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Abstract
The invasive yellow-legged hornet Vespa velutina nigrithorax was accidentally introduced in

Europe in the early 2000s. As is the case in colonies of other wasp and hornet species, V.
velutina colonies are known to produce sexuals (males and new queens) at the end of the

summer. We show that early-stage colonies in French populations frequently produce

males well before the usual reproductive period. The vast majority of the males produced

are diploid, which is consistent with the loss of genetic diversity previously reported in intro-

duced populations in France. Since males do not participate in colony activities, the produc-

tion of early diploid males at the expense of workers is expected to hamper colony growth

and, ultimately, decrease the expansion of the species in its invasive range in Europe.

Introduction
In haplodiploid hymenopteran species, sex is typically determined by one polyallelic locus (sin-
gle-locus complementary sex determination, or sl-CSD) [1–4]. Individuals heterozygous at the
sex-determining locus develop into diploid females, while hemizygotes develop into haploid
males. However, diploid homozygotes at the sex locus develop into diploid males. Diploid male
production (DMP) results in direct fitness costs to parents [4–7]. In a number of species, dip-
loid males experience sterility or reduced survival to adulthood [8]. When fertile and viable,
they produce diploid sperm and can father sterile triploid female progeny (but see [9, 10] for
examples of diploid males siring diploid female offspring). In social hymenopterans, DMP rep-
resents an additional cost because males are produced at the expense of female workers but do
not contribute to colony productivity [11, 12]. This phenomenon has been shown to reduce
colony growth in bumble bees [13] and to increase mortality during colony founding in ants
[11]. Recent theoretical studies have also suggested that DMP can increase the risk of popula-
tion extinction [14].

Diploid males are rare in large outbred populations because negative frequency-dependent
selection maintains a large number of alleles at the sex locus [15]. However, inbreeding, limited
gene flow, and genetic drift reduce sex allele diversity and are expected to increase the
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frequency of diploid males in hymenopteran populations with sl-CSD. In particular, invasive
species are predicted to suffer from such reduced allelic diversity due to genetic bottlenecks
that occur during founding events [16–18]. In line with this, reduced genetic diversity, the loss
of sex alleles, and DMP have been observed in introduced populations of the fire ant Solenopsis
invicta [19] and the European bumblebee Bombus terrestris [20].

Native to China, the invasive yellow-legged hornet, Vespa velutina nigrithorax, was acciden-
tally introduced to southwestern France around 2004, most likely via imported ceramic pottery
[21]. The species successfully expanded its range, which now spans over more than 70% of
France, and is currently colonizing neighboring countries (Spain, Portugal, Belgium, and Italy)
[22–25]. The negative impact of V. velutina invasion in France is twofold. First, the species
preys on several insect and arthropod taxa, thus potentially affecting biodiversity. For example,
in southwestern France, V. velutina is a predator of the domestic honeybee, Apis mellifera, and
could be induced in colony losses [22–24]. Second, the species presents a risk to human health.
Accidents have occurred, some fatal, when people have inadvertently approached the hornet’s
nests [26]. Typically, new colonies of V. velutina are established in the spring by mated queens,
after the overwintering period. Colonies first pass through an ergonomic stage by rearing an
increasingly large number of workers to ensure colony growth and then produce sexuals at the
end of the summer [24, 27]. Males reach the adult stage before the new queens (gynes) (protan-
dry); males and new queens (gynes) emerge in late August/early September and early/mid Sep-
tember, respectively. They take part in reproductive flights; the females then disperse, and the
males die.

Recent genetic analyses based on the combination of mitochondrial and nuclear markers
support a single introduction event of the yellow-legged hornet in France with a strong founder
effect [28]. All populations sampled experience a dramatic loss of genetic diversity. Moreover,
the production of “early males” (i.e., males produced before the end of August) has been
observed in a few V. velutina colonies in France [27]. Early male production has been docu-
mented in several social Hymenoptera, but its exact function remains unclear [4, 5, 29–30].
Mating between early males and workers has been seen in orphaned colonies of Polistes wasps
and allows workers to lay both fertilized and unfertilized eggs [31, 32]. However, such behavior
appears to be rare [33, 34] and is viewed as an alternative reproductive strategy that is adopted
only when a colony has lost its queen [29, 35, 36]. Another explanation for the production of
early males is that they develop from fertilized eggs that are homozygous at the sex locus.

In this study, we examined the production patterns and ploidy of males generated by the
invasive hornet V. velutina in France. We collected colonies during the wasp’s active season to
analyze colony composition. We found that significant numbers of males are produced in the
spring and early summer, i.e. before the normal reproductive period. Flow cytometric analyses
show that the vast majority of these “early males” are diploid. While the production of early
males at the expense of workers during the ergonomic stage is expected to hinder colony
growth and, ultimately, the expansion of V. velutina in introduced populations, the species has
spread throughout Europe during the last decade [23, 28]. We propose possible explanations to
account for the success of this species in its invasive range.

Materials and Methods

Sample collection
Thirty-one colonies of Vespa velutina were collected between April and December from 2012
to 2014 in France, mainly in the Indre-et-Loire region (see Table 1 for geographic coordinates).
They were brought to the laboratory and kept at -20°C for 48h to kill the hornets. Numbers of
queens, workers, gynes, and males in each colony were counted (Table 1).
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Our field study did not involve endangered or protected species. Therefore, no specific per-
missions were required to collect hornets in France. Rather, as V. velutina is an invasive species,
the French government recommends the elimination of colonies (DGAL/SDSPA/N2013-8082,
10 May 2013).

Ploidy analysis
The ploidy level of the V. velutinamales sampled was determined by flow cytometry [5, 37].
Colonies and individual males were randomly sampled. Samples were prepared by pulverizing
the head of each individual hornet in a 1-ml 40,6-diamino-2-phenylindole dihydrochloride

Table 1. Caste composition of 31 Vespa velutina colonies collected in France between April and December from 2012 to 2014. Colonies typically
produce only workers until the end of summer (end of August) and then produce males and new queens [24, 27]. In the populations sampled in this study,
males were reared before the reproductive period. The numbers of workers, gynes (new reproductive queens), and males found in each colony are provided,
as are the percentages of males (of all adults) and of diploid males (of all randomly sampled males). Q+: queenright colonies; Q-: queenless colonies.

Geographic coordinates Month Colony/Queen Males Workers Gynes % Males Ploidy
level of
males

% Diploid males

n 2n

47°24'09.0"N—0°39'50.0"E April C1 / Q+ 3 3 0 42.86 0 3 100

44°48'29.9"N—0°32'47.0"W May C2 / Q+ 2 0 0 66.66 1 1 50

44°48'29.9"N—0°32'47.0"W May C3 / Q+ 5 5 0 45.45 0 4 100

43°45025.0@N—0°41006.0@W June C4 / Q+ 0 1 0 0 - - -

43°45025.0@N—0°41006.0@W June C5 / Q+ 2 3 0 33.33 - - -

43°45025.0@N—0°41006.0@W June C6 / Q+ 3 3 0 42.86 - - -

47°08057.0@N—0°10058.0@E June C7 / Q+ 1 0 0 50 - - -

47°15'02.9"N—0°52'40.0"E July C8 / Q- 28 178 0 13.59 0 12 100

47°24'24.8"N—0°59'09.0"E July C9 / Q- 0 61 0 0 - - -

47°20'17.2"N—0°42'50.0"E July C10 / Q+ 7 19 0 25.93 0 7 100

47°26'17.0"N—0°38'20.0"E July C11 / Q+ 5 71 0 6.49 0 5 100

47°16041.0@N—0°37031.0@E July C12 / Q- 0 72 0 0 - - -

47°19'14.2"N—0°55'02.0"E July C13 / Q+ 0 61 0 0 - - -

47°15'42.1"N—0°27'58.0"E July C14 / Q+ 8 9 0 44.44 0 8 100

47°33'47.2"N—1°12'53.0"E August C15 / Q- 1 30 0 3.23 - - -

47°15'54.0"N—0°21'09.0"E August C16 / Q- 21 57 0 26.92 0 12 100

47°21'22.0"N—0°54'34.0"E August C17 / Q+ 0 98 0 0 - - -

47°25'18.1"N—0°50'52.0"E August C18 / Q- 0 244 10 0 - - -

47°24'11.2"N—0°36'07.0"E August C19 / Q- 0 62 0 0 - - -

47°35'19.0"N—1°19'39.0"E August C20 / Q- 6 8 0 38.46 1 5 83.33

47°21'58.0"N—0°43'45.0"E August C21 / Q+ 28 186 1 12.96 0 14 100

47°26'17.0"N—0°38'20.0"E August C22 / Q- 14 9 0 60.87 0 13 100

47°24'09.0"N—0°39'50.0"E September C23 / Q+ 1 195 0 0.51 1 0 0

47°24'24.8"N—0°59'09.0"E September C24 / Q- 0 13 0 0 - - -

47°23'34.1"N—0°41'01.0"E September C25 / Q+ 63 86 2 41.45 0 23 100

47°23'34.1"N—0°41'01.0"E September C26 / Q+ 57 80 0 41.3 0 24 100

47°02'31.9"N—0°49'08.0"E October C27 / Q+ 106 150 0 41.25 - - -

47°19'14.2"N—0°55'02.0"E November C28 / Q- 162 96 50 52.6 5 5 50

47°54'14.0"N—1°54'26.0"E November C29 / Q- 3 2 2 42.86 1 2 66.67

47°19'58.1"N—1°02'57.0"E December C30 / Q- 10 8 10 35.71 10 0 0

47°14'12.8"N—0°07'40.0"E December C31 / Q- 33 44 108 17.83 4 0 0

doi:10.1371/journal.pone.0136680.t001
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(DAPI) solution (CyStain) with a pestle. The suspension was subsequently filtered using Cell-
Trics (mesh size: 20 μm). Flow cytometric analyses were performed using a PA-I flow cytome-
ter (PARTEC, Partec Gmbh, Münster, Germany) equipped with a UV-LED 365 nm light
source and employing an optical configuration described elsewhere [38]. For each sample, the
ploidy of 2,500 nuclei was analyzed. A threshold on FL2-A was used to exclude very small
debris. We used flow cytometric DNA histograms of known haploid males and diploid females
as references to determine the ploidy of unknown males (Fig 1).

Results
Several V. velutina colonies produced males throughout the entire season, not just at the end of
the summer (Table 1). Fifteen of the 22 colonies (68%) collected from April to August (i.e.,
before the reproductive period) contained early males. These males accounted for between 3
and 67% of colony members. Flow cytometric analyses revealed that more than 97% (84/86) of
the early males were diploid; only two males were haploid.

Of the 9 colonies collected during the reproductive period (September–December), 8 con-
tained mature males. These males represented between 0.5 and 53% of colony members. Of the
75 males sampled, 54 (72%) were diploid. The remaining 21 were produced by arrhenotokous
parthenogenesis and were haploid. Two colonies (C30 and C31; Table 1) produced only hap-
loid males.

The very high proportion (>50%) of diploid males produced among offspring in colonies
C2, C22 and C28 likely results from sampling bias, e.g. due to workers being not collected
because they were foraging or some died before sampling.

Discussion
This study shows that colonies of the invasive yellow-legged hornet Vespa velutina nigrithorax
in France (1) produce males throughout the species’ active season, even well before the repro-
ductive period, and (2) that most of these males are diploid. The predominance of diploid
males is consistent with the genetic bottleneck experienced by this species following its intro-
duction into France [28]. Similarly high levels of diploid males have been observed in the fire
ant, Solenopsis invicta, in its introduced range in North America [11]. DMP is attributable to a
loss of allelic diversity at the sex-determining locus [39]. The number of sex alleles in V. velu-
tina remains unknown. Estimates based on the frequency of diploid males in populations sug-
gest that the effective number of alleles at the sex-determining locus varies greatly within
Hymenoptera, with an average of 5 alleles inHalictus poeyi [40], 15 in Solenopsis invicta [39],
19 in Apis mellifera [41], 20 inMelipona compressipes fasciculate [42], 24 or more in Bombus
terrestris [43], and 33 in Polistes chinensis antennalis [30].

In social Hymenoptera, DMP may severely hamper colony growth because a large percent-
age of diploid eggs yield males instead of females [11, 14]. First, a colony may lose out if queens
produce diploid males instead of workers during the ergonomic stage because males do not
benefit the colony, in contrast to workers (e.g., building the nest and feeding larvae). Of the off-
spring produced by queens who mate with a single male carrying the same sex allele, 50% will
be diploid males. Field studies in France have found that V. velutina nests may be abandoned
early on, which suggests that colony founding has failed [44]. Second, diploid males impose
particularly high fitness costs on the colony since they are usually sterile. Even when they are
not, they produce diploid sperm and father sterile, triploid female progeny (reviewed in [8]).
The production of triploid offspring, both females and males, has indeed been observed in vari-
ous hymenopteran species, including Athalia rosae [45], the parasitoid wasp Cotesia vestalis
[46], the bumblebee Bombus terrestris [47] or the ant Tapinoma erraticum [5]. A triploid male
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was also found in V. velutina (unpublished data). These findings suggest that diploid males
produce diploid sperm and father triploid offspring.

In introduced species, founder effects and genetic drift can reduce the genetic diversity as
populations are becoming established. They may result in inbreeding depression, a main con-
tributor to population extinction [48–50]. In haplodiploids, the production of nonviable or

Fig 1. Flow cytometric DNA histogram of diploid female (a), haploid male (b) and diploid male (c). Each
histogram shows the nuclear frequency with regard to DNA content for the head of a single individual. The
first peak corresponds to ploidy level, the second peak to nuclei with a double DNA content and the third peak
to polyploid nuclei. In haploid males, the second peak (2C) corresponds to nuclei frommandibular muscles
where cells are diploids.

doi:10.1371/journal.pone.0136680.g001
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sterile diploid males due to inbreeding is expected to reduce population growth rates and effec-
tive sizes, potentially creating a rapid extinction vortex [18, 51]. Remarkably, while DMP is pre-
dicted to affect the expansion range of introduced V. velutina populations, the species has
spread throughout Europe during the last decade [24,28]. This indicates that the yellow-legged
hornet can establish successful populations, even from a limited number of foundresses with
low genetic variability [28].

Several biological and environmental factors may have contributed to the success of this
invasive species in Europe, including favorable climatic conditions [52], the abundance of
preys (honeybees), multiple mating by queens [28] and occasional production of early haploid
males. If DMP has a large negative impact on colony foundation and survival, there may be a
selective advantage for queens to mate with multiple partners to reduce the likelihood of pro-
ducing diploid males [53, 54]. Recently, genetic analyses of French populations of V. velutina
have revealed that queens mate with an average of 4.6 males (SD = 2.3; [28]). Interestingly,
this value is higher than that observed in other Vespa species [28, 55]. To date, queen mating
frequency and diploid male production in native populations of V. velutina nigrithorax
remain unknown. Whether multiple mating has been selected for in invasive populations to
reduce the costs associated with DMP and/or the probability of mating with diploid males
remains to be studied. Our data also show that V. velutina colonies rear a small number of
haploid males before the reproductive season. The function of these early males is enigmatic.
One hypothesis is that early males could mate with virgin reproductive females (gynes) that
survive the winter. Another, non-exclusive hypothesis is that early males mate with workers
from orphaned colonies; mated workers could then become new queens and leave their natal
nests to found new colonies. Both these scenarios illustrate alternative reproductive strategies
adopted by gynes and workers [29, 33, 56–59] and may have contributed to the rapid expan-
sion of V. velutina in Europe.

Clearly, future research should explore (1) the reproductive function of early males and
their potential role in alternative female reproductive strategies, (2) the inbreeding coefficient
resulting from nonrandom mating within invasive populations, (3) whether diploid males
father triploid fertile females and, more generally, (4) the ecological consequences of DMP for
populations of the invasive hornet V. velutina in Europe.
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