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Abstract

Background

Using current climate models, regional-scale changes for Florida over the next 100 years
are predicted to include warming over terrestrial areas and very likely increases in the num-
ber of high temperature extremes. No uniform definition of a heat wave exists. Most past
research on heat waves has focused on evaluating the aftermath of known heat waves, with
minimal consideration of missing exposure information.

Objectives

To identify and discuss methods of handling and imputing missing weather data and how
those methods can affect identified periods of extreme heat in Florida.

Methods

In addition to ignoring missing data, temporal, spatial, and spatio-temporal models are
described and utilized to impute missing historical weather data from 1973 to 2012 from 43
Florida weather monitors. Calculated thresholds are used to define periods of extreme heat
across Florida.

Results

Modeling of missing data and imputing missing values can affect the identified periods of
extreme heat, through the missing data itself or through the computed thresholds. The dif-
ferences observed are related to the amount of missingness during June, July, and August,
the warmest months of the warm season (April through September).
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Conclusions

Missing data considerations are important when defining periods of extreme heat. Spatio-
temporal methods are recommended for data imputation. A heat wave definition that incor-
porates information from all monitors is advised.

Introduction

Numerous public health studies have used weather data for the 108 cities included in the
National Morbidity, Mortality, and Air Pollution Study (NMMAPS) (e.g. [1-3]). These studies
have been important to identifying regional differences in health effects based on climate indi-
cators (e.g. [1, 4]). Although some have found no evidence of regional differences in health
effects due to heat waves [5], others have found differences so great that a significant adverse
effect of climate on health can be observed in one region while, in another, no effect or a pro-
tective effect is seen [1, 6]. Multiple studies have concluded that meteorological thresholds for
weather (generally temperature) should be region-specific or local (e.g. [7-8]).

One source of confusion is the lack of a uniform definition of a heat wave used in climate-
change research studies. Currently, the National Weather Service (NWS) initiates heat alert
procedures when the heat index is expected to exceed 40.56°C-43.33°C (105°F-110°F) for at
least 2 consecutive days [9]. The Intergovernmental Panel on Climate Change [10] defined a
heat wave to be the longest period within a year composed of at least 5 consecutive days with
maximum temperatures at least 5°C higher (approximately 9°F higher) than the climatology of
the same calendar day. However, this becomes challenging when different sources use differing
numbers of years to define the climatology.

For health studies, the percentiles of the year-round daily maximum temperature for the
study period have been used to define a heat wave as the longest period of consecutive days
that satisty three conditions: (1) the daily maximum temperature must be above the 97.5 per-
centile for at least 3 days, (2) the daily maximum temperature must be above the 81 percentile
for every day, and (3) the average of daily maximum temperature for the consecutive period
must be above the 97.5 percentile, (e.g. [1, 11-12]).

Different geographic regions have different timing and durations for both warm and cold
seasons. For instance, Florida is known for its year-round warm weather and has many sea-
sonal residents escaping cold seasons by flocking to Florida. Defining a warm season in Florida
is problematic because, relative to other parts of the U.S., the warm season could be considered
to include the entire year. The Florida Climate Center (FCC), within the Center for Ocean-
Atmospheric Prediction Studies, defines the Florida warm season to be from April through
September, which is when the highest temperatures and humidity levels tend to occur and is
the definition used here [13].

Some research papers have considered and compared different definitions of heat waves,
exploring associations between heat waves and public health measures and have found conclu-
sions can change based on which definition of a heat wave is utilized [2-3, 7]. Further, associa-
tions between extreme heat and health risks depend upon the thresholds used to define a heat
wave, making it important to choose these a priori [3].

When assessing the effect of heat waves on public health, missing weather data issues are
rarely discussed [1, 4, 8, 11, 12, 14-17]. Missing data are typically ignored if 8% or less of the
total amount of data are missing (e.g. [3, 6, 18, 19]), if at least 18 hourly readings occur during
a day [20], or if a geographical area has data for at least half of a month for each month studied
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[21]. Most studies have either removed weather stations with missing data or completed the
study with no added processing of meteorological data (e.g. [6, 18]). Only Deschénes and
Greenstone [22] specifically discussed imputation for missing meteorological data when assess-
ing the effect of missing data on the association between exposure and US annual county mor-
tality rates, using data from 1968 to 2002. In that study, only weather monitors with no missing
data were included in the analysis. Inverse distance weighting of temperature measurements
from monitors within 200 km of each county’s centroid was used to predict county-level tem-
peratures. Analyses were conducted using subsets of the monitor data as well as multiple impu-
tation. The conclusions were the same for all approaches considered.

In this paper, the primary objective is to develop a heat wave definition with direct applica-
tion to public health research for Florida. Historical weather records are described, modeled,
and used to define heat waves within the state of Florida. Methodologies to account for missing
weather records are developed and missing data imputed for use in identifying heat waves. The
effects of missing data on heat wave definitions are discussed. All calculations were completed
using Fahrenheit measurements, but have been converted to Celsius measurements for publi-
cation purposes.

Materials and Methods
Weather Data

The FCC receives data from the National Climatic Data Center weather monitors and runs
multiple data quality checks while computing additional indicators, such as heat index. Heat
index is calculated using the Rothfusz equation and adjustments, as is currently used by the
National Oceanic and Atmospheric Administration (NOAA) [23]. The FCC data are NOAA
data that are further processed for accuracy and quality. The NWS currently initiates heat alerts
using heat index, specifically when the heat index is expected to exceed 40.56°C-43.33°C
(105°F-110°F). Although other approaches exist, the public health literature tends to use tem-
perature, heat index, apparent temperature, or some combination of these to determine an
extreme heat event [1-3, 6, 7, 11, 12, 14-16]. Given these facts and the prevalence of high
humidity, especially during Florida’s warm season, heat index is used here as the measure of
heat (e.g. [8, 18, 24]).

The warm season heat indexes collected from 1973-2012 for 43 FCC weather monitors are
used in this study. The use of 40 years of warm season data should provide more precise esti-
mates of the percentiles than the typical 10-20 years of data used in other public health studies
(e.g. [25-27]). The Florida Department of Health (FDOH) is interested in the effect of heat
waves on morbidity and mortality. Although data from the billing records for Medicare and
Medicaid recipients would have provided morbidity data for an extended period of time, the
more complete billing data from all Florida hospitals and emergency departments, with the
exception of state-operated, Federal, and Shriner’s hospitals, are used here. However, these
health records on heat-related morbidity are only available from 2005 through 2012. Thus, 40
years of heat index values are used for precise estimation of the percentiles of maximum daily
heat index, and the estimated percentiles are used to identify heat waves occurring from 2005
through 2012.

Heat Wave Definition

Considering Florida’s hot and humid climate, the daily maximum heat index was thought to be
a better single measure of heat than temperature. With the FDOH’s interest in serving all of
Florida, initial interest focused on defining state-wide heat waves. Florida spans over six
degrees latitude and seven degrees longitude, and the heat index often varies widely across the
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state at any point in time. In fact, from 2005 through 2012, there was no three-day period for
which all 43 monitors had a heat index above their respective 50 percentiles. Consequently,
no state-wide heat wave could be identified and was not considered further.

Although meteorological thresholds for weather could be local or region-specific [3, 4, 8],
the use of a local or monitor-specific definition of heat wave would exclude many rural and
agricultural areas, important target populations for Florida’s public health services. Regional
heat waves were considered using the seven National Weather Service (NWS) regions in Flor-
ida (Fig 1). In this analysis, the Keys region (KEY) was combined with the Miami region
(MFL), resulting in six regions. Using NWS regions provides an inherent method for commu-
nicating extreme heat alerts through the NWS alert system, a major interest of FDOH.

According to Meehl and Tebaldi [11], global climate models indicated that heat waves will
become more frequent and of a longer duration. Their simulations indicate that the mean
number of heat waves for the Chicago area, the only North American city named in their man-
uscript, will increase from the current average of 1.09 to 2.17 per year, to an average of 1.63 to
2.44 per year, over the next 90 years. Anderson and Bell [6] studied heat waves in 43 U.S. cities
from 1987 to 2005. Their results indicated that, on average, each city experienced 1.9 heat
waves per year. Based on these simulations and historical results, it is reasonable to investigate
heat waves within each Florida NWS region from 2005 to 2012, the time period for which com-
plete morbidity data exists for Florida.

The heat wave definition used here is based upon that in Peng et al. [12] and Bobb et al. [1]
and incorporates the practical considerations, such as data accessibility, from Barnett et al. [7].
For a period to be considered a regional heat wave, each monitor in the region must (1) have
the daily maximum heat index above the 80" warm season percentile and (2) have at least
three days, which need not be consecutive, in the period above a regional upper threshold. Two
approaches for defining the regional upper threshold were evaluated. The first used an upper
percentile of daily maximum heat index and the second was a regional benchmark. Other stud-
ies have examined percentile thresholds in their heatwave definitions and those results
informed the percentiles used here [1, 3, 6, 12, 17, 28-30].

A regional benchmark is an absolute threshold representing an actual measured value of the
upper heat index for defining extreme heat for an entire region. The regional benchmark value
used was the highest daily maximum heat index resulting in at least one heat wave during the
period of interest (2005-2012).

Missing data

Some of the daily maximum heat index values are missing, with more data missing during
cooler months within the warm season (April, May, September) than in warmer months within
the warm season (June, July, August). Further, some monitors have more missing data than
others (S1 Table). These differences primarily result from varying decisions being made as to
the frequency with which data are to be recorded for a monitor and are not due to the monitors
themselves. Because extreme heat is more likely to occur in the warmer months, missing data
in these months are of particular concern.

All weather data for the 43 weather monitors were checked for data errors and summarized
for quality and heat index calculated using the Rothfusz equation and adjustments, the method
used by the National Weather Service [23]. Warm-season percentiles of daily maximum heat
index for each station were calculated and used to define heat waves for each region within
Florida, using four approaches. First, as is commonly done, missing data were ignored. To
determine regional percentiles when ignoring missing data, the warm season daily heat index
values from recorded monitors within a region were averaged, and the regional percentiles of
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Fig 1. National Weather Service regions and locations of FCC monitors within Florida.

doi:10.1371/journal.pone.0143471.g001

these daily averages determined. In addition to (1) ignoring missing data, three different impu-
tation models were considered: (2) a temporal model, (3) a spatial model, and (4) a spatio-tem-
poral model.

To impute missing data using a temporal model, the daily maximum heat indexes associated
with each of the 43 FCC weather monitors were modeled, and each monitor’s model was used
to impute missing heat index data for that monitor. The integrated nested Laplace approxima-
tion (INLA) method used here provides a computational advantage over the standard MCMC
(Markov Chain Monte Carlo) approaches [31, 32]. No study has used this type of model to
impute heat index, but Haslett et al. [33] have used a Bayesian methodology to reconstruct pre-
historic climates using fossil data.

Specifically, the following Bayesian model of daily maximum heat index was fit using the
R-INLA package from R [34].

Vi = fl(xl z\i) + fz(xz t\i) + f:’,(xs t\i) +et|i (1)

where y,; is the maximum heat index for monitor i on day £ x, y, is the date associated with
day t for monitor 7 x; 4; is the year associated with day ¢ for monitor i; x ,; is the day of the
year for day t associated with monitor #; and ey; ~ N(0,6%) is the random error of the model. x,
i is modeled using a first-order autoregressive model (AR(1)), x; 4; and x3 ; are modeled
using independent random walk models of order 2 (RW2) [31]. Note that date and day of the
year are not equivalent; date is used in the model to represent the time from the first day of the
warm season in 1973 to the end of the warm season in 2012, whereas day of year is the Julian
Day. Within this temporal model, the AR(1) model of date is used to capture long-term tempo-
ral changes in exposure, the RW2 model of year is used to capture yearly exposure trends, and
the RW2 model with day of year (Julian Day) is used to capture exposure trends within a year.
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For 13 monitors’ models, the Hessian was not positive definite, even after tolerance levels
were re-adjusted, due to the lack of a year effect. Thus, for these monitors, the effect of year was
not included in the model.

The second imputation method used ordinary kriging, an interpolation method used for
predicting spatial data. For this model, spatial relationships for daily maximum heat index
were modeled to impute missing heat index data. By computing the weighted average of the
given observed data values in a defined neighborhood of those values, the value of a function at
a certain location can be predicted. We assume second order stationarity and isotropy in these
data, and an exponential covariance model was chosen based on a sample of heat index data
from different months and years within the warm season. From these data, the exponential
covariance model was the best fit, using AIC. Ordinary kriging assumes a spatial mean, which
is assumed here to be unknown and constant for any time ¢. Universal kriging was not appro-
priate as the data displayed no consistent trend at the scale of the modeling, over the period of
interest. Thus, the variation in the heat index at time ¢ is captured in the correlation structure.
Specifically, for each day ¢, y;;, the daily maximum heat index for monitor i, was modeled as a
spatial process:

Yie = M T ey (2)

where y, represents the overall mean and e;; is the random error, assumed to have an exponen-
tial covariance structure, which captures the spatial covariance among monitors on day . The
models were fit using restricted maximum likelihood (REML), and model predictions provided
imputed values for missing data. Ordinary kriging was not possible if less than two monitors
recorded daily maximum heat index across Florida, for a specific day. In these cases, monitor-
specific monthly averages, across all years, were used as the imputed values. This occurred for
less than 3% of the days in the study period (n = 163; N = 7320), none of which occurred in the
warmer months of the warm season, June, July or August, and none were associated with peri-
ods of high daily maximum heat indexes.

Time series models incorporate information from the same monitor over time; spatial mod-
els consider information from surrounding monitors from the same day. The third imputation
approach, spatio-temporal models, is based on both spatial relationships and time trends.
Using REML, the space-time process for daily maximum heat index for monitor 7 on day ¢, y;,
was fit using the following spatio-temporal model:

Vi = ﬁu + ﬁlyi.t—l +ey (3)

where 3, represents the intercept; f; is an unknown parameter; y;,_; represents the lag effect of
heat index on day ¢ for monitor i; and e;, represents the random error, assumed to have an
exponential covariance structure among monitors within each day.

To assess how well the temporal, spatial, and spatio-temporal models predicted missing
daily maximum heat index values, a 10% stratified sample of daily maximum heat index mea-
surements for all stations during the warm season for the 40 year period was taken (314,760
total observations where strata were the day, with 7320 possible days). The models for each
method were fit without these sampled data, and the predicted values were compared with the
observed values (Fig 2). The primary objective is to identify the method that is best able to pre-
dict missing values and, given that the observed values are available from the 10% sample, the
root mean squared prediction error (RMSPE) for the sample was calculated for each model. In
addition, because extreme heat is of primary interest, RMSPE was also calculated for data that
were greater than 37.78°C (100°F). For extreme heat, the 97.5, 95, 90, and 80™ percentiles are
often considered (e.g. [3, 11-12]). The 97.5, 95, 90, and 8ot percentiles for daily maximum
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Fig 2. Imputation model results for the Gainesville weather monitor within the Jacksonville (JAX)
region, for the years 1981 and 1985, using each imputation method. Imputed daily maximum heat
indexes during the warm season are graphed (by day) in green with observed values dropped from the
sample denoted by black dots. (A) Graph of the temporal model results for 1981. (B) Graph of the temporal
model results for 1985. (C) Graph of the spatial model results for 1981. (D) Graph of the spatial model results
for 1985. (E) Graph of the spatio-temporal model results for 1981. (F) Graph of the spatio-temporal model
results for 1985.

doi:10.1371/journal.pone.0143471.g002

heat index values during the warm season were estimated using the complete data (observed
and imputed), derived from each of the four missing data approaches and all 40 years of data.

Results
Missing data imputation

Unlike in Deschénes and Greenstone [22], all of the 43 FCC weather monitors had some miss-
ing data during 1973-2012, making an analysis based only on monitors with complete data
impossible. The missing data approach affects the estimates of the upper percentiles and thus
the identified heat waves.

When comparing the model predictions for the 10% stratified sample not included during
model development to their observed values, the spatio-temporal model had the lowest
RMSPE and the lowest RMSPE for those heat index values greater than 37.78°C (100°F) for 41
of the 43 monitors (S2 Table). The spatial model performed the next best. The temporal model
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produced the worst fit for 33 of the 43 monitors and was less able to predict unusual heat
events, compared to the spatial and spatio-temporal (Fig 2). Although the RMSPE tended to be
greater for the spatial model compared to the spatio-temporal model, the modeled daily maxi-
mum heat index had similar shapes, with better modeling of extremes compared to the tempo-
ral model predictions.

Heat Waves

Heat waves were identified for the six NWS regions using each missing data approach. Specify-
ing a specific percentile as an upper threshold for defining a heat wave proved challenging, at
least partly because the range of heat indexes between the 80™ and 97.5 percentiles is narrow
(Table 1 and S3 Table). In contrast, Lippman et al. [27] used a reference set for the calculated
incidence rate ratios of heat-related morbidity, which corresponded to daily mean tempera-
tures between 15.56°C and 21.11°C (60°F and 70°F), and all of their analyses were conducted
using increments of 10°F (approximately 5.56°C). Similarly, in Fletcher et al. [25], odds ratios
between temperature and hospital admissions for acute renal failure were quantified for
approximately 5°F (approximately 2.78°C) changes of minimum, mean, and maximum tem-
perature and heat index. Here, the differences in the 80" to 97.5 percentiles are less than 5.5°C
(10°F) for all monitors (S3 Table). As can be seen in Table 1, for monitor 722046 in the MLB
region, the 80th percentile is 34.53°C and the 97.5th percentile is 35.31°C, a difference of
approximately 0.78°C. Consequently, defining heat waves using percentiles as the upper
threshold was problematic. Thus, a regional benchmark was considered.

In Tong et al. [8], for 1996-2005 in Brisbane, Australia, the 95th percentile for maximum
temperature in the summer was 34.1°C (93.38°F) and was 32.7°C (90.86°F) for the entire year.
In Fletcher et al. [25], the maximum temperatures used to determine associations between hos-
pitalizations for acute renal failures and temperatures in the state of New York were less than
28.89°C (84°F, ascertained using a table). In contrast, for this study, the 80" percentile of every
monitor’s daily maximum heat index was at least 34.44°C (94°F) and some were as high as
39.28°C (102.7°F). A full comparison of percentiles determined here to those found in other
studies is challenging because many publications do not provide estimates of the percentiles
used to define a heat wave. Sometimes, but not always, the percentiles can be inferred from
graphics or tables (e.g. [2-3, 6]).

Regional benchmark values used as the upper threshold had a smaller range of values, from
37.78°C (100°F) to 44.44°C (112°F), compared to the 97.5 percentiles for daily maximum heat
index, which varied from 35.33°C (95.6°F) to 43.94°C (111.1°F). The regional benchmark, the
highest daily maximum heat index resulting in at least one heat wave during 2005-2012, was
used to identify extreme heat within Florida’s warm season. All NWS regions were analyzed
and heat waves identified within each region. However, the Jacksonville (JAX) region and Mel-
bourne (MLB) region were chosen to illustrate results and facilitate discussion (for all NWS
region results, see S4 Table).

JAX region. Regional benchmark values of 41.67°C (107°F), ignoring missing data, and of
40°C (104°F), imputing missing data, were used to identify one heat wave for NWS region JAX,
which includes the city of Jacksonville in Florida’s northeast. The heat wave was defined to be
from August 5 to August 14, 2007, when missing data were ignored and from August 6 to
August 11, 2007, when using each of the imputation methods.

MLB region. The MLB NWS region covers the east-central area of Florida. For the MLB
region, the regional benchmark differed with the method used to handle missing data. When
ignoring missing data, the regional benchmark was 41.11°C (106°F), whereas it was 37.78°C
(100°F) using the temporal model and 38.89°C (102°F) when using the spatial or spatio-
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Table 1. JAX and MLB 97.5 and 80" percentiles (°F) for max daily heat index for regionally aggregated, ignoring missing data, and three imputation

methods.

Region Monitor/ region

JAX regiona
722055
722060
722065
722066
722146
MLB regiona
722040
722046
722050
722056
722057
747946
747950

Ignore Missing

80

37.89
36.83
38.17
38.11
37.89
37.61
37.94
38.78
35.50
37.61
37.39
38.28
39.11
37.44

Temporal Spatial Spatio-temporal % miss JJA?

97.5 80 97.5 80 97.5 80 97.5

41.89 — — — — — — 0.12
39.83 36.27 39.28 37.00 39.74 37.06 40.17 0.47
41.94 38.00 41.83 38.00 41.83 38.00 41.83 0.01
42.50 37.89 42.08 37.89 42.06 37.89 42.08 0.01
42.50 37.00 41.94 37.17 41.89 37.17 41.94 0.08
41.00 37.39 41.00 37.39 41.00 37.39 41.00 0.01
41.94 = = = = = = 0.27
43.50 38.17 42.81 38.23 42.72 38.17 42.80 0.15
39.28 34.53 35.31 37.46 39.96 37.33 39.97 0.92
40.33 37.61 40.33 37.61 40.33 37.61 40.33 0.00
40.44 37.17 40.39 37.17 40.39 37.17 40.39 0.01
42.56 37.89 42.11 38.00 4211 37.94 4211 0.13
42.33 37.61 40.97 37.75 41.78 37.94 41.97 0.52
40.94 37.01 40.67 37.17 40.67 37.17 40.67 0.14

&Note: “% miss JJA” denotes the percent missing data during the warm months of the warm season, June, July and August.

doi:10.1371/journal.pone.0143471.t001

temporal model to impute missing data. When using the temporal model to impute data, three
heat waves were identified, all of them occurring in 2010: June 14 to June 16; July 24 to August
1; and August 17 to August 21. Two completely different heat waves were identified using the
spatial and spatio-temporal methods of handling missing data: August 13, 2005 to August 20,
2005 and June 20, 2009 to June 22, 2009. When ignoring missing data, two heat waves were
identified, one of which was similar to that identified using the temporal model (but lasting
two additional days): July 24 to August 3, 2010 and August 11 to August 17,2011.

Discussion

Days are more likely to have high maximum heat index values during the warmer months of
the warm season. Thus, it is not surprising that the percent of missing data during the warmer
months tend to accentuate differences in the upper percentiles obtained from imputation.
Although the heat wave definition that ignores missing data is easy to calculate and no imputa-
tion is performed, the heat waves defined do not always represent extreme heat for all moni-
tors, and thus all areas, within the region. Typically, a few monitors within a region are able to
influence the daily averages, which in turn affects the corresponding percentiles. Monitor per-
centiles obtained when ignoring missing data tend to be larger than the corresponding percen-
tiles using imputed data, regardless of imputation method used. Requiring all monitors to
exceed a regional benchmark ensures that the entire region is experiencing a heat wave, which
may not be the case when the average is used. For these reasons, missing data should not be
ignored.

When using the temporal model, the predictions of daily maximum heat index, and conse-
quently the percentiles, tend toward the mean as the amount of missing data increases. Thus,
the time series imputation method is not appropriate when the goal is accurate estimation of
upper percentiles. Models that used spatial information provide better predictions of daily
maximum heat index during periods of extreme heat. As a result, the spatial models provide
more precise predictions of daily maximum heat index and, consequently, better estimates of

PLOS ONE | DOI:10.1371/journal.pone.0143471
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the percentiles of daily maximum heat index. Thus, spatial information should be incorporated
in predictions of missing heat index.

The spatio-temporal model includes both the information from surrounding monitors as
well as the temporal trends for a particular monitor. Through its predictions, the model can
reflect the fact that a monitor tends to record higher (or lower) heat index values than its neigh-
bors. Thus, it is not surprising that the spatio-temporal model provided better predictions than
the spatial model that does not include the temporal information from a particular monitor.
Although no adjustments were made for technological advances in weather monitoring equip-
ment or any weather monitor movement, these perceived issues should have little or no impact
on the specific heat waves considered in recent years but can affect any calculated thresholds
using historical data that might be used to define recent heat waves. Issues such as urban
sprawl, with the well-established heat-island effect, and the effect of including agricultural
areas may also influence heat definitions. Although close to larger bodies of water, coastal areas
in Florida generally have a coastal breeze that may alleviate or balance out the additional
humidity, compared to inland climates [35]. Thus, no adjustments of this type were made in
this analysis.

The estimated percentiles are the foundation for identifying heat waves, and missing daily
maximum heat index affects the percentiles used in heat wave definitions. Basing the percen-
tiles on the warm season and not the full year causes the upper percentiles to be larger and the
differences in the 80" and 97.5 percentiles to be smaller.

The method used to impute missing daily maximum heat index values can influence the
heat wave period identified through the imputed values themselves or through the effect on the
percentiles used to define extreme heat. To identify a heat wave using imputed data, all moni-
tors had to have daily maximum heat index values above the 80™ percentile, ensuring the entire
region was experiencing extreme heat. In contrast, when ignoring missing data and identifying
heat waves using a regional average, only the average had to exceed the regional benchmark.
Thus, August 5 and 12 in the JAX region (S4 Table), were included in the heat wave when miss-
ing data were ignored, but not otherwise. Similarly, the heat wave defined from June 20-22,
2009, for the MLB region using the spatial and spatio-temporal imputed data could not be
identified as a heat wave using either the temporal model or when ignoring missing data.
Because the imputed daily maximum heat index tended toward the mean for the temporal
imputation model, the imputed values were consistently less than their respective 80™ percen-
tile, making it less likely to identify a heat wave when data were missing.

Missing data increases the uncertainty associated with identifying heat waves. As noted ear-
lier, ignoring missing data can lead to substantial errors in identifying heat waves. Imputation
can inform identification of heat waves, but can also result in errors. If one monitor in a region
records a high daily maximum heat index and the remaining monitors in the region fail to
record heat index values for that day, information from other monitors in the state is used to
inform imputation for the missing data. This could lead to correct conclusions about the pres-
ence of a heat wave, or it could either incorrectly identify a heat wave (imputed heat index was
above that present at the monitor) or fail to identify a heat wave (imputed heat index was
below that present at the monitor). Given that imputation tends to miss the extremes, it is
more likely that heat waves are not identified using the imputed values.

Better predictions with few drawbacks lead to the recommendation that the spatio-temporal
method be used to model and predict missing daily maximum heat index values. This model is
appealing because temporal and spatial components are incorporated, both important consid-
erations for weather-related research analyses. If this method were not feasible, the spatial
model would be the next best choice for imputing missing data. The temporal model and
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ignoring missing data are inferior to the models incorporating a spatial component and should
not be used.

Conclusions

This study highlights challenges in creating a general methodology to identify periods of
extreme heat for Florida. The NWS regions were utilized because the weather is relatively uni-
form within each region. The regional approach to a methodology allowed meaningful heat
wave definitions and also an inherent method to communicate heat alerts to the public. The
heat wave definition considered here can be used for each NWS region in Florida and can also
be applied to other areas outside of Florida. Although many studies have looked at relation-
ships between heat waves and health, most do not consider missing weather data. For future
studies, it is recommended to use a spatio-temporal model to impute missing values, leading to
more precise estimates of percentiles and more accurate identification of heat waves.
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