60–61] for details) did not differ between the Cyprus mouflon and other Caprinae
species.

As far as control region variation is concerned, the Cyprus mouflons here analyzed were
included in a cluster closely related to the Anatolian individuals carrying the haplotype X [12].
The only mitochondrial haplotype previously reported for O. g. ophion (HPG B—[29]) was not
detected in this study. However, this may be due to the reduced number of Cypriot sequences
analysed here.

Phylogeography patterns of distribution of sheep haplogroups
Phylogenetic analysis, carried out on the 28H and D-loop regions, evidenced the occurrence of
two main phyletic lines emerging from a common ancestor as it was evidenced byML and BI
tree analysis. Domesticated sheep are included in both clusters thus suggesting the occurrence
of a high genetic differentiation among domestic sheep mitochondrial lineages as possible con-
sequence of the domestication of several phylogenetically related ancestors.

The first cluster spread exclusively in the Near East (cluster I in Figs 3 and 4), while the sec-
ond one spread in the Near East and Europe (cluster II in Figs 3 and 4). Within the Near East
cluster, the lowest level of genetic differentiation among haplogroups was detected between
HPGs C and E, as inferred by genetic distances estimation.

On the basis of D-loop ML and BI analyses, individuals from Anatolia (mouflons) were
included in a cluster (cluster II in Fig 4) grouping sheep HPGs A, B and D. Such findings were
partially consistent with those provided by Demirci et al. [12]. With the exception of the three
Cyprus mouflons, all the D-loop sequences obtained in the present study belonged toHPG B.
The dominance ofHPG B among European ovine breeds can be explained by the combined
action of founder effects and genetic drift, occurred during the migration of the Neolithic farm-
ers into Europe. Otherwise, assuming that the introduction of sheep into Europe may have fol-
lowed two subsequent waves [16], theHPG B dominance could be explained by a massive
presence of this lineage among the sheep populations that spread during the second wave.

Analyses performed on the D-loop by statistical parsimony network also indicated the pres-
ence of an additional well-supported genetic sub-cluster within theML and BI cluster I (Fig 4)
exclusively grouping the two species of Asian mouflons (O. g. ophion and O. g. anatolica).
Genetic distances estimation supports the occurrence of a new haplogroup (HPG X). Indeed,
as showed in the S4 Table, the distance between HPGs C and E (0.018 ± 0.004) is lower than
those between HPG X and HPG C (0.0235 ± 0.004) orHPG X and HPG E (0.0195 ± 0.0045).
Interestingly, the median-joining network analysis (Fig 5) suggested that sheep HPG D could
represent the closest haplotype to the past common ancestor for sheep and mouflons.

Results obtained for the D-loop region (1,270 bp-long) were not always consistent with
those obtained from the whole mitochondrial genome regions (28H) (14,426 bp-long). Such a
discrepancy may be related to several reasons. Indeed, the 28H segment is more than ten times
longer than the D-loop region, which occupies less than 7% of themtDNA genome [64–66].
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Furthermore, analysis inferred from the D-loop alone can be problematic given that this locus
mutates rapidly and it is subjected to saturation due to excessive homoplasy [41, 67]. In addi-
tion, several equally likely gene trees can often be inferred from D-loop sequences, particularly
when large numbers of samples are analyzed [68–69].

Molecular dating
Based on the results obtained in this study, the group including domestic sheep and Cyprus
mouflon diverged from urial around 0.89MYA in accordance with previous analysis of retro-
types and morphological traits which dated this event around 0.8MYA [16]. Furthermore,
domestic sheep along with the Cyprus mouflon and urial diverged from argali around 1.11
MYA.

The rise of the extant sheep haplogroups is estimated to have occurred at around 5–35 KYA,
which was about 25 thousand years before the first domestication event, as assumed based on
fossil records and archaeozoological evidence [2] (Table 5). Divergence times estimated in this
study encompassed the first domestication events suggested by either fossil records and archae-
ozoological evidence. However, our results do not rule out the chance that first domestication
might have occurred earlier than 10 KYA.

Our estimates of the earliest radiation of the domestic sheep common ancestor (298 KYA)
(see Fig 3 for details) are not consistent with Meadows et al. [13], who placed this event around
920 KYA. Such a discrepancy might be related to the different molecular marker used by these
authors who obtained their estimates on the concatenated sequences of the 12 protein coding
genes of the H strand (12H), which cover a smaller portion of the whole mitogenome if com-
pared with the 28H segment used in the present study.

The coalescence estimates provided by Meadows et al. [13] might also be affected by the use
of a single Cyt B gene-based calibration point not directly referred to a fossil reference. The use
of a smaller molecular marker combined with the use of only one calibration point may affect
the estimation of divergence times. However, we should underline that such a discrepancy
might as well reflect the different method used to estimate this event. In fact, estimates obtained
using APE, assuming a relaxed clock with correlated rates, were similar to those obtained by
Meadows et al. [13] (0.89 versus 0.92MYA). Noteworthy, the method used in the present study
for estimating divergence times in APE is partly based on the Penalized Likelihood (data not
shown). Based on our molecular dating, the five sheep haplogroups here retrieved originated
between 5–35 KYA. This is consistent with a sympatric or allopatric differentiation event likely
occurring in the Near East among wild sheep populations during the Pleistocene. In such a
context, the current sheep haplogroups would not be the result of multiple, independent
domestication events but rather represent the remnants of an ancient high genetic variability
which spread to Asia and Europe during the Neolithic human migrations [30]. Indeed, it is
estimated that goat and sheep domestication events occurred around 10.5–11 KYA in regions
encompassing northern Zagros (North of Iraq) and south eastern Anatolia (South-East Tur-
key) [1, 2, 5, 25–26, 70]. The coalescence estimates here provided for the rise of the Cypriot
mouflon (190 KYA) set this event considerably earlier than the origin of sheep haplogroups
(10–30 KYA).

The island of Cyprus is considered one of the first areas where domesticated sheep were
introduced [16, 25], thus offering a valuable insight into the evolution of its unique endemic
mouflon. At the present time, the most probable hypothesis is that mouflons were brought to
Cyprus by humans about 12 KYA [12], following an independent evolutionary history, most
likely facilitated by the absence of potential predators/competitors as supported by fossil rec-
ords [71–72].

Ovis gmelinii optionWhole mtDNA andOvis Phylogeny

PLOS ONE | DOI:10.1371/journal.pone.0144257 December 4, 2015 17 / 23



However, an alternative hypothesis that large mammals, including mouflons, have seem-
ingly arrived on Cyprus before the arrival of humans is also possible. During the period of min-
imum sea levels through Pleistocene glacial maxima, the sea dropped to at least 125 m below
the current level, and the Cyprus shoreline expanded towards the mainland by several kilo-
metres (see Fig 1 from [25] for more details). It has also been reported that between 25 and 18
KYA there were small mounts above sea level, forming three islands between Cyprus and the
mainland that might have been used by animals as a stepping stone pathway for an average
period of 10 KYA [25]. Cyprus Pleistocene fossil sites consist almost exclusively of pygmy hip-
popotamus (Phanouirios minutus) and pygmy elephant (Elephas cypriotes) [71–72]. The lack
of sheep fossils could be consistent with the absence of mouflons and other wild sheep in the
island during this period [71]. However, it is worth noting that the sheep’s preference for
mountainous habitats and the relative unfavourable conditions for fossil preservation [73]
might have prevented the finding of fossil records.

Even considering such an alternative hypothesis relating to the early presence of mouflon in
Cyprus, it appears more likely that the high genetic distance observed between the Cypriot
mouflon and other sheep haplogroups is due to a limited crossbreeding with domestic sheep.
Indeed, contrary to what happened in the other main Mediterranean islands of Corsica and
Sardinia, sheep farming has never been crucial to the economy of Cyprus, where for a long
period the “fat tailed” sheep was the only variety of domestic sheep on the island until the
introduction of new breeds from Israel and Europe in the 1970s [74–76].

Fat-tail breeds are an important class of sheep breeds characterized by specific phenotypic
traits, that are first documented as being present 5,000 YA [77–78]. These breeds are well
adapted to arid regions thanks to the fat deposition stored in the tail that represent an energy
reserve during times of drought and feed shortage. The fat-tail sheep are commonly found in a
wide geographical range with subtropical to semi-arid climate, especially including the Middle
East and North Africa [78]. The fact that the fat-tail breeds are now prevalent in the Fertile
Crescent, where sheep were originally domesticated, while thin-tail sheep breeds are predomi-
nant in peripheral areas [78], and that the wild ancestor of sheep is thin-tail suggests that the
first domesticated sheep had a thin-tail and the fat-tail was developed later [77].

These findings suggest that the Cypriot mouflon, which never experienced modern selection
strategies, can be considered as a relic of the first wild domesticated populations [12, 16] likely
representing one of the closest descendants of the Palaeolithic Anatolian wild sheep. As a con-
sequence of its geographic isolation, it presumably returned early to a feral or semi-feral state
before the secondary event of domestication occurred in South-West Asia, involving in a sec-
ond time Europe, Africa and the rest of Asia [16]. Some Cypriot primitive sheep might have
survived the migrations of the secondary domesticated breeds from South-West Asia in areas
without predators or by occupying sites less involved in trading contacts [16]. Future phylogeo-
graphic analyses on a larger number of Cypriot mouflons might be useful in depicting the pop-
ulation dynamics which affected the origin of the species on the island to better clarify the
relationships between O. g. ophion and other ovine breeds, such as the Cypriot fat-tail sheep,
thus providing useful insights into the management of the Cypriot distinct genetic conserva-
tion unit.

The threefold molecular dating methodologies used in this study enabled us to provide a
well-supported estimate of the time of coalescence of the current ovine haplogroups setting
their origin between 5–35 KYA. These lineages probably extended their range towards Europe
only at around the 10-11th millennium BP, when human populations moved to the continent
from the Near East [79–80].

In conclusion, the Cyprus mouflon wholemtDNA sequence here provided improves the
panel described by Meadows et al. [13] thus identifying a potential new sheep haplogroup
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which includes the Cypriot and Anatolian mouflons. However, since the wholemtDNA
sequence of the Anatolian mouflon is not available, this hypothesis was inferred by the analysis
performed on the D-loop sequencing data only and requires to be confirmed by means of
deeper analyses on the whole mitogenome. Additionally, further analysis on a larger number of
samples from Near East and Europe might shed light on the occurrence of new haplogroups
never described before, resulting in a more complete overview of the phylogenetic relationships
among ovine breeds from different geographic areas.

Finally, the molecular data provided in this study may also play an important role in func-
tional genomics or functional pathways related to energy metabolism. Indeed,mtDNA have an
important role in bioenergy production and thermogenesis and thus in climate adaptation [81–
82]. Genomic research can provide additional knowledge on thermal impact effects on the energy
metabolism. In such a context, the analysis of the Cyprus mouflon whole mitogenome sequence
could be useful to identify mutations potentially related to mitochondrial heat production [82],
improving the knowledge on the adaptation to a subtropical to semi arid climate similar to the
climate of Cyprus. These new genetic tools will enable researchers to review the history of the
species and the geographic distribution of haplogroups in the light of environmental change
adaptation that occurred during evolution, and to increase the efficiency of breed traits selection
related to the reproductive ability in semi-arid areas [83] in order to improve food security.

Supporting Information
S1 Fig. Bayesian clustering analysis for D-loop region. Estimated genetic structure in the
dataset analyzed as inferred using the Bayesian model-based clustering analysis. Each individ-
ual is represented by a thin vertical line colored according to its belonging to one of the four
clusters retrieved. Black lines separate individuals from different sampling sites. Sample codes
are listed in Table 1.
(TIF)

S1 Table. List of the primers used to carry out PCR and sequencing reactions to obtain the
first Cyprus mouflonmtDNA sequence. bp: base pairs; Ta: annealing temperature. In the For-
ward and Reverse columns, numbers in parenthesis refer to the position of the 3’ end L-strand.
(PDF)

S2 Table. Estimates of evolutionary divergence between whole genome (28H) sequences.
Genetic distances are shown below the diagonal and standard deviations above the diagonal.
Analyses were conducted using the K2Pmodel. Sample codes are listed in Table 1.
(PDF)

S3 Table. Frequencies distributions of the four Bayesian genetic groups found in the pres-
ent study for D-loop region. N: sample size; %: relative frequency of distribution. Sample
codes are listed in Table 1.
(PDF)

S4 Table. Estimates of evolutionary divergence between D-loop sequences. The genetic dis-
tances are shown below the diagonal and standard deviations above the diagonal. Analyses
were conducted using the K2Pmodel. Sample codes are listed in Table 1.
(PDF)
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