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Abstract
Cell-free DNA (cfDNA) fragments, detected in blood and in other biological fluids, are

released from apoptotic and/or necrotic cells. CfDNA is currently used as biomarker for the

detection of many diseases such as some cancers and gynecological and obstetrics disor-

ders. In this study, we investigated if cfDNA levels in follicular fluid (FF) samples from in
vitro fertilization (IVF) patients, could be related to their ovarian reserve status, controlled

ovarian stimulation (COS) protocols and IVF outcomes. Therefore, 117 FF samples were

collected from women (n = 117) undergoing IVF/Intra-cytoplasmic sperm injection (ICSI)

procedure and cfDNA concentration was quantified by ALU-quantitative PCR. We found

that cfDNA level was significantly higher in FF samples from patients with ovarian reserve

disorders (low functional ovarian reserve or polycystic ovary syndrome) than from patients

with normal ovarian reserve (2.7 ± 2.7 ng/μl versus 1.7 ± 2.3 ng/μl, respectively, p = 0.03).

Likewise, FF cfDNA levels were significant more elevated in women who received long

ovarian stimulation (> 10 days) or high total dose of gonadotropins (� 3000 IU/l) than in

women who received short stimulation duration (7–10 days) or total dose of gonadotropins

< 3000 IU/l (2.4 ± 2.8 ng/μl versus 1.5 ± 1.9 ng/μl, p = 0.008; 2.2 ± 2.3 ng/μl versus 1.5 ± 2.1

ng/μl, p = 0.01, respectively). Finally, FF cfDNA level was an independent and significant

predictive factor for pregnancy outcome (adjusted odds ratio = 0.69 [0.5; 0.96], p = 0.03). In

multivariate analysis, the Receiving Operator Curve (ROC) analysis showed that the perfor-

mance of FF cfDNA in predicting clinical pregnancy reached 0.73 [0.66–0.87] with 88%

specificity and 60% sensitivity. CfDNA might constitute a promising biomarker of follicular

micro-environment quality which could be used to predict IVF prognosis and to enhance

female infertility management.
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Introduction
During in vitro fertilization (IVF) procedures, the ovarian reserve status must be evaluated to
optimize the ovarian response to stimulation [1–3]. Indeed, controlled ovarian stimulation
(COS) by gonadotropin treatment should be adjusted based on the patient’s ovarian reserve
status [4]. However, the biomarkers currently used to assess the ovarian reserve, such as anti-
Müllerian hormone (AMH) and antral follicle count (AFC), are not sufficiently reliable. Some-
times, these two parameters can be inconsistent because of the lack of standardization between
practitioners or laboratories [5–9].Therefore, the identification of new biomarkers that reflect
more accurately the ovarian reserve status and the expected response to gonadotropin treat-
ments might increase IVF success by improving personalized care.

DNA fragments are the result of apoptotic or necrotic events and can be easily detected in
blood and in other body fluids [10, 11], including follicular fluid (FF) [12]. Cell-free DNA
(cfDNA) level is increased in some cancers and other severe diseases (for instance, some gyne-
cological and obstetrics disorders) and is already used as a non-invasive biomarker for their
early detection and/or prognosis [13–15]. Moreover, we have previously demonstrated that
cfDNA level in individual FF samples reflects the proportion of apoptotic and necrotic cells
inside ovarian follicles and varies according to the follicular size during COS [12]. For these
reasons, FF cfDNA could represent a new biomarker of follicular microenvironment quality,
and consequently could be affected by ovarian reserve disorders and by the different COS
protocols.

As oocyte quality and its microenvironment affect early embryo development [16], many
studies have tried to identify biomarkers for the oocyte microenvironment, to be used as pre-
dictive factors of embryo and pregnancy outcomes [17–26]. In a previous study [12], we found
that high cfDNA levels in FF samples from individually aspirated follicles at oocyte retrieval
day were correlated with poor embryo quality at day 3. Moreover, a recent study reported that
elevated plasma cfDNA levels were associated with low chances of pregnancy in women under-
going IVF [27]. However, the potential of FF cfDNA to predict the clinical pregnancy outcome
in IVF/intracytoplasmic sperm injection (ICSI) cycles remains to be investigated.

In this study, we quantified cfDNA in FF pools and investigated whether cfDNA levels
could be related to women’s ovarian reserve status, COS protocols and ovarian response to
stimulation treatment. Then we explored the FF cfDNA potential to predict IVF outcomes
such as embryo and clinical pregnancy outcomes. Our results suggest that cfDNA levels in FF
are significantly influenced by the ovarian reserve status and the type of gonadotropin treat-
ment. CfDNA quantification in FF pools could provide a new non-invasive and easy method to
explore the quality of follicular microenvironment and to predict ovarian response, embryo
development and the clinical pregnancy outcome. Therefore, during IVF process, cfDNA
could be quantified in FF in order to understand and to improve the personalized patient’s
care.

Materials and Methods

Patients
This prospective study recruited 100 women enrolled in conventional IVF (n = 31) or ICSI
(n = 69) program at the ART-PGD Department of the University Hospital of Montpellier.
The patients’ characteristics are detailed in Table 1. The women’s age was 34.3 ± 4.5 years
(mean ± SD; range: 23 to 43 years) and the body index mass (BMI) was 23.3 ± 4.2 kg/m2

(mean ± SD; range: 17 and 39 kg/m2). The infertility length was 3.5 ± 1.7 years (mean ± SD).
For 61% of the couples this was the first IVF or ICSI cycle and the remaining 39% of the
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Table 1. Cell-free DNA level in follicular fluid pools according to the patients’ clinical characteristics.

Variable Mean n Min-Max SD FF cfDNA (ng/μl) p-value

(total = 100) Mean ± SD

[95%CI]

Age (years) 34.3 − 23−43 4.5 − −

< 37 years − 64 − − 1.9 ± 2.7 [0.1–2.5] 0.19 NS

� 37 years − 36 − − 1.5 ± 1.0 [1.1–1.8]

BMI (kg/m2) 23.3 − 17−39 4.2 − −

18.5�BMI<25 − 58 − − 1.9 ± 2.6 [1.2–2.6] ref

BMI<18.5 − 10 − − 1.2 ± 1.1 [0.4–1.9] 0.54 NS

25�BMI<30 − 24 − − 1.7 ± 1.6 [1.0–2.4] 0.56 NS

BMI�30 − 8 − − 1.6 ± 1.5 [0.3–2.8] 0.93 NS

Infertility length (years)* 3.5 − 1−9 1.7 − −

1 − 8 − − 1.1 ± 1.6 [0–2.4] ref

2−4 − 68 − − 1.4 ± 1.3 [1.1–1.7] 0.08 NS

� 5 − 23 − − 2.9 ± 3.8 [1.3–4.5] 0.049

Infertility aetiology

Male factor − 37 − − 1.5 ± 1.1 [1.1–1.9] ref

Female factor − 36 − − 1.9 ± 2.1 [1.2–2.6] 0.72 NS

Tubal alterations (%) − 9 (25) − − 1.3 ± 1.6 [0.1–2.5] 0.28 NS

Endometriosis (%) − 21 (58.3) − − 2.1 ± 2.5 [0.9–3.2] 0.67 NS

Ovulatory dysfunction (%) − 1 (2.8) − − − −

Ovarian disorders (%) − 4 (11.1) − − 2.3 ± 1.3 [0.1–4.4] 0.28 NS

Uterine factor (%) − 1 (2.8) − − − −

Mixed infertility − 16 − − 1.7 ± 3.1 [0.1–3.4] 0.08 NS

Unexplained infertility − 11 − − 2.0 ± 3.7 [0–4.5] 0.23 NS

Primary infertility − 61 − − 2.1 ± 2.7 [1.5–2.8] 0.08 NS

Secondary infertility − 39 − − 1.1 ± 0.8 [0.8–1.4]

IVF/ICSI rank number 2.1 − 1−4 1.3 − −

1 − 39 − − 1.2 ± 0.9 [0.9–1.5] 0.39 NS

> 1 − 61 − − 2.1 ± 2.7 [1.4–2.8]

Baseline evaluation

FSH (IU/l)* 7.4 − 0.1−19 2.4 − −

< 10 − 87 − − 1.6 ± 2.0 [1.2–2.1] 0.42 NS

� 10 − 12 − − 2.4 ± 3.7 [0–4.7]

LH (IU/l)* 5.7 − 1−11.2 1.9 − −

3─5 − 32 − − 1.4 ± 1.3 [0.9–1.8] ref

< 3 − 5 − − 2.0 ± 1.0 [0.7–3.3] 0.1 NS

> 5 − 60 − − 1.8 ± 2.6 [1.1–2.4] 0.7 NS

E2 (pg/ml)* 40.7 − 4−99 17.8 − −

� 45 − 66 − − 1.8 ± 2.5 [1.2–2.5] 0.56 NS

> 45 − 32 − − 1.5 ± 1.6 [1.0–2.1]

AMH (ng/ml)* 2.7 − 0.2−8.6 1.6 − −

� 1 − 5 − − 4.3 ± 5.0 [0–10.4] 0.06 NS

> 1 − 90 − − 1.6 ± 2.0 [1.2–2.0]

AFC* 13.7 − 3−25 5.7 − −

< 10 − 24 − − 2.3 ± 2.6 [1.2–3.4] 0.04

� 10 − 63 − − 1.5 ± 2.2 [1.0–2.1]

Normal ovarian reserve − 94 − − 1.7 ± 2.3 [1.3–2.2] ref

(Continued)
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couples had undergone at least one cycle (mean rank number ± SD: 2.1 ± 1.3). In 11% of the
couples, no specific cause of infertility was detected, while in the other couples, male (37%),
female (36%) or mixed (16%) factors were identified. Based on the AMH level and AFC at day
3 of menstrual cycle, 94 of the 100 patients had a normal ovarian reserve and 6 had low func-
tional ovarian reserve (LFOR). Basal FSH, LH and E2 levels were quantified also at day 3 of the
menstrual cycle in each patient (Table 1).

In addition, cfDNA was quantified also in FF pools from 17 women with PCOS who were
classified according the Rotterdam criteria [28]. The clinical characteristics of PCOS patients
are reported separately in S1 Table.

Each patient’s written informed consent for FF sample collection/analysis was obtained on
oocyte retrieval day. This study was approved by the Ethical Committee of the Institute for
Regenerative Medicine and Biotherapy and the methods were carried out in accordance with
the approved guidelines.

In vitro fertilization protocol and follicular fluid sample collection
Forty-eight patients received a daily GnRH agonist protocol (Decapeptyl, IpsenPharma) and
the others an antagonist protocol. These two protocols included ovarian stimulation by recom-
binant FSH (r-FSH) (Puregon, MSD, Courbevoie, France). The ovarian response to stimulation
was monitored by quantifying serum E2 level and by ultrasound assessment of follicular and
endometrial growth. The ovarian stimulation length was 10 ± 1.2 day and the total gonadotro-
pin dose was 2414.7 ± 932.5 IU/l (mean ± SD) (Table 2). Ovulation was triggered by a single
injection of 250 μg human chorionic gonadotropin (hCG) (Ovitrelle, Merck Serono, Lyon,
France), when at least three follicles reached the diameter of 17 mm or more on ultrasound
examination.

Oocyte retrieval was performed by transvaginal ultrasound-guided aspiration 36h after hCG
administration and all follicles were aspirated without flushing. All FF samples collected from
the same patient were pooled and cumulus-oocyte complexes were isolated for conventional
IVF or ICSI procedures.

Before ICSI, cumulus and coronal cells were removed to assess oocyte maturity rate. On
average, 9.5 ± 4.7 oocytes (mean ± SD) (S2 Table) were obtained and individually maintained

Table 1. (Continued)

Variable Mean n Min-Max SD FF cfDNA (ng/μl) p-value

(total = 100) Mean ± SD

[95%CI]

Low functional ovarian reserve − 6 − − 2.1 ± 1.4 [0.6–3.6] 0.29 NS

FF, follicular fluid

SD, standard deviation

BMI, body mass index

FSH, follicle-stimulating hormone

LH, luteinizing hormone

E2, 17β-estradiol

AMH, anti-Müllerian hormone

AFC, antral follicle count.

*Total number of patients < 100.

P-values: Mann-Whitney test.

doi:10.1371/journal.pone.0136172.t001
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Table 2. Cell-free DNA level in follicular fluid pools according to controlled ovarian stimulation protocols and ovarian response to stimulation.

Variable Mean n Min-Max SD FF cfDNA (ng/μl) p-value

(total = 100) Mean ± SD

[95%CI]

Agonist protocol** − 48 − − 1.4 ± 2.0 [0.9–2.0] 0.09 NS

Antagonist protocol − 50 − − 1.8 ± 1.8 [1.3–2.3]

Ovarian stimulation treatment

Days of stimulation 10 − 7−14 1.2 − −

7−10 − 71 − − 1.5 ± 1.9 [1.0–1.9] 0.008

> 10 − 29 − − 2.4 ± 2.8 [1.4–3.5]

Total dose of gonadotropins (IU/l) 2414.7 − 875−4950 932.5 − −

< 3000 − 66 − − 1.5 ± 2.1 [1.0–2.0] 0.01

� 3000 − 34 − − 2.2 ± 2.3 [1.4–3.0]

Agonist protocol

Days of stimulation 10 − 8−14 1.1

8−10 − 37 − − 1.1 ± 1.1 [0.7–1.4] 0.05 NS

> 10 − 11 − − 2.7 ± 3.6 [0.3–5.1]

Total dose of gonadotropins (IU/l) 2324 − 900−4200 797.8

< 3000 − 34 − − 1.1 ± 1.1 [0.7–1.5] 0.049

� 3000 − 14 − − 2.4 ± 3.2 [0.5–4.2]

Antagonist protocol

Days of stimulation 10 − 7−13 1.2

7−10 − 33 − − 1.5 ± 1.6 [1.0–2.1] 0.11 NS

> 10 − 17 − − 2.2 ± 2.3 [1.0–3.4]

Total dose of gonadotropins (IU/l) 2475.5 − 875–4950 982.7

< 3000 − 31 − − 1.6 ± 2.0 [0.9–2.3] 0.13 NS

� 3000 − 19 − − 2.0 ± 1.6 [1.3–2.8]

Hormonal ovarian response at ovulation triggering

Peak E2 level (pg/ml) 1793.2 − 341−4768 799 − −

1000–2000 − 56 − − 1.8 ± 2.1 [1.2–2.3] ref

< 1000 − 12 − − 2.4 ± 3.5 [0.2–4.6] 0.71 NS

> 2000 − 32 − − 1.4 ± 1.8 [0.8–2.1] 0.23 NS

Progesterone level (ng/ml) 0.8 − 0.1−1.6 0.3 − −

< 1 − 76 − − 1.7 ± 2.1 [1.2–2.2] 0.82 NS

� 1 − 24 − − 1.8 ± 2.6 [0.7–2.9]

LH level (IU/l) 2.0 − 0.1−6.0 1.5 − −

< 2 − 38 − − 1.9 ± 2.0 [1.3–2.6] 0.62 NS

� 2 − 24 − − 2.3 ± 3.5 [0.8–3.7]

FF, follicular fluid

E2, 17β-estradiol

LH, luteinizing hormone

IVF, in vitro fertilization

ICSI, intracytoplasmic sperm injection.

**except two mild ovarian stimulations.

P-values: Mann-Whitney test.

doi:10.1371/journal.pone.0136172.t002
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in 30 μl micro-droplets of culture medium (Vitrolife) under oil, at 37°C, in 5% O2, 6% CO2,
89% N2 and in humid atmosphere. Oocytes were considered as normally fertilized if two pro-
nuclei and two polar bodies were observed 18–20 h after microinjection or insemination. Early
cleavage was checked at 25 or 27 h after microinjection or insemination, respectively. On day 2
and 3, embryo morphology was evaluated by microscopic observation of morphological crite-
ria, such as number of blastomeres, blastomere regularity and fragmentation rate. Embryo
quality was graded from 1 to 4, as described in S3 Table. A top quality embryo (grade 1 and 2)
was defined as an embryo with 4–5 or 6–8 regular blastomeres, at day 2 or 3, respectively, and
containing less than 20% fragments. At day 3, top quality embryos were selected for transfer or
freezing, whereas the others were cultured up to day 5 and frozen by vitrification (Irvine Scien-
tific recommendation), according to their quality, assessed by Gardner scoring [29]. Four
weeks after transfer, clinical pregnancy was confirmed by the presence of at least one gesta-
tional sac and the visualization of embryonic heart activity on ultrasound examination.

Follicular fluid preparation
All FF samples from the same patient were pooled and a volume of 15 ml was centrifuged at
3000g for 15 min. Supernatants were filtered with 0.45 μm filters to eliminate cell debris and
then stored at -80°C until cfDNA quantification. A total of 117 FF pools were collected for this
study.

Cell-free DNA extraction and quantification by ALU-qPCR
Follicular Fluid pools were prepared for cfDNA quantification as previously reported [30]. Spe-
cifically, 20μl of each FF pool was digested with 16 μg proteinase K (PK) (Qiagen) in 20 μl of
buffer (25 ml/l Tween 20, 50 mmol/l Tris and 1 mmol/l EDTA) at 50°C for 20 min, followed by
PK heat inactivation and insolubilization at 95°C for 5 min. After centrifugation at 10 000g for
5 min, supernatants were removed and stored at -80°C for cfDNA quantification.

The total cfDNA was quantified by qPCR, using ALU 115 primers [30]. Each ALU-qPCR
reaction included 1μl of PK-digested FF pool and a reaction mixture containing 0.25 μM of for-
ward and reverse ALU 115 primers and 5 μL of 2X LightCycler480 SYBR Green I master mix
(Roche Applied Science, Germany). CfDNA concentration in FF pools was determined using a
standard curve obtained by successive dilutions of genomic DNA [30]. A negative control
(without template) was integrated in each qPCR plate and each FF pool was analysed in
quadruplicate.

To determine which proportion of cfDNA was released from necrotic or apoptotic cells,
cfDNA was also quantified by using qPCR with ALU 247 primers. These primers amplify only
larger fragments that result from necrosis. This allows the calculation of DNA integrity by
using the Q247/Q115 ratio, which represents the proportion of cfDNA generated by necrosis
over total cfDNA. The mean of Q247/Q115 ratio was 0.14 (SD: 0.16) in follicular fluid samples
(n = 117), suggesting that the cfDNA analysed mainly originated from cellular apoptotic
events.

Statistical analysis
Univariate analysis was performed for each variable. Continuous parametric data are presented
as mean ± standard deviation (SD) and categorical variables as numbers and percentages. The
Mann-Whitney test and Spearman correlations were used to compare cfDNA levels according
to quantitative variables, based on the normality of the distribution assessed using the Shapiro-
Wilk test. A multivariate analysis was used to model the clinical pregnancy probability. A logis-
tic regression model was fitted in which all variables associated with a p value lower than 0.20
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were included in the univariate analysis. Then, a stepwise procedure allowed obtaining the
final multivariate model. The ability of FF cfDNA level to predict the clinical pregnancy out-
come was determined by constructing the Receiving Operator Curve (ROC) curve and calcu-
lating the area under the curve (AUC) with 95% confidence intervals (CI). The sensitivity and
specificity for the optimal cut-off were calculated. Statistical tests were performed using the R
(version 2.15.2) software. Results were considered significant when p� 0.05.

Results

Cell-free DNA level in follicular fluid pools in relation to ovarian reserve
status and infertility length
The cfDNA concentration in FF pools of the 17 patients with polycystic ovary syndrome
(PCOS) was significantly higher than in FF pools from patients with normal ovarian reserve
(n = 94) (2.9 ± 3.1 ng/μl versus 1.7 ± 2.3 ng/μl, p = 0.049) (S1 Fig). Overall, cfDNA levels were
significantly higher in FF pools from patients with ovarian reserve disorders (including LFOR
and PCOS) than in FF pools from women with normal ovarian reserve (2.7 ± 2.7 ng/μl versus
1.7 ± 2.3 ng/μl, p = 0.03) (Fig 1A).

Given the specific PCOS clinical profile, we decided to exclude these 17 patients from the
subsequent analysis. Moreover, cfDNA concentrations were significantly higher in FF pools
from patients with low AFC (< 10) than in samples from women with normal AFC (� 10)
(2.3 ± 2.6 ng/μl versus 1.5 ± 2.2 ng/μl, respectively, p = 0.04) (Fig 1B, left panel and Table 1).
Likewise, FF cfDNA level tended to be higher in women with very low AMH serum concentra-
tion at day 3 of the menstrual cycle (� 1 ng/ml) than in those with AMH> 1 ng/ml (4.3 ± 5.0
ng/μl versus 1.6 ± 2.0 ng/μl, respectively, p = 0.06) (Fig 1B, right panel and Table 1).

Finally, FF cfDNA levels progressively increased with the infertility length and were signifi-
cantly higher in patients who had been trying to conceive for more than five years compared to
women who tried only for one year (2.9 ± 3.8 ng/μl versus 1.1 ± 1.6 ng/μl, p = 0.049) (Fig 1C
and Table 1).

Cell-free DNA concentration in follicular fluid pools according to
controlled ovarian stimulation protocol and ovarian response
Follicular Fluid cfDNA level did not vary significantly between women who received GnRH
agonists and those treated with antagonists (Table 2). On the other hand, it was significantly
higher after long ovarian stimulation (>10 days) than after a short treatment (7–10 days)
(2.4 ± 2.8 ng/μl versus 1.5 ± 1.9 ng/μl, p = 0.008) (Fig 2A and Table 2). Likewise, Spearman’s
correlation analysis showed that FF cfDNA level was significantly and positively correlated
with the ovarian stimulation length (r = 0.2; p = 0.04) (data not shown). Moreover, cfDNA
level was significantly higher in FF pools from women who received high total dose of gonado-
tropins (� 3000 IU/l) than in women treated with lower dose (<3000 IU/l) (2.2 ± 2.3 ng/μl ver-
sus 1.5 ± 2.1 ng/μl, p = 0.01) (Fig 2B and Table 2). A similar result was obtained when only
patients who received an agonist protocol were considered (2.4 ± 3.2 ng/μl versus 1.1 ± 1.1
ng/μl, p = 0.049) (Table 2). In addition, FF pools from patients with a low number of retrieved
oocytes (�6) had a significantly higher cfDNA concentration than those from women with
higher number of retrieved oocytes (>6) (2.8 ± 3.5 ng/μl versus 1.4 ± 1.5 ng/μl, p = 0.045)
(Fig 2C and S2 Table).
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Cell-free DNA concentration in follicular fluid pools and embryo
outcomes
At day 2 post-fertilization, oocyte cohorts that gave rise to a small number of embryos (� 2
embryos) were found to be related to FF pools with significantly higher cfDNA level compared
to oocyte cohorts from which at least three embryos were obtained (2.5 ± 2.9 ng/μl versus
1.6 ± 2.0 ng/μl, respectively, p = 0.03) (Fig 3A and Table 3). Moreover, 1.8 ± 1.9 and 1.5 ± 1.5
(mean ± SD) embryos in each embryo cohort (i.e., embryos obtained for each patient) were

Fig 1. Cell-free DNA level in follicular fluid pools according to the patients’ ovarian reserve status, ovarian reserve parameters and infertility
length. A, Follicular fluid cfDNA content in patients with normal ovarian reserve versus patients with ovarian reserve disorders (ovarian insufficiency and
polycystic ovary syndrome); *p = 0.03.B, Follicular fluid cfDNA content according to the ovarian reserve parameters; left panel: AFC (<10 versus� 10,
*p = 0.04); right panel: AMH (� 1 versus > 1 ng/ml, *p = 0.06).C, Follicular fluid cfDNA levels according to the infertility length (1 versus� 5 years,
*p = 0.049).

doi:10.1371/journal.pone.0136172.g001
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considered as top quality (grade 1 and 2) at day 2 and day 3, respectively. At these early cleav-
age stages, cfDNA concentration was significantly higher in FF pools related to embryo cohorts
that included only poor quality embryos (grades 3 and 4), compared to those related to cohorts

Fig 2. CfDNA level in follicular fluid pools according to the ovarian stimulation protocol and ovarian
response. A, Follicular fluid cfDNA content according to the length of ovarian stimulation (� 10 versus > 10
days, *p = 0.008). B, Follicular fluid cfDNA content according to the total dose of gonadotropins (<3000
versus�3000 IU/l, *p = 0.01). C, Follicular fluid cfDNA content according to the number of retrieved oocytes
(� 6 versus > 6 oocytes, *p = 0.045).

doi:10.1371/journal.pone.0136172.g002
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Fig 3. CfDNA level in follicular fluid pools according to the embryo outcome at day 2 and 3. A,
Follicular Fluid cfDNA content according to the total number of embryos at day 2 (� 2 versus > 2, *p = 0.03).
B, Follicular Fluid cfDNA content according to, left panel: the number of top quality (grade 1–2) embryos per
patient (0 versus� 1, *p = 0.002) at day 2, right panel: ratio between number of top quality embryos and total
number of embryos (< 0.2 versus� 0.2, *p = 0.04) at day 2.C, Follicular Fluid cfDNA content according to,
left panel: number of top quality (grade 1–2) embryos per patient (0 versus� 1, *p = 0.006) at day 3, right
panel: ratio between number of top quality embryo and total number of embryos (< 0.2 versus� 0.2,
*p = 0.02) at day 3. D, Follicular Fluid cfDNA content according to, left panel: fragmentation rate at day 3
(<20% versus� 20%, p = 0.18) and right panel: ratio between blastomere number and total embryo number
at day 3 (<6 versus 6–8, *p = 0.02).

doi:10.1371/journal.pone.0136172.g003
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with at least one top quality embryo (at day 2: 3.0 ± 3.4 ng/μl versus 1.3 ± 1.5 ng/μl, p = 0.002;
at day 3: 2.5 ± 3.0 ng/μl versus 1.4 ± 1.7 ng/μl, p = 0.006, respectively) (Fig 3B and 3C, left
panels and Table 3). Likewise, Spearman’s correlation analysis indicated that there were signifi-
cant and negative correlations between FF cfDNA concentration and number of top quality
embryos (grades 1 and 2) at day 2 and 3 (r = -0.21, p = 0.04; r = -0.21; p = 0.04, respectively)
(data not shown). Moreover, cfDNA level was significantly higher in the FF pools related to
embryo cohorts with less than 20% top quality embryos at day 2 and 3 compared to those
related to embryo cohorts that included more than 20% top quality embryos (day 2: 2.5 ± 3.1
ng/μl versus 1.3 ± 1.5 ng/μl, p = 0.04; day3: 2.4 ± 3.0 ng/μl versus 1.3 ± 1.4 ng/μl, p = 0.02,
respectively) (Fig 3B and 3C, right panels and Table 3). In addition, the ratio between number
of grade 1–2 embryos and the total number of embryos calculated at day 2 and 3 was signifi-
cantly and negatively correlated with FF cfDNA level (r = -0.27; p = 0.01 and r = -0.23; p =
0.03, respectively) (data not shown).

Considering each morphological criterion individually at day 3, cfDNA levels tended to be
higher in FF pools related to embryos with high fragmentation rate (� 20%) than with low

Table 3. Cell-free DNA levels in follicular fluid pools according to the embryo development outcome at early stages (day 2 and day 3).

Embryo development outcome Mean SD n FF cfDNA (ng/μl) p-value

Mean ± SD

[95%CI]

At day 2

Total embryo number 5.3 3.7 ─ ─ ─

� 2 ─ ─ 20 2.5 ± 2.9 [1.2–3.9] 0.03

> 2 ─ ─ 78 1.6 ± 2.0 [1.1–2.0]

Grade 1–2 embryos 1.8 1.9 ─ ─ ─

No grade 1−2 ─ ─ 26 3.0 ± 3.4 [1.7–4.4] 0.002

� 1 grade 1−2 ─ ─ 65 1.3 ± 1.5 [0.9–1.4]

Grade 1–2 embryos / all embryos 0.3 0.28 ─ ─ ─

ratio < 0.2 ─ ─ 34 2.5 ± 3.1 [1.5–3.6] 0.04

ratio � 0.2 ─ ─ 57 1.3 ± 1.5 [0.9–1.7]

At day 3

Grade 1–2 embryos 1.5 1.5 ─ ─ ─

No grade 1−2 ─ ─ 32 2.5 ± 3.0 [1.4–3.6] 0.006

� 1 grade 1−2 ─ ─ 59 1.4 ± 1.7 [1.0–1.8]

Grade 1–2 embryos / all embryos 0.29 0.3 ─ ─ ─

ratio < 0.2 ─ ─ 39 2.4 ± 3.0 [1.4–3.4] 0.02

ratio � 0.2 ─ ─ 52 1.3 ± 1.4 [0.9–1.7]

% fragmentation 0.19 0.11 ─ ─ ─

% fragmentation < 20 ─ ─ 60 1.4 ± 1.3 [1.0–1.7] 0.18 NS

% fragmentation � 20 ─ ─ 31 2.6 ± 3.4 [1.3–3.9]

Total blastomere number/total embryo number ─ ─ ─

ratio = 6−8 ─ ─ 45 1.8 ± 2.8 [1.0–2.6] ref

ratio < 6 ─ ─ 11 2.8 ± 2.7 [1.0–4.6] 0.02

ratio > 8 ─ ─ 35 1.4 ± 1.2 [1.0–1.8] 0.39 NS

FF, follicular fluid

SD, standard deviation.

P-values: Mann-Whitney test.

doi:10.1371/journal.pone.0136172.t003
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fragmentation rate (<20%) (2.6 ± 3.5 ng/μl versus 1.4 ± 1.3 ng/μl, respectively, p = 0.18) (Fig
3D, left panel and Table 3). Moreover, the ratio between total number of blastomeres and total
number of embryos was calculated for each embryo cohort to estimate the global developmen-
tal kinetics. At day 3, cfDNA levels were significantly higher in FF pools corresponding to
embryo cohorts with a low total blastomere number/total embryo number ratio (<6; delayed
development) than in those with normal developmental kinetics (ratio between 6 and 8)
(2.8 ± 2.7 ng/μl versus 1.8 ± 2.8 ng/μl, respectively, p = 0.02) (Fig 3D, right panel and Table 3).

Predictive value of cell-free DNA in follicular fluid pools for clinical
pregnancy outcome
After adjustment for the rank of IVF/ICSI attempts and the number of embryos, FF cfDNA
level was significantly and independently associated with the clinical pregnancy outcome
[Adjusted Odd Ratio: 0.69 [0.5; 0.96], p = 0.03] (Table 4). The area under the ROC curve,
which quantifies the clinical pregnancy prediction potential of FF cfDNA concentration, was
0.73 [0.66–0.87] with 88% specificity and 60% sensitivity (Fig 4). On the other hand, the num-
ber of top quality embryos (grades 1 and 2) did not predict significantly the clinical pregnancy
outcome (p = 0.42), suggesting that in our population, the predictive value of FF cfDNA level
was higher than the number of top quality embryos.

Discussion
This study demonstrates that cfDNA content in pooled FF samples from the same patient is
significantly related to the woman’s ovarian reserve status, suggesting that high FF cfDNA level
could reflect a poor follicular micro-environment. It also shows that cfDNA levels were signifi-
cantly higher in FF pools after a long or strong ovarian stimulation than after a short treatment
or stimulation with low doses of gonadotropins. Finally, our data indicate that FF cfDNA could
be used to predict the clinical pregnancy outcome (Fig 5). Altogether, our results suggest that
FF cfDNA quantification could be considered for improving IVF strategy and outcomes.

CfDNA amount was significantly higher in FF pools from women with long infertility
length (more than 5 years). Long infertility length is often associated with increased stress in
infertile couples [31, 32] (Fig 5). Interestingly, a recent study reported that blood cfDNA level
was higher in patients undergoing IVF and suffering from stress [33]. Therefore, a long period
of stress, caused by the absence of pregnancy, could lead to an increase of apoptotic events in
follicular cells and ultimately to higher FF cfDNA levels. Moreover, it has been shown that
relaxation techniques may be beneficial during IVF process, to reduce plasma cfDNA levels
and to improve pregnancy outcomes [33].

Table 4. Multivariate logistic model showing the prediction of clinical pregnancy according to the cell-free DNA level in follicular fluid pools.

Parameters Crude OR p-value Adjusted OR p-value

[95% CI] [95% CI]*

Probability to obtain a clinical pregnancy

FF cfDNA (ng/μl) 0.75 [0.55; 1.03] 0.08 0.69 [0.5; 0.96] 0.03

IVF/ICSI rank number = 1 vs >1 2.5 [1.0; 6.27] 0.05 3.6 [1.3; 9.8] 0.01

Embryo number 1.15 [1.0; 1.3] 0.04 1.18 [1.01; 1.37] 0.03

OR, odds ratio

*Adjusted to the rank of IVF/ICSI attempts and the number of embryos.

doi:10.1371/journal.pone.0136172.t004
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CfDNA levels were significantly higher in FF pools from women suffering from PCOS or
more generally with ovarian reserve disorders (PCOS and LFOR). PCOS is the most common
endocrinopathy in reproductive age women. A variety of biochemical abnormalities have been
described in this syndrome, such as hyperinsulinaemia and hyperandrogenism via stimulation
of ovarian androgen secretion [34]. Recently, it was reported that high insulin concentration
promotes apoptosis in primary cultured rat ovarian granulosa cells [35]. Therefore, high FF
cfDNA content in patients with PCOS could be explained by increased apoptosis in granulosa
cells due to hyperinsulinaemia. Moreover, we previously reported that cfDNA levels are signifi-
cantly higher in small follicles compared to large ones [12]. PCOS is associated with follicular
maturity abnormalities, such as increased number of small pre-antral follicles [8, 36]. These
small follicles could contain high cfDNA levels, thus explaining why cfDNA concentration is
high in FF pools from patients with PCOS. We also show that FF cfDNA concentration is high
in women with poor ovarian reserve (AFC<10 or AMH�1 ng/ml) [2, 3]. As ovarian reserve
decline is caused by accelerated apoptosis in ovary [37–39], this could lead to an important
release of DNA fragments within ovarian follicles. Moreover, in order to optimize their ovarian
response, women with poor ovarian reserve receive large gonadotropin doses and at oocyte
retrieval day, the practitioner would try to aspirate with more assiduity the smaller follicles to
increase number of oocytes. Therefore, in this case follicular fluids from smaller follicles would
become proportionally more represented in the pool than in normal responders with a syn-
chronized cohort of larger follicles. These observations suggest that cfDNA content in antral

Fig 4. ROC curve to evaluate the predictive value of follicular fluid cfDNA level for clinical pregnancy
outcome in a multivariate model (including the rank of IVF/ICSI attempts and the number of embryos):
area under the curve = 0.73 [0.66–0.87], sensitivity = 60%, specificity = 88%.

doi:10.1371/journal.pone.0136172.g004
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follicles could depend on (i) the basal ovarian status (increased cfDNA in the case of ovarian
dysfunction) and/or on (ii) the follicular maturity after recruitment by COS protocols.

Indeed, FF cfDNA level was significantly higher after a long COS protocol (>10 days) or
after administration of high doses of gonadotropins (� 3000 IU/l). Moreover, the ovarian
reserve status strongly influences the ovarian response to COS protocols [8, 40, 41]. For
instance, long or strong ovarian stimulation is currently recommended for women at risk of
poor ovarian response [3, 4]. Accordingly, patients who received long stimulation or high
gonadotropin dose partially overlaps with patients with high intra-follicular cfDNA levels
related to low ovarian reserve. Moreover, high FF cfDNA level after long or strong stimulation
could represent a true effect of COS protocols, with potential harmful consequences on
IVF/ICSI outcomes. For instance, strong supra-physiological gonadotropin doses could induce
apoptosis of follicular cells [42], suggesting the necessity to specifically tailor stimulation treat-
ments to each patient’s profile. Conversely, FF cfDNA content did not differ according to the
type of COS protocols (agonist versus antagonist). In agreement, similar apoptosis levels were
detected in granulosa cells exposed to agonist or antagonist treatments [43].

FF cfDNA concentration was also significantly higher in patients from whom few oocytes were
retrieved (�6) [44] or few embryos obtained (�2). This observation confirms that high FF cfDNA
level is significantly associated with poor ovarian response to COS protocols (Fig 5). Moreover, it
suggests that FF cfDNA level is related to both retrieved oocyte quantity and quality, two key features
for embryo production. Indeed, it is largely recognized that the follicular environment influences
strongly the oocyte developmental competence [45–48]. For this reason, FF cfDNA could represent
a new promising biomarker of follicular microenvironment quality. A poor follicular

Fig 5. Schematic model summarizing the significant relationships between cell-free DNA levels in human follicular fluid (FF) and: infertility length,
ovarian reserve status, ovarian stimulation, ovarian response to stimulation, embryo development and clinical pregnancy outcomes,
respectively. High cell-free DNA levels in human FF reflect a poor quality of follicular micro-environment and consequently are related to a poor IVF
prognosis. r-FSH, recombinant FSH.

doi:10.1371/journal.pone.0136172.g005
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microenvironment, with high cfDNA levels could affect oocyte developmental competence and
embryo development, thus leading to IVF failure. As we found that strong or long ovarian stimula-
tion leads to high FF cfDNA level, it could be recommended to adapt the stimulation length and
gonadotropin dose to each patient to limit FF cfDNA production. Indeed, the preservation of the
follicular microenvironment is primordial to obtain competent oocytes and thus competent
embryos.

This study confirms our previous observation [12] that cfDNA levels in FF samples are sig-
nificantly correlated with embryo quality during early development, when embryos rely on the
oocyte maternal reserve (on day 2 and 3). Indeed, cfDNA levels were significantly higher in FF
pools related to oocyte cohorts that gave only poor quality embryos, embryos with high frag-
mentation rate (�20%) or developmentally delayed embryos (total blastomere number/total
embryo number ratio< 6). These poor quality embryos came from oocyte cohorts surrounded
by FF containing high cfDNA levels, suggesting a negative effect of a cfDNA-rich follicular
environment on embryo quality [12] (Fig 5). In agreement with these results, high mitochon-
drial DNA level in embryo culture medium was also significantly associated with high frag-
mentation rate at early embryo cleavages [49].

Finally, FF CfDNA level in a multivariate model predicted significantly the clinical preg-
nancy outcome with high specificity (88%), independently of the rank of IVF/ICSI attempts
and the number of embryos. FF cfDNA level predictive potential was higher than that of the
number of top quality embryos (based on morphological criteria). Therefore, this predictive
model could be used as a supplemental tool for determining the chance of IVF success.
Recently, a significant association between the mitochondrial DNA/genomic DNA ratio in
embryo culture medium and implantation outcome was reported [50]. Moreover, Czamanski-
Cohen et al. [27] found higher cfDNA level in serum samples from patients with low preg-
nancy rates after IVF. As there is fluid components’movement between follicles and vascula-
ture [51], DNA fragments could come from massive apoptotic events that occur in the ovaries
and that contribute to increasing cfDNA level in FF samples.

In addition, cfDNA quantification in FF pools, fast and easy to perform, could provide an
overall picture of the follicular micro-environment quality, influencing IVF outcomes. There-
fore, this quantification could be associated with the morphology-based method in order to
improve embryo selection for replacement or freezing and consequently the chance of IVF suc-
cess. This biomarker might constitute a supplemental tool for improving female infertility
management and developing a personalized care program.
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