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Abstract
The task of gene regulatory network reconstruction from high-throughput data is receiving

increasing attention in recent years. As a consequence, many inference methods for solving

this task have been proposed in the literature. It has been recently observed, however, that

no single inference method performs optimally across all datasets. It has also been shown

that the integration of predictions from multiple inference methods is more robust and

shows high performance across diverse datasets. Inspired by this research, in this paper,

we propose a machine learning solution which learns to combine predictions from multiple

inference methods. While this approach adds additional complexity to the inference pro-

cess, we expect it would also carry substantial benefits. These would come from the auto-

matic adaptation to patterns on the outputs of individual inference methods, so that it is

possible to identify regulatory interactions more reliably when these patterns occur. This

article demonstrates the benefits (in terms of accuracy of the reconstructed networks) of the

proposed method, which exploits an iterative, semi-supervised ensemble-based algorithm.

The algorithm learns to combine the interactions predicted by many different inference

methods in the multi-view learning setting. The empirical evaluation of the proposed algo-

rithm on a prokaryotic model organism (E. coli) and on a eukaryotic model organism (S. cer-

evisiae) clearly shows improved performance over the state of the art methods. The results

indicate that gene regulatory network reconstruction for the real datasets is more difficult for

S. cerevisiae than for E. coli. The software, all the datasets used in the experiments and all

the results are available for download at the following link: http://figshare.com/articles/

Semi_supervised_Multi_View_Learning_for_Gene_Network_Reconstruction/1604827.

Introduction
In the last decade, the developments in systems biology have resulted in an improved under-
standing of the working mechanisms in an organism, which is described as a complex and
dynamical system with multiple levels of regulation. Such levels of regulation are typically rep-
resented via biological networks that model the complex interactions which occur among
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different components in a cell. In particular, regulations modeled by such biological networks
include the control of transcription into mRNA (messenger RNA) and the translation into pro-
tein macromolecules, which are the main building blocks of the elementary unit of life [1, 2].
Such biological networks are typically referred to as Gene-Regulatory Networks (GRNs). In a
GRN, nodes represent molecular entities, such as transcription factors (TFs), proteins and
metabolites, whereas edges represent interactions, such as protein-protein and protein-DNA
interactions.

Identifying the structure of GRNs helps in the biological understanding of disease mecha-
nisms and raises possibilities for better medical/clinical care by improving diagnostics, prog-
nostics and treatment [3]. It comprises the identification of pairwise interactions between
molecules (nodes in a network) that participate in the same biological processes or that per-
form together specific biological functions that shape a system’s behavior and function [4]. The
structure of the network can be elucidated experimentally by using ChIP-chip or ChIP-
sequencing [5], bacterial one-hybrid system [6] or protein-binding microarrays [7], which are
technically and often financially demanding [1]. Alternatively, measuring the dynamic
response of transcription and translation within a cell can provide robust information about
the GRN under consideration. The information about the GRN comes from microarray experi-
ments perturbating and stressing genes that produce highly resolved time-series and steady-
state measurements of transcript levels. The availability of such information offers a way to
infer the topology of the network via data-driven approaches.

A comprehensive review of the literature shows the existence of a wide range of data-driven
approaches for inferring GRNs (this task is also referred to as “reverse-engineering” or simply
“network reconstruction”). In particular, there are some review articles covering this field with
well-structured overviews of the general ideas behind the inference process [8–11]. Existing
methods differ from each other significantly and the ideas behind each method of GRN recon-
struction generally do not belong to a single theory, but rather come from distinct classes of
statistical/mathematical methods and information/machine learning theory. The different net-
work reconstruction methods are evaluated and compared within the DREAM (Dialogue for
Reverse Engineering Assessments and Methods) series of challenges, which has a significant
impact on the development of this field. In this series, researchers present their newly devel-
oped approaches for inferring GRNs and compare them to existing ones on a set of benchmark
problems of network reconstruction. In a follow-up study [12], the authors empirically prove
that combining, by averaging ranks, prediction scores of all the presented methods (“Wisdom
of crowds”) can result in a more accurate network reconstruction. A more sophisticated solu-
tion for combining the output of several methods has been proposed by Hase et al. [13]. In
such work, the predictions of each method are ranked according to their scores and the “com-
bined rank” of each interaction is computed by taking the k-th highest rank among all the con-
sidered methods, where k is an input parameter.

Following this main stream of research, our study focuses on a machine learning-based
combination of methods’ outcomes in order to further improve the identification of relation-
ships among the nodes in a reconstructed network. In particular, the solution we propose is to
build a (possibly stronger) predictive model by considering as input features the scores
returned by several algorithms for gene network reconstruction (henceforth “base methods”),
resorting to a solution which is borrowed from studies in meta-learning [14]. However, the
application of existing meta-learning approaches is not trivial since the task at hand demands
tailored solutions taking into account several specific issues: i) Considering as many as possible
base methods to increase the final prediction accuracy can lead to the construction of a highly
redundant set of input features. This phenomenon is particularly evident when the considered
base methods (or groups of them) are based on the same main principle (e.g., correlation
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between expressions of genes). ii) The set of known regulatory interactions to exploit for build-
ing the predictive model consists of very few examples of interactions (or even none). More-
over, their labels are generally only positive (i.e., existing regulatory interactions), whereas no
examples labeled as negative (i.e., non-existing regulatory interactions) are usually available.
iii) The number of interactions for which the label is known is strongly imbalanced with respect
to the number of interactions for which the label is unknown. Classical machine learning tools
only exploit labeled examples when building a predictive model, disregarding information con-
veyed by unlabeled examples.

Concerning i), the most straightforward solution is the application of feature selection algo-
rithms or the adoption of classifiers which inherently take into account the possible redun-
dancy among the features. However, in this case, despite the redundancy, the number of
features is limited (by the number of considered base methods) and we want to exploit all the
features, even if they are highly correlated with the others. To this aim, we consider the multi-
view learning framework, a variant of the co-training framework [15]. The basic idea is to learn
classifiers on different views (typically, different feature sets) of the same dataset and iteratively
use predictions of one classifier as training instances for the other classifiers.

According to Blum and Mitchell [15], each view should be sufficient to build a model and
features belonging to different views should be as independent as possible. Note that even a sin-
gle feature is sufficient to build a predictive model, since it is in fact the output score of a base
method. We build the views by partitioning the feature set into subsets, such that correlated
features fall in the same view and uncorrelated features fall in different views. In this way, each
classification model focuses on the slight differences among correlated features, while the com-
bination of the models built from different views captures more global underlying patterns.

Concerning ii), the multi-view learning framework is able to exploit unlabeled examples to
boost classification iteratively. This is especially important when few labeled examples are
available. Moreover, the classifier we consider is able to build a classification model from only
positive examples and from unlabeled examples, thus solving the problem of unavailability of
negative examples.

Concerning iii), the imbalance between labeled and unlabeled examples is attacked by
resorting to an ensemble-based approach: the same approach is used to build a different model
for each different view. This means that, for each view, instead of learning a single classifier, we
learn an ensemble of classifiers.

Tackling the issues i)-iii) resolves many problematic aspects of the network reconstruction
task, including the selection of a single network reconstruction method from the plethora of
existing ones, as well as dealing with the small quantity and the low quality of (experimentally
verified) data.

The method we propose, as we describe in detail in Section Results and Discussion, has been
evaluated on synthetically generated data and on the datasets used in the Dream5 challenge
[12]. In the first case, we combine the output of several methods which are based on the rele-
vance networks approach [16]. This approach consists of two main steps: the construction of a
similarity (or distance) matrix for the set of considered genes (defined according to some simi-
larity/distance measure) and application of a scoring scheme over the constructed matrix, i.e., a
function which “corrects” the similarity/distance scores, according to marginal probabilities
and joint probabilities computed over the different genes. Moreover, we apply the time shifting
technique [17] in order to infer the direction of the regulations from the similarity matrix. The
measures considered for the construction of the similarity (or distance) matrix can be catego-
rized into three different groups, based on the nature of the input data structure: measures on
vectors, random variables, and symbolic dynamics. The Dream5 datasets have been addressed
by a more heterogeneous set of network inference methods, which are based on regression,
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mutual information, correlation, Bayesian networks, meta/combined approaches and other
(hybrid) approaches (see S1 Text for details).

Methods
The problem of network reconstruction (also called link prediction in machine learning) is a
long-standing challenge in modern information science, and many approaches to address it
have been proposed in the machine learning literature in recent years. They can be based on
the following different methods: relevance networks, clustering, Bayesian Networks, differen-
tial equations, Markov chains, probabilistic models, random walk processes and maximum
likelihood. Details about these approaches are given by Lu and Zhou [18].

Although widely used, the above methods do not simultaneously consider most of the
aspects that have been recognized as important in the study of complex networks. In particular,
they do not simultaneously exploit the properties of the nodes, the properties of the links and
the topological characteristics of the networks, such as the possible hierarchical organization
[19], the community structure [20] and the homophily principle [21]. In this paper, we follow
the basic idea of methods which combine the outcomes of more than one method, i.e., ensem-
ble/community approaches [12]. In particular, we propose to learn to combine predictions pro-
vided by different link prediction algorithms that possibly (and individually) exploit different
aspects, so that they are simultaneously considered. The framework we resort to is that of
stacked generalization [14], where the outputs of different prediction algorithms are considered
as features for a further run of a learning algorithm.

To the best of our knowledge, there are few papers [22, 23] that address the problem of
learning to combine the predictions of links for network reconstruction by means of the
stacked generalization approach. Whalen and Pandey [22] suggest to cluster classifiers with
similar predictions and then learn a meta-classifier for each cluster, which predicts the score
associated to each link. Final scores are obtained as the average of the scores returned by each
meta-classifier. The main difficulty in the application of this approach in our context is that it
does not consider the problems of learning from positive examples only and the imbalance of
known/unknown labels (see issues ii) and iii) in Section Introduction). Pio et al [23] suggest to
use semi-supervised learning to predict links in a bipartite graph. However, this work does not
exploit the concept of multi-view learning for boosting the predictions for unknown cases and,
thus, it does not distinguish among the different contributions of similar base methods (see
issue i) in the Introduction).

With respect to Pio et al. [23], our work has some additional differences. First, we apply an
iterative solution (similar to that adopted in co-training) that is able to exploit unlabeled exam-
ples to boost classification. This is in-line with the semi-supervised learning framework and is
especially important when few labeled examples are available. Second, Pio et al. [23] aim at dis-
covering microRNA-mRNA interaction networks and not gene regulatory networks. In this case,
some (or few) positive examples of links are available. 3) While Pio et al. [23], extract links on bi-
partite undirected graphs and require as input positive examples of interactions, the method pro-
posed here operates on simple directed graphs and can work without positive example of links.

In this paper, we take inspiration from these two papers in order to deal with issues i)-iii),
arising for the specific task at hand. This section describes in detail the proposed method.

Problem definition
Before describing our approach for learning to combine the predictions of several algorithms
for network reconstruction, we introduce some notions and formally define the task we intend
to solve. Let:
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• E be the set of genes, which represent the nodes of the network;

• x = he0, e00i 2 (E × E) be a (possible) interaction between the genes e0 and e00, which represents
a link in the network;

• pk(x) be the prediction score for the interaction x, returned by the k-th base method, 1� k�
s;

• p(x) = [p1(x), p2(x), . . ., ps(x)] be the vector of prediction scores associated with the interac-
tion x;

• l(x) returns 1 if the existence of the interaction x is known and 0 if it is unknown (regardless
of whether x exists or not);

• L = {x 2 (E × E)|l(x) = 1} be the initial set of labeled interactions;

• U = (E × E)\L be the set of (initially) unlabeled interactions;

• f(x) be an ideal (target) function which returns 1 if x is an existing interaction (either known
or unknown), and 0 otherwise.

The task we intend to solve is then defined as follows:
Given: a set of training examples {hp(x), l(x)i}x. Find: a function f 0 : Rs ! R which takes as

input a vector of prediction scores p(x) and returns the probability that the interaction x exists.
We have that f 0ðpðxÞÞ � Pðf ðxÞ ¼ 1Þ or, in other terms, f0() approximates the probability dis-
tribution over the values of the ideal function f().

A direct consequence of the definition of the functions f(x) and l(x) is:

Pðf ðxÞ ¼ 1jlðxÞ ¼ 1Þ ¼ 1 ð1Þ

that is, only known existing interactions are labeled.
Our approach, called GENERE (which stands for GEne NEtwork REconstruction) works in

three phases. In the first phase, we use the above definition to assign labels to examples in the
first phase of our approach. In this phase, we also identify multiple views. As stated in the
Introduction, we exploit a solution which is mainly based on the multi-view learning frame-
work. In particular, we construct V views by partitioning the set of s base methods on the basis
of their predicted scores, i.e., the values in {p(x)}x. The goal is to have the most similar base
methods grouped in the same subset and the most dissimilar base methods in different subsets.
In this way, the v-th view represents a new training set with the prediction scores obtained by
the base methods falling into the v-th subset.

Once the views are built, the algorithm iteratively learns a classification model from each
view (phase 2). The reliable predictions obtained by each classification model in one iteration
are used, in the next iteration, to extend or correct the training set of the other views. The reli-
ability of each prediction is estimated according to the average scores obtained over the differ-
ent views (see Section Phase 3—Combining the output of views for details). The iterative
process stops when the maximum number of iterations,max_iter, is reached. The final output
scores (phase 3) are obtained by averaging the scores obtained by the V classifiers at the last
iteration.

Fig 1 shows a high-level description of the GENERE workflow, where qv(x) represents the
vector of prediction scores obtained by the base methods in the v-th subset. Each of these
phases is described in the following subsections.
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Phase 1—Assigning labels and identifying multiple views
Once the vector of prediction scores p(x) is initialized and l(x) is defined for each interaction x,
the algorithm constructs V different views of the same dataset. Each view consists of the whole
set of examples and one subset of the original set of features, where each feature represents the
prediction score returned by one base method.

According to the original co-training setting [15] and works on multi-view learning [24],
such views should be as independent as possible. For this reason, we apply a clustering algo-
rithm to the features in order to obtain a partitioning which minimizes the inter-cluster simi-
larity and, thus, the correlation between features belonging to different views. Although almost
all clustering algorithms can, in principle, be applied to this task, we use two well-know

Fig 1. General workflow of GENERE approach that learns to combine the predictions of different GRN
reconstruction methods.

doi:10.1371/journal.pone.0144031.g001
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algorithms: Principal Component Analysis (PCA) and K-means. While the first approach is
tailored to partition features (and not examples), the second was appropriately modified in
order to partition features. In PCA, after V principal components are identified, each feature is
associated with the component with the highest contribution in the linear combination. In K-
means, which is a centroid-based clustering algorithm, examples (features, in our case) are iter-
atively assigned to the most similar centroid and centroids are recomputed on the basis of the
last assignments. Each feature is associated to a cluster based on the assignment in the last iter-
ation of the algorithm.

In both cases, each feature is associated with one of the V clusters. Formally, given the vec-
tors of prediction scores {p(x)}x, we apply PCA or K-means to identify a partition of features
into V subsets. Each example is then represented by V (disjoint) vectors of prediction scores
q1(x), q2(x), . . ., qV(x), each of which corresponds to a subset of features and contributes to
build a different view (see Fig 1).

At the beginning of the process, each example of interaction x in the v-th view is represented
by the vector of prediction scores qv(x) and is associated with the label l(x). During the process
shown in Fig 1, the set of labeled interactions is iteratively extended with new examples consid-
ered as positive. If L = {x 2 (E × E)|l(x) = 1} is the initial set of labeled interactions, we indicate
as Li

v � L the set of labeled interactions for the v-th view, at the i-th iteration. More formally,
Li
v ¼ fx 2 ðE � EÞjlivðxÞ ¼ 1g, where livðxÞ ¼ 1 if the interaction x is labeled at the iteration i

for the view v, 0 otherwise. Note that each Li
v is always a super-set of (or equal to) L: although

decisions taken at an iteration can be retracted in the subsequent iterations, examples consid-
ered as positive in the first iteration, i.e., belonging to L, are always considered as positive exam-
ples (see Section Phase 3—Combining the output of views below for details). Accordingly, we
indicate as Ui

v � U the set of unlabeled interactions at the iteration i for the view v. Formally,
Ui

v ¼ ðE � EÞ n Li
v.

At the first iteration, L ¼ L0
1 ¼ . . . ¼ L0

V and U ¼ U0
1 ¼ . . . ¼ U0

V . For the subsequent itera-
tions (i> 0), both Li

v and U
i
v can contain different examples, since they are iteratively updated

according to the output obtained from the other views (see Section Phase 3—Combining the
output of views).

Phase 2—Building a classifier for each view
As it can be observed in Fig 1, we build a different classifier from each view, by exploiting infor-
mation conveyed by both known existing interactions (i.e., positively labeled examples) and
unknown interactions (i.e., unlabeled examples).

The goal of the v-th classifier at the i-th iteration is to identify a function f ivðqvðxÞÞ which
approximates the probability that f(x) = 1, that is, f ivðqvðxÞÞ � Pðf ðxÞ ¼ 1Þ. As suggested by
Elkan and Noto [25], f iv ðqvðxÞÞ can be identified by exploiting Eq (1) and the Bayes’ rule as fol-
lows:

PðlivðxÞ ¼ 1Þ ¼ Pðf ðxÞ ¼ 1 ^ livðxÞ ¼ 1Þ ¼
¼ PðlivðxÞ ¼ 1jf ðxÞ ¼ 1Þ � Pðf ðxÞ ¼ 1Þ ð2Þ

Therefore:

f iv ðqvðxÞÞ � Pðf ðxÞ ¼ 1Þ ¼ PðlivðxÞ ¼ 1Þ
PðlivðxÞ ¼ 1jf ðxÞ ¼ 1Þ ð3Þ

At the i-th iteration, we can assume that examples for which we know the label, provided by
the v-th classifier, are correctly classified as positive. This assumption can be made since at the
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next iteration we can retract decisions (as discussed in Section Phase 3—Combining the output
of views).

In Eq (3), both the numerator and the denominator can be estimated by means of a so-
called “non-traditional” classifier, whose definition is explained in the following.

Estimating PðlivðxÞ ¼ 1Þ and PðlivðxÞ ¼ 1jfðxÞ ¼ 1Þ. In order to estimate PðlivðxÞ ¼ 1Þ
and PðlivðxÞ ¼ 1jf ðxÞ ¼ 1Þ, we build a so-called “non-traditional” classifier for each view v at
the iteration i, whose output is the probability that an example is labeled, i.e., PðlivðxÞ ¼ 1Þ.
Note that any probabilistic classifier can be adopted for this task. In this work, we adopt an
SVM-based classifier, i.e., LibLinear [26] with Platt Scaling, mainly for the following reasons: 1)
it has a (relatively) good computational efficiency, especially in the prediction phase, which is
based on a very limited number of examples (support vectors); 2) it is robust to noise and to
feature redundancy [27]; 3) its effectiveness (with Platt scaling) has already been proved in the
semi-supervised setting [25]. However, every other algorithm that exhibits similar properties
can be plugged into our framework.

Formally, the task solved by each non-traditional classifier v at iteration i is defined as fol-
lows: Given the set of training examples fhqvðxÞ; livðxÞigx, the task is to find a probability func-
tion givðqvðxÞÞ which returns the probability that the interaction x is labeled, i.e.
givðqvðxÞÞ � PðlivðxÞ ¼ 1Þ. This means that givðqvðxÞÞ can be used to estimate both the numera-
tor and the denominator of Eq (3) as follows:

f iv ðqiðxÞÞ �
givðqvðxÞÞ

1

jLi
vj
X

x02Liv
givðqvðx0ÞÞ

ð4Þ

In the denominator of Eq (4), we assume that all the labeled examples are taken completely
randomly from all the positive examples. Formally:

PðlivðxÞ ¼ 1jf ðxÞ ¼ 1Þ ¼ Pðlivð�Þ ¼ 1jf ð�Þ ¼ 1Þ ð5Þ

In other words, PðlivðxÞ ¼ 1jf ðxÞ ¼ 1Þ is independent of the specific interaction x. Hereaf-
ter, we adopt the notation Pðlð�Þ ¼ 1jf ð�Þ ¼ 1Þ to represent the fact that the probability of a
positive interaction is labeled is independent of the specific interaction x. This assumption is in
line with typical assumptions made by methods that learn from only positive examples [25]
and allows us to exploit givðqvðxÞÞ also for the computation of the denominator of Eq (4). In
particular, we estimate PðlivðxÞ ¼ 1jf ðxÞ ¼ 1Þ as the average of givðqiðxÞÞ over all the positive
examples at the i-th iteration and at the v-th view:

PðlivðxÞ ¼ 1jf ðxÞ ¼ 1Þ ¼ Pðlivð�Þ ¼ 1jf ð�Þ ¼ 1Þ �
P

x02Liv g
i
vðqvðx0ÞÞ

jLi
vj

ð6Þ

Differently from Elkan and Noto [25], we also have to deal with the problem of imbalanced
class distributions. This issue is considered in the next subsection.

Ensemble Learning of gi
vð�Þ. In this subsection, we describe the approach we adopt to

deal with the imbalance between the number of labeled and unlabeled examples. This
approach, following Pio et al. [23], exploits a sampling procedure which is similar to that used
in bootstrap estimation [28] and bagging [29].

For each view v at a given iteration i, we learn a set ofW non-traditional classifiers
fgivjðqvðxÞÞgj¼1;2;...;W whose outputs are combined to obtain givðqvðxÞÞ. Each classifier is built

from the set of examples Li
v [ Ui

vj, that is, from all the labeled examples Li
v and from the set Ui

vj,

with j = 1, 2, . . .,W. Ui
vj is a subset of the unlabeled examples Ui

v, obtained by a random
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sampling, with replacement, of n examples from Ui
v. The proportion of unlabeled examples in

each Ui
vj is

n
jUi

v j
, where n is a user-defined parameter. TheW samples fUi

vjgj are neither mutually

exclusive nor exhaustive, i.e., they do not partition the set Ui
v. Differently from data partition-

ing, which is affected by only one parameterW (the number of subsets), the data sampling pro-
cedure used in this work is controlled by two parameters: n and γ. The first parameter
represents the number of unlabeled examples in each sample and can be chosen reasonably on
the basis of the number of labeled examples, so that the imbalance is mitigated. The second
parameter represents the percentage of unlabeled examples we intend to take into account (i.e.,
to cover) and influences the number of samplesW (i.e., the higher the percentage of examples
to cover, the higher the number of samplesW). This parameter is necessary since the sampling
with replacement would require an infinite number of samples to guarantee that each example
is selected at least once.

Once theW classifiers are learned, each function givjðqvðxÞÞ is applied to obtain an estimate

of PðlivðxÞ ¼ 1Þ for all the examples in Ui
vj. Since the same unlabeled example can belong to

more than one sample, we average the outputs of the classifiers as follows:

givðqvðxÞÞ ¼ average
fj j Ui

vj
contains xg

givjðqvðxÞÞ ð7Þ

While ensemble learning approaches have been already used for GNR and, in particular, for
stability selection [30], there is a clear difference between these approaches and GENERE, both
in terms of algorithm and goals. In terms of algorithm, our method clusters features and builds
an ensemble for each cluster. Differently, stability selection runs feature selection algorithms
many times, resampling examples and variables at each run, and computes the frequency with
which each variable is selected across the runs. In terms of goals of the use of ensemble tech-
niques, GENERE uses them to overcome the imbalance between positive and unlabelled exam-
ples and exploit separately the different information coming from different features. In
contrast, stability selection aims to identify the best features.

Phase 3—Combining the output of views
Once all the functions f ivðqvðxÞÞ for the iteration i are computed (see Eq (4)), we combine their
outputs in order to update the set of (positively) labeled examples for the next iteration (i.e.,
the (i + 1)-th iteration). In the original co-training framework, the best examples to be chosen
as training examples for the next iteration are those with the highest reliability in the classifica-
tion. In our case, since we only learn from positive examples of interactions, we simply choose
those for which we have, on average over the different views, the highest scores. In particular,
to update the set of labeled examples of the view v at the iteration i + 1, we average the outputs
f iz ðqzðxÞÞ over all the views z 6¼ v, for each interaction x:

f icombv
ðxÞ ¼ 1

W � 1

X

z¼1;2;...W; z 6¼v

f iz ðqzðxÞÞ ð8Þ

Formally, the set of labeled examples of the view v at the iteration i + 1, i.e. Liþ1
v , is built by tak-

ing a given percentage δ of the top-ranked examples according to f icombv
ðxÞ. Note that examples

belonging to Li
v do not necessarily belong to L

iþ1
v . This means that decisions taken at an itera-

tion can be retracted in subsequent iterations. However, examples considered as positive in the
first iteration, i.e., belonging to L, are always considered as positive examples, since we assume
that they are experimentally verified.
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Additional Remarks
Note that the algorithm works on samples of links (not nodes) and reconstructs the network at
each iteration. This implies that the algorithm is able to work with different types of underlying
networks. In particular, if the underlying type of the network is scale-free (as several authors
claim is the case of eukaryotic and prokaryotic organisms [31–33]), the algorithm starts from
hubs (since they have higher probability to be selected during sampling) and considers addi-
tional nodes during the next iterations. If the underlying type of the network is based on the
Erdös-Rényi random graph model, the algorithm would, at the first iteration, identify subnet-
works on the basis of the generated samples. In this case, if all the links have the same score,
each link (and each node) has the same probability to be selected. Starting from the ones
selected in the first iteration, the algorithm considers additional candidate links at subsequent
iterations, on the basis of the new samples generated.

Results and Discussion
In this section, we evaluate the effectiveness of our approach which has been implemented in
the system GENERE (GEne NEtwork REconstruction). With this aim, we perform gene net-
work inference and compare the obtained gene networks to a given gold standard.

The main goal of our evaluation is to prove the effectiveness of the proposed approach. We
compare it with the following state-of-the-art combination strategies:

• Borda, proposed by Marbach et al. in [12], which averages the ranks of the outputs of the
considered base methods.

• TopKNet (TopK), which takes, for each interaction, the k-th highest rank among the differ-
ent base methods [13]. In this evaluation, we only consider the results obtained by varying k
in the interval [1, 20]. In fact, according to results reported by Hase et al. [13], the best results
are obtained in this interval and there is no deterioration before k = 20, whereas there is a
clear deterioration for k> 20.

Moreover, in order to assess the effectiveness of the iterative multi-view learning framework,
we also report a comparison with an adapted version of the algorithm proposed by Pio et al.
[23] where, instead of generating bipartite undirected graphs, we generate directed graphs.
This algorithm is actually a simplified version of GENERE, where one single view is built (i.e.,
V = 1) and one single iteration is performed (i.e.,max_iter = 1). We denote this algorithm 1VI
(One View, One Iteration).

Data description and generation
Below we describe in details the datasets and briefly mention the base methods. The evaluation
of our approach has been performed on i) the collection of synthetic datasets used by Hempel
et al. [17], which are generated with the tool SynTReN (Synthetic Transcriptional Regulatory
Networks) [34], and on ii) the datasets used in the DREAM5 challenge [12]. More details on
the base methods are given in S1 Text.

The SynTReN datasets. were obtained from gold-standard gene networks, where genes
are represented with their expression data. The datasets were generated by the tool SynTReN
on the basis of the well-defined regulatory networks of the organisms E. coli and S. cerevisiae
(henceforth Yeast) [17]. In particular, SynTReN: 1) selects connected sub-networks of the
input networks and 2) generates gene expression data which best fit the underlying network
structure. While interactions of the selected sub-networks are considered as gold standard for
our evaluation, the generated expression data are used as input features for the considered base
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methods and, thus, are indirectly exploited by our approach. Different base methods have been
applied to the SynTReN and DREAM5 datasets.

We consider sub-networks of 100, 150 and 200 genes, characterized by 121, 202 and 303
existing links with an average node degree of 2.42, 2.46 and 3.03, respectively. This is necessary
in order to evaluate the sensitivity of the algorithms to the size of the networks. Note that, in
order to guarantee consistency between sub-networks and expression data, SynTReN generates
different expression data for each selected sub-network.

In the generation of expression data, SynTReN exploits Michaelis-Menten and Hill kinetics so
that the generated expression data are very similar to real microarray mRNAmeasurements [34].
For both E. coli and Yeast, the expression data are represented by 10 biological conditions. In
order to evaluate the robustness to noise, we exploit SynTReN’s capability to introduce noise in
expression data. Such noise is additive, lognormally-distributed and consists of stochastic varia-
tions that are unrelated to the applied experimental procedures. In our experiments, we consid-
ered three levels of noise: 0.0 (deterministic—without noise), 0.1 and 0.5. These values represent
the σ parameter of the lognormal distribution	 logXð0; sÞ according to which the noise is gen-
erated. For each configuration, 6 technical replicates have been generated and the expression data
associated with each gene is obtained as the average over the replicates. This is necessary to cope
with the non-deterministic nature of the SynTReN data generation algorithm.

The considered base methods follow the relevance network approach [16], which, as stated
in the introduction, consists in the construction of a similarity matrix and in the application of
a scoring scheme. A detailed description of each similarity/distance measure and scoring
scheme, as well as the advantages and disadvantages of all the combinations of similarity/dis-
tance measures and scoring schemes can be found in S1 Text (cf. also Hempel et al. [17]). In
our experiments, all the possible combinations of all the 23 measures and 6 scoring schemes
mentioned in S1 Text are considered, resulting in 138 combinations (14 have been discarded
since they returned no interactions—see S1 Fig), each of which is considered as a base method.
This is different from Hempel et al. [17], where only 50 combinations are considered.

The DREAM5 datasets. were obtained from the DREAM5 challenge set of networks. In
particular, we considered Network1, Network3 and Network4 (Network2 was not considered
for the computation of scores during the challenge). Network1 is a synthetic dataset (D5InSilico
in our experiment). Network3 and Network4 are based on Affymetrix gene expression data of
the organisms E.coli (D5EColi in our experiment) and S. cerevisiae (D5Yeast in our experi-
ment), taken from the Gene Expression Omnibus (GEO) database [35], collected under a wide
range of biological conditions.

The microarrays have been uniformly normalized using Robust Multichip Averaging
(RMA) [36]. These data have been processed by the DREAM5 participants’methods in order
to generate scores. The methods are grouped in six groups, based on the principle and method-
ology of scores derivation [12]. Further details can be found in S1 Table. From the DREAM5
challenge, we also obtained the networks that we use as gold standard (only for evaluation pur-
poses). Further details are given by Marbach et al. [12].

These datesets are larger than the SynTReN datasets. In particular, D5InSilico contains 1643
genes, D5EColi contains 4511 genes and D5Yeast contains 5950 genes. All these datasets are
processed by considering the scores obtained by the 35 base methods used in the competition
(see S1 Text).

Experimental setting
In the experiments, the value of γ has been chosen in order to cover the maximum number of
unlabeled examples, without resulting in an extremely high number of samples. Pio et al. [23]
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investigated the effect of γ. Although the goal of that study is different and the method is non-
iterative and not based on the multi-view learning approach, the results concerning the perfor-
mance for different values of γ are still applicable to our case. Since the best results are obtained
with the highest possible value of γ, we set γ = 0.99. The value ofmax_iter has been set to a rela-
tively high value (30 for the SynTReN datasets and 5 for the DREAM5 datasets) in order to
have enough information to empirically evaluate the best number of iterations.

As for n (the number of unlabeled examples sampled for each classifier), δ (percentage of
top-ranked examples to be considered as positive examples in the next iteration) and V (num-
ber of views), we performed a preliminary experiment to evaluate their effect on the results.

We can observe that n ¼ jLi
vj guarantees, for each view and for each iteration, a perfect bal-

ance between labeled and unlabeled examples. Setting n > jLi
vj 
 2 can potentially lead to prob-

lems in the probability estimations. Moreover, considering more than 4-5 views generally leads
to a decrease in accuracy, probably due to high fragmentation of the available features. Finally,
considering δ> 1.0% generally leads to including noisy examples in the subsequent iterations.
For these reasons, we performed the experiments with the following sets of values:
n 2 fjLi

vj; jLi
vj 
 2g, δ 2 {0.5%, 1.0%} and V 2 {1, 2, 3, 4, 5}.

In order to guarantee a fair comparison with Borda and TopK, which are unsupervised, we
forced our system and 1VI to work in the worst case scenario, that is, in the scenario in which
there is no confirmed interaction at the beginning of the learning process. In order to provide
our algorithm some information to start with, at the very beginning we label as positive the
first “best” interactions. In particular, L is initialized with the top δ examples, ranked according
to their average score.

In our analysis, we performed experiments with both clustering algorithms, that is, PCA
and K-means. The inferred gene networks are evaluated in terms of the Area Under the ROC
Curve (AUROC) [37] and the Area Under the Precision-Recall Curve (AUPRC) [38], with
respect to the gold standard. These measures allow us to evaluate the predictions of the studied
approaches independently of the threshold (on the output score) used to consider an interac-
tion as positive.

Results
In sum, we use 21 datasets for network reconstruction. Namely, for each of the two organisms
(E. coli, Yeast), there are 9 SynTReN datasets (3 sizes: 100, 150 and 200 genes, 3 noise levels: 0,
0.1, and 0.5), making for 18 datasets. In addition, we have the three DREAM5 datasets.

For each of the SynTReN datasets, we first run the 138 base (relevance network) methods to
obtain the appropriate scores. For the DREAM5 datasets, we use the scores produced by the 35
base methods as provided by the competition organizers. The dataset and base method details
are provided in S1 Text.

Starting from the scores produced by the base methods, our method GENERE performs
clustering of the base methods into different numbers of clusters (1, 2, 3, 4, 5) to identify the
appropriate views (groups of base methods), for each dataset separately. The PCA and K-
means clustering algorithms are used for this purpose. The identified views for the DREAM5
datasets are given in Figs 2 and 3, and for a representative sample of SynTReN datasets (with-
out noise) in the figures in S1 Fig.

After the appropriate clusters (sets of views) have been identified, the iterative semi-super-
vised part of the GENERE approach is applied, producing combined scores at each iteration.
GENERE is run for up to 30 iterations for the SynTReN datasets and for up to 5 iterations for
the DREAM5 datasets. AUROC and AUPRC values were calculated from the combined scores
produced at each iteration (0-30 and 0-5, respectively) and are given in S1 Table. Note that a
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separate run is performed for each clustering (identified by PCA or K-means, containing 1, 2,
3, 4, or 5 views/clusters), i.e., for a total of 10 clusterings for each dataset.

Two different values of the δ parameter are considered in GENERE, leading to 20 rows of
results for each dataset in the table in S1 Table. Each row in the table corresponds to a combi-
nation of a dataset, a clustering and a δ value. The rows for the DREAM5 datasets have 6 col-
umns of AUROC/AUPRC values for the different numbers of iterations (0-5) and the rows for
the SynTReN datasets 31 columns (0 to 30 iterations).

Fig 2. The views obtained on the DREAM5 dataset by clustering using PCA.

doi:10.1371/journal.pone.0144031.g002

Fig 3. The views obtained on the DREAM5 dataset by clustering using K-means.

doi:10.1371/journal.pone.0144031.g003
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The results in S1 Table are obtained by using the setting n ¼ jLi
vj. An additional analysis has

been performed in order to understand the effect of n, where we also consider both n ¼ jLi
vj

and n ¼ 2 
 jLi
vj. GENERE is run for 5 iterations and the results are given in the same format

as in S1 Table. The results obtained for the two values of n are compared by using the Wilcoxon
signed-rank test. In terms of AUPRC there is no clear difference between the two, while in
terms of AUROC, the results with n ¼ jLi

vj are better than results with n ¼ 2 
 jLi
vj. This was

somehow expected, since keeping the balance between labeled and unlabeled examples of links
helps the algorithm to better discriminate between them.

For GENERE, we summarize the distribution of AUROC/AUPRC values across the differ-
ent numbers of iterations. The first five columns in each dataset row corresponding to GEN-
ERE results give the min, 1st quartile, median, 3rd quartile and the maximum AUROC/
AUPRC values, respectively. These are succintly depicted via the boxplots in Figs 4–10 and the
figures given in S2 Fig.

We compare the results of GENERE with those of three competing methods: Borda, TopK
and 1VI. The latter is identical to GENERE with 1 view and one iteration and its results are not
listed separately. To obtain the results of the other two competing methods, we first combine
the scores provided by the base methods by using Borda, yielding one entry for each dataset
given in one column. We then repeat the same exercises using TopK, varying K from 1 to 20
and record the results for each K in 20 different columns: These are also summarized via box-
plots and the appropriate additional five columns are included in S1 Table.

The comparison between GENERE and its competitors is depicted in the boxplots in Figs
4–10 and the figures given in S2 Fig, as well as in Tables 1–6. Tables 1–4 give the results of the
Wilcoxon signed rank test comparing the performance in terms of AUROC and AUPRC,
respectively. Tables 5 and 6 give the average percentage of performance improvement of GEN-
ERE as compared to its competitors, for performance measured as AUROC and AUPRC,
respectively.

Analysis of the results
We start by inspecting the boxplots in Figs 4–10 and the figures given in S2 Fig. The first obser-
vation we can make is that PCA and K-means lead to similar AUROC and AUPRC results.
This confirms that the prformance of our algorithm is generally independent of the clustering
algorithm adopted in the generation of the views. However, in some cases (see, for example,
D5Ecoli), K-means produces slightly better results. This can be explained by the fact that PCA,
in its original formulation, is used for soft clustering and not for hard clustering (i.e., generating
a partition) that we use it for in our work. On the basis of this observation, in the remainder of
our analysis, we mainly focus on the results obtained with views generated by K-means.

Figs 4–10 provide insight into how GENERE compares to its competitors in terms of
AUROC and AUPRC. By analyzing these figures, we can draw several conclusions. First, the
best values are generally obtained when the number of views is 3, 4 or 5. This means that values
of V 2 {3, 4, 5} lead to better groups of base methods that allow us to distinguish better among
their properties. This result is in line with Marbach et al. [12], where the authors identified four
clusters of base methods. While for the SynTReN datasets the base methods we consider are
not the same as those of Marbach et al. [12], the two sets of methods are based on the same
main principles.

In S1 Fig, we present the base method clusters identified by PCA and K-means for some of
the SynTReN datasets and all the DREAM5 datasets. For the SynTReN datasets the application
of PCA does not identify significant differences among the scoring schemes (except for
MRNET, which shows a slightly different behavior). As expected, different measures behave
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differently and our approach recognizes such differences in behavior: Measures that follow the
same principles are grouped together. This is true especially for measures operating on vectors
and measures based on equal width and equal frequency discretization. In contrast, K-means
tends to cluster the base methods more along the scoring schemes than along the different
types of measures. For the DREAM5 datasets, PCA seems to better group methods that follow
the same principles (see Figs 2 and 3). Despite this difference between the two clustering algo-
rithms we use for the construction of the views, both clustering methods lead to good predic-
tions, confirming that both are valid and that their output is profitably exploited by GENERE.

Second, by comparing the AUROC and AUPRC values obtained for D5inSilico, D5Ecoli
and D5Yeast, we note that gene network reconstruction from the D5Yeast dataset produces the
worst results (this is true not only for GENERE but also for its competitors). This is possibly
due to the base methods used: fundamental assumption of expression-based network inference
algorithms is that mRNA levels of regulators and their targets show some degree of mutual

Fig 4. AUROC and AUPRC graphs for the SynTReN EColi dataset with noise level 0.0. The three columns of graphs represent results obtained with
different numbers of genes in the dataset (100, 150 and 200, from left to right). Each graph represents box plots for (from left to right) Borda, TopK, 1VI with δ
= 0.005, GENERE with δ = 0.005 and V 2 {1, 2, 3, 4, 5}, 1VI with δ = 0.01, GENERE with δ = 0.01 and V 2 {1, 2, 3, 4, 5}. The views are obtained with K-
means. The boxplots for GENERE depict the distribution of AUROC/AUPRC values obtained by varying the number of iterations in [1, 30]. The boxplots for
TopK depict the distribution of AUROC/AUPRC obtained by varying the value of k in [1, 20].

doi:10.1371/journal.pone.0144031.g004
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dependency. As investigated in Marbach et al. (see Supplementary Notes of [12], Figure S8), in
both the D5inSilico and D5Ecoli, mutual dependencies between expression profiles of tran-
scription factors and their known target genes exceed the dependencies observed between non-
interacting gene pairs (both in terms of Pearson’s correlation coefficient and mutual informa-
tion). In D5Yeast (S. cerevisiae), the two dependency distributions are almost identical, sug-
gesting that it is much more difficult to detect transcription factor-gene interactions based on
dependencies derived from this compendium of gene expression data used in the DREAM5
network inference challenge.

Third, concerning the sensitivity of the GENERE method to the number of iterations, in Fig
11 (resp., in Fig 12), we report a summary of the average AUROC (resp., AUPRC) and the
number of wins, i.e., the number of cases for which the considered configuration shows the
best AUROC (resp., AUPRC), obtained by varying the number of iterations for each

Fig 5. AUROC and AUPRC graphs for the SynTReN EColi dataset with noise level 0.1. The three columns of graphs represent results obtained with
different numbers of genes in the dataset (100, 150 and 200, from left to right). Each graph represents box plots for (from left to right) Borda, TopK, 1VI with δ
= 0.005, GENERE with δ = 0.005 and V 2 {1, 2, 3, 4, 5}, 1VI with δ = 0.01, GENERE with δ = 0.01 and V 2 {1, 2, 3, 4, 5}. The views are obtained with K-
means. The boxplots for GENERE depict the distribution of AUROC/AUPRC values obtained by varying the number of iterations in [1, 30]. The boxplots for
TopK depict the distribution of AUROC/AUPRC obtained by varying the value of k in [1, 20].

doi:10.1371/journal.pone.0144031.g005
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considered dataset. For the SynTReN datasets, the best number of iterations is 2-3 for E. coli
and 1-2 for Yeast, whereas it is 1-2 for all the DREAM5 datasets.

This means that the algorithm converges fast to its best performance with the best number
of iterations for each dataset clearly visible from the number of wins. Moreover, the average
AUROC and AUPRC generally do not deteriorate when the number of iterations increases
beyond the best choice, although the additional iterations do not lead to further improvements.

Fourth, as expected, by increasing the level of noise in the SynTReN datasets, we notice that
both the AUROC and AUPRC values decrease. A closer analysis of the results (see Tables 5
and 6) reveals that the gain with respect to Borda and TopK slightly decreases when the level of
noise increases, although it remains positive in most cases. However, when the noise becomes
very high (i.e., 0.5) our algorithm starts to consider as “reliable” also noisy information, which
can be propagated in the subsequent iterations. This is due to the experimental setting and, in

Fig 6. AUROC and AUPRC graphs for the SynTReN EColi dataset with noise level 0.5. The three columns of graphs represent results obtained with
different numbers of genes in the dataset (100, 150 and 200, from left to right). Each graph represents box plots for (from left to right) Borda, TopK, 1VI with δ
= 0.005, GENERE with δ = 0.005 and V 2 {1, 2, 3, 4, 5}, 1VI with δ = 0.01, GENERE with δ = 0.01 and V 2 {1, 2, 3, 4, 5}. The views are obtained with K-
means. The boxplots for GENERE depict the distribution of AUROC/AUPRC values obtained by varying the number of iterations in [1, 30]. The boxplots for
TopK depict the distribution of AUROC/AUPRC obtained by varying the value of k in [1, 20].

doi:10.1371/journal.pone.0144031.g006
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particular, to the initialization of L. Obviously, we can also use a more informative way for this
initialization but, as clarified before, we do not want to give an advantage to our method with
respect to its competitors. This problem is also true in 1VI, which uses the same initialization
of L we use. Indeed, GENERE seems to be more robust to noise than 1VI which does not
exploit the iterative multi-view learning approach and is, thus, not able to correct the initial
decisions on the basis of different “viewpoints”.

As regards the size of the target network, we can notice that when we use PCA for the con-
struction of the views (see Table 5) increasing the number of nodes generally leads to an
increase in the advantage of our approach over the competitors. This means that our algorithm
is able to better exploit the information conveyed by the higher number of nodes and interac-
tions in the network. In the case of K-means (see Table 6), the drastic improvements of predic-
tive accuracy over the competitors show less consistent patterns across target networks size.

Fig 7. AUROC and AUPRC graphs for the SynTReN Yeast dataset with noise level 0.0. The three columns of graphs represent results obtained with
different numbers of genes in the dataset (100, 150 and 200, from left to right). Each graph represents box plots for (from left to right) Borda, TopK, 1VI with δ
= 0.005, GENERE with δ = 0.005 and V 2 {1, 2, 3, 4, 5}, 1VI with δ = 0.01, GENERE with δ = 0.01 and V 2 {1, 2, 3, 4, 5}. The views are obtained with K-
means. The boxplots for GENERE depict the distribution of AUROC/AUPRC values obtained by varying the number of iterations in [1, 30]. The boxplots for
TopK depict the distribution of AUROC/AUPRC obtained by varying the value of k in [1, 20].

doi:10.1371/journal.pone.0144031.g007
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Furthermore, we applied the Wilcoxon signed rank test with the False Discovery Rate
(FDR) correction for multiple tests proposed by Benjamini and Hochberg [39]. Looking at the
results in Tables 1–4, we can observe that GENERE significantly outperforms the competitors
in terms of median AUROC and AUPRC values. A closer analysis of the p-values confirms that
the best number of views are generally 3, 4 and 5. Moreover, the fact that GENERE significantly
outperforms 1VI (this is evident when the number of views is 5) confirms the advantage of the
multi-view learning framework, which can fully exploit the differences between the base meth-
ods falling in the same view (i.e., between base methods with similar behavior).

Finally, the results do not show significant changes for different values of δ (the percentage
of examples considered as positive at each iteration). However, including only more reliable
values at each iteration (δ = 0.5%) leads to better results (see Tables 3 and 4, lines Borda and
TopK). Using a lower value of δ is thus advisable. For 1VI, whose results also depend on δ,

Fig 8. AUROC and AUPRC graphs for the SynTReN Yeast dataset with noise level 0.1. The three columns of graphs represent results obtained with
different numbers of genes in the dataset (100, 150 and 200, from left to right). Each graph represents box plots for (from left to right) Borda, TopK, 1VI with δ
= 0.005, GENERE with δ = 0.005 and V 2 {1, 2, 3, 4, 5}, 1VI with δ = 0.01, GENERE with δ = 0.01 and V 2 {1, 2, 3, 4, 5}. The views are obtained with K-
means. The boxplots for GENERE depict the distribution of AUROC/AUPRC values obtained by varying the number of iterations in [1, 30]. The boxplots for
TopK depict the distribution of AUROC/AUPRC obtained by varying the value of k in [1, 20].

doi:10.1371/journal.pone.0144031.g008
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there is no clear and consistent difference in performance for the different values of δ across
the different number of views.

Conclusion
In this work, we address the problem of gene regulatory network reconstruction. The solution
we propose combines the scores returned by several algorithms for predicting interactions
among genes. In contrast to existing approaches, which use very simple combination strategies,
we propose a machine learning solution that learns to combine the predictions. The major
advantages of our approach are as follows.

First, we use the multi-view learning approach that allows the algorithm to exploit (even
small) differences among similar base methods. Second, the views are automatically identified
by the system by applying a clustering algorithm. Third, the proposed approach is able to

Fig 9. AUROC and AUPRC graphs for the SynTReN Yeast dataset with noise level 0.5. The three columns of graphs represent results obtained with
different numbers of genes in the dataset (100, 150 and 200, from left to right). Each graph represents box plots for (from left to right) Borda, TopK, 1VI with δ
= 0.005, GENERE with δ = 0.005 and V 2 {1, 2, 3, 4, 5}, 1VI with δ = 0.01, GENERE with δ = 0.01 and V 2 {1, 2, 3, 4, 5}. The views are obtained with PCA.
The boxplots for GENERE depict the distribution of AUROC/AUPRC values obtained by varying the number of iterations in [1, 30]. The boxplots for TopK
depict the distribution of AUROC/AUPRC obtained by varying the value of k in [1, 20].

doi:10.1371/journal.pone.0144031.g009
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Fig 10. AUROC and AUPRC graphs for the DREAM5 datasets. The three columns of graphs represent results obtained on D5InSilico, D5EColi and
D5Yeast, from left to right. Each graph represents box plots for (from left to right) Borda, TopK, 1VI with δ = 0.005, GENERE with δ = 0.005 and V 2 {1, 2, 3, 4,
5}, 1VI with δ = 0.01, GENERE with δ = 0.01 and V 2 {1, 2, 3, 4, 5}. The views are obtained with K-means. The boxplots for GENERE depict the distribution of
AUROC/AUPRC values obtained by varying the number of iterations in [1, 5]. The boxplots for TopK depict the distribution of AUROC/AUPRC obtained by
varying the value of k in [1, 20].

doi:10.1371/journal.pone.0144031.g010

Table 1. Adjusted p-values of theWilcoxon signed rank test performed to compare GENEREwith Borda, TopK and 1VI in terms of AUROC. Statisti-
cally significant values (<0.05) are shown in bold. Italic values indicates that the competitor outperforms GENERE. p-values are computed by considering the
median value over the results obtained with different values of the number of iterations for GENERE, and over the results obtained with different values of k
for TopK. Views are obtained with PCA.

GENERE vs δ 1 View 2 Views 3 Views 4 Views 5 Views

Borda 0.5% 0.00015 0.00013 0.00010 0.00009 0.00009

1.0% 0.00015 0.00009 0.00009 0.00009 0.00009

TopK 0.5% 0.00097 0.00142 0.00012 0.00009 0.00009

1.0% 0.00719 0.00037 0.00010 0.00009 0.00009

1VI 0.5% 0.48511 0.01598 0.00079 0.00079 0.00049

1.0% 0.31773 0.00213 0.00053 0.00104 0.00045

doi:10.1371/journal.pone.0144031.t001
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Table 2. Adjusted p-values of theWilcoxon signed rank test performed to compare GENEREwith Borda, TopK and 1VI in terms of AUPRC. Statisti-
cally significant values (<0.05) are shown in bold. Italic values indicates that the competitor outperforms GENERE. p-values are computed by considering the
median value over the results obtained with different values of the number of iterations for GENERE, and over the results obtained with different values of k
for TopK. Views are obtained with PCA.

GENERE vs δ 1 View 2 Views 3 Views 4 Views 5 Views

Borda 0.5% 0.00048 0.00048 0.00048 0.00048 0.00048

1.0% 0.00052 0.00051 0.00048 0.00052 0.00052

TopK 0.5% 0.00052 0.00111 0.00048 0.00048 0.00048

1.0% 0.00055 0.00048 0.00048 0.00048 0.00048

1VI 0.5% 0.13240 0.24896 0.03503 0.04408 0.04570

1.0% 0.14953 0.02419 0.02130 0.04408 0.05102

doi:10.1371/journal.pone.0144031.t002

Table 3. Adjusted p-values of theWilcoxon signed rank test performed to compare GENEREwith Borda, TopK and 1VI in terms of AUROC. Statisti-
cally significant values (<0.05) are shown in bold. Italic values indicates that the competitor outperforms GENERE. p-values are computed by considering the
median value over the results obtained with different values of the number of iterations for GENERE, and over the results obtained with different values of k
for TopK. Views are obtained with K-means.

GENERE vs δ 1 View 2 Views 3 Views 4 Views 5 Views

Borda 0.5% 0.00019 0.00025 0.00017 0.00017 0.00017

1.0% 0.00020 0.00032 0.00017 0.00017 0.00017

TopK 0.5% 0.00075 0.00330 0.00030 0.00017 0.00017

1.0% 0.00350 0.02129 0.00034 0.00018 0.00017

1VI 0.5% 0.13085 0.18772 0.05697 0.00415 0.00103

1.0% 0.09432 0.18772 0.02129 0.00125 0.00042

doi:10.1371/journal.pone.0144031.t003

Table 4. Adjusted p-values of theWilcoxon signed rank test performed to compare GENEREwith Borda, TopK and 1VI in terms of AUPRC. Statisti-
cally significant values (<0.05) are shown in bold. Italic values indicates that the competitor outperforms GENERE. p-values are computed by considering the
median value over the results obtained with different values of the number of iterations for GENERE, and over the results obtained with different values of k
for TopK. Views are obtained with K-means.

GENERE vs δ 1 View 2 Views 3 Views 4 Views 5 Views

Borda 0.5% 0.00053 0.00084 0.00053 0.00047 0.00047

1.0% 0.00070 0.00070 0.00053 0.00047 0.00047

TopK 0.5% 0.00047 0.00557 0.00115 0.00047 0.00045

1.0% 0.00055 0.00971 0.00277 0.00047 0.00045

1VI 0.5% 0.12785 0.19567 0.49307 0.48143 0.13829

1.0% 0.02865 0.35568 0.27662 0.11073 0.02534

doi:10.1371/journal.pone.0144031.t004
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Table 5. Average percentage of improvement in terms of AUROC between GENERE (PCA) and the considered competitors (Borda, TopK and 1VI).
The results are obtained on the SynTReN datasets and are first grouped by dataset, number of genes and level of noise, then averaged across the different
values of δ, the number of views V, and the number of iterations.

GENERE vs Noise 100 150 200 Average

Borda E.coli 0.0 18.44% 38.25% 46.08% 34.26%

0.1 28.60% 42.63% 47.71% 39.64%

0.5 2.13% 20.71% 47.10% 23.31%

Yeast 0.0 26.93% 47.26% 66.83% 47.01%

0.1 28.26% 37.58% 63.24% 43.02%

0.5 0.58% 30.25% 37.13% 22.65%

TBN E.coli 0.0 43.78% 18.19% 41.71% 34.56%

0.1 33.39% 22.73% 42.35% 32.82%

0.5 40.80% 15.96% 33.89% 30.22%

Yeast 0.0 2.05% -3.30% 2.53% 0.43%

0.1 1.88% -4.67% 5.29% 0.83%

0.5 -4.79% -5.54% -0.61% -3.65%

1VI E.coli 0.0 10.93% 0.57% -2.38% 3.04%

0.1 14.96% 3.21% 4.36% 7.51%

0.5 14.42% 18.29% 13.28% 15.33%

Yeast 0.0 1.75% -2.17% 11.65% 3.74%

0.1 10.70% -0.02% 14.71% 8.47%

0.5 17.15% 17.82% 12.99% 15.99%

doi:10.1371/journal.pone.0144031.t005

Table 6. Average percentage of improvement in terms of AUROC between GENERE (K-means) and the considered competitors (Borda, TopK and
1VI). The results are obtained on the SynTReN datasets and are first grouped by dataset, number of genes and level of noise, then averaged across the dif-
ferent values of δ, the number of views V, and the number of iterations.

GENERE vs Noise 100 150 200 Average

Borda E.coli 0.0 68.71% 112.26% 12.11% 64.36%

0.1 61.14% 77.79% 14.39% 51.11%

0.5 7.36% 49.75% -3.10% 18.01%

Yeast 0.0 434.02% 448.11% 216.06% 366.06%

0.1 483.30% 431.42% 162.89% 359.20%

0.5 161.96% 226.62% 92.39% 160.32%

TopK E.coli 0.0 10.41% 8.08% 12.11% 10.20%

0.1 16.00% 10.29% 10.65% 12.31%

0.5 0.94% 14.91% -8.22% 2.54%

Yeast 0.0 19.83% 19.54% 28.48% 22.62%

0.1 25.86% 26.12% 31.06% 27.68%

0.5 -0.13% 35.91% 19.09% 18.29%

1VI E.coli 0.0 19.39% -1.36% -6.47% 3.85%

0.1 13.60% -3.82% 15.42% 8.40%

0.5 9.37% 7.82% -6.42% 3.59%

Yeast 0.0 7.24% -3.91% 2.40% 1.91%

0.1 -2.02% -0.64% 21.95% 6.43%

0.5 -5.43% 17.60% 9.27% 7.14%

doi:10.1371/journal.pone.0144031.t006
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correct decisions taken by some classifiers (learned from a partition of base methods) by
exploiting decisions taken by the other classifiers (learned from the other partitions of base
methods). Fourth, the proposed approach is able to learn from a small (even empty) set of only
positive examples of interactions, thanks to the semi-supervised learning solution that exploits
both labeled and unlabeled examples during learning.

Experiments prove that our approach significantly outperforms, in terms of accuracy of
reconstructed networks and in different configuration settings, state of the art approaches in
the reconstruction of well-known gene interaction networks such as those in E. coli and S. cere-
visiae, from both synthetically generated and real expression data. Improvements are obtained
with a small number of iterations, guaranteeing a fast convergence of the algorithm to the best
solution. The results indicate that gene regulatory network reconstruction for the real datasets
is more difficult for S. cerevisiae than for E. coli.

In further work, we plan to consider gene interactions as inter-dependent and exploit the
network autocorrelation among interactions that involve the same/similar genes. Moreover, we

Fig 11. Number of wins, in terms of AUROC (primary Y-axis, blue histograms) and average AUROC
(secondary Y-axis, red and grey lines), obtained for SynTReN EColi (a), SynTReN Yeast (b),D5InSilico
(c),D5Ecoli (d) andD5Yeast (e) obtained by varying the number of iterations (X-axis) from 0 to 30 for
the SynTReN datasets and from 0 to 5 for the DREAM5 datasets. The red lines represent the average
AUROCwith δ = 0.5%, whereas the gray lines represent the average AUROCwith δ = 1.0%. Views are
obtained with K-means.

doi:10.1371/journal.pone.0144031.g011

Semi-Supervised Multi-View Learning for Gene Network Reconstruction

PLOS ONE | DOI:10.1371/journal.pone.0144031 December 7, 2015 24 / 27



intend to investigate new “transfer learning” techniques which exploit GRNs reconstructed
from some organisms in the reconstruction of GRNs of other organisms.
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Fig 12. Number of wins, in terms of AUPRC (primary Y-axis, blue histograms) and average AUPRC
(secondary Y-axis, red and grey lines), obtained for SynTReN EColi (a), SynTReN Yeast (b),D5InSilico
(c),D5Ecoli (d) andD5Yeast (e) obtained by varying the number of iterations (X-axis) from 0 to 30 for
the SynTReN datasets and from 0 to 5 for the DREAM5 datasets. The red lines represent the average
AUPRCwith δ = 0.5%, whereas the gray lines represent the average AUPRCwith δ = 1.0%. Views are
obtained with K-means.
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