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Abstract
Vitamin E is an essential nutrient for human health, with an established function as a lipid-

soluble antioxidant that protects cell membranes from free radical damage. Low vitamin E

status has been linked to multiple health outcomes, including total mortality. With vitamin E

being identified as a ‘shortfall nutrient’ because >90% of American adults are not consuming

recommended amounts of vitamin E, we aimed to determine the prevalence of both clinical

vitamin E deficiency (serum α-tocopherol concentration < 12 μmol/L) and failure to meet a

criterion of vitamin E adequacy, serum α-tocopherol concentration of 30 μmol/L, based on

the Estimated Average Requirement (EAR) and lowest mortality rate in the Alpha-Tocoph-

erol Beta-Carotene (ATBC) study. The most recent nationally-representative cross-sec-

tional data (2003–2006) among non-institutionalized US citizens with available serum

concentrations of α-tocopherol from the National Health and Nutrition Examination Survey

(NHANES); Centers for Disease Control and Prevention were analyzed. Serum α-tocoph-

erol distributions were compared between those reporting consumption of food without sup-

plement use (FOOD) and food and supplement use (FOOD+DS) by sex, age, and race/

ethnicity. Only 1% of the US population is clinically deficient. FOOD consumers have lower

average α-tocopherol levels (24.9± 0.2 μmol/L) than FOOD+DS users (33.7 ± 0.3 μmol/L),

even when adjusted for total cholesterol. Using a criterion of adequacy of 30 μmol/L, 87% of

persons 20-30y and 43% of those 51+y had inadequate vitamin E status (p<0.01). A signifi-

cant greater prevalence of FOOD compared to FOOD+DS users did not meet the criterion

of adequacy which was based on the EAR and low ATBC mortality rate consistently across

age, sex, and race/ethnic groups. The prevalence of inadequate vitamin E levels is signifi-

cantly higher among non-users of dietary supplements. With declining usage of vitamin E

supplements, the population should be monitored for changes in vitamin E status and

related health outcomes.
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Introduction
Vitamin E (α-tocopherol) is an antioxidant nutrient essential for health, first discovered in
1922 for its role in maintaining pregnancy in rodents [1]. The term vitamin E used in this pub-
lication refers to the 2R stereoisomer of α-tocopherol used to establish recommended intakes
[2]. As a fat-soluble antioxidant, the primary recognized function of vitamin E is to serve as a
free radical scavenger in lipid components of the cell, such as cell membranes and plasma lipo-
proteins [2]. Clinical signs of vitamin E deficiency include erythrocyte hemolysis and periph-
eral neuropathy. While overt clinical deficiencies of vitamin E are rare [3], inadequate vitamin
E intake has been linked to outcomes such as heart disease [4,5], impaired immune function
[6,7], infertility [8,9], and even overall mortality [10]. Dietary intake of vitamin E from food is
below recommendations [11–13]. In the United States, 83% of children [14] and 91% of adults
[15] fail to consume the Estimate Average Requirement (EAR) for vitamin E from food alone.
Because of the prevalence of inadequate vitamin E intake, the 2015 Dietary Guidelines Advi-
sory Committee identified vitamin E as a shortfall nutrient.

For vitamin E, the EAR (12 mg/day; expected to result in a serum α-tocopherol concentra-
tion of 27.9 μmol/L) is based on the α-tocopherol concentration limiting in vitro hydrogen per-
oxide-induced erythrocyte hemolysis to� 12%. Vitamin E deficiency is defined as serum α-
tocopherol concentration< 12 μmol/L [2]. Given the prevalence of inadequate vitamin E
intake and limitations of dietary intake assessments [16], especially for vitamin E [17], we used
serum α-tocopherol data from the NHANES survey to assess vitamin E status according to the
prevalence of vitamin E deficiency and the proportion of Americans failing to meet a criterion
of vitamin E adequacy. Since functional markers for vitamin E adequacy are currently missing,
the criterion of vitamin E adequacy was defined as 30 μmol/L. This cutoff was chosen because
30 μmol/L is the concentration associated with the EAR [18], the average serum concentration
for American adults [11], the level at which urinary α-CEHC excretion increases [12,17], and
the concentration associated with the lowest mortality risk in the Alpha-Tocopherol Beta-Car-
otene (ATBC) study [10].

Materials and Methods
This cross-sectional analysis included the most recent survey with nationally representative
data for blood α-tocopherol concentrations conducted by the National Center for Health Sta-
tistics (NCHS) at the Center for Disease Control and Prevention (CDC), i.e. NHANES 2003–
2006. Details regarding the complex survey design and multistage probability sampling of non-
institutionalized United States (US) civilians have been previously documented [3]. Supple-
ment use was according to self-report of any vitamin, mineral, herbal or other dietary supple-
ment consumed in the past month. Participants were shown a card with examples of
supplements.

Data collection included blood samples [19] and interviews.
Serum α-tocopherol concentrations were assessed by high performance liquid chromatogra-

phy (HPLC) with multiwavelength photodiode-array absorbance detection [20]. Quantifica-
tion of samples was based on external standards, and corrected by tocol as an internal standard
to account for post-run recovery [21]. Total cholesterol was measured in serum or plasma by
enzymatic coupled reactions; a reaction by-product (H2O2) produced color and was quantified
by assessing absorbance at 500 nm [22,23].

We considered a subsample of individuals with data available for α-tocopherol, cholesterol,
and covariates (n = 7,922). NHANES (2003–2006) categorized race/ethnicity according to: 1)
Mexican-American, 2) Other Hispanic, 3) Non-Hispanic White, 4) Non-Hispanic Black and 5)
Other Race–Including Multi-Racial. Categories 2 and 5 were combined into a single “Other”
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category. Age ranges were chosen to match Institute of Medicine groupings used for the Die-
tary Reference Intakes [2]. Exclusion criteria, i.e. pregnancy, lactation and age< 20 years, were
modeled to facilitate comparisons with Ford et al. [11].

Statistical analyses
All reported values accounted for the multi-stage complex survey design through survey proce-
dures in SAS (version 9.3, Durham, NC, USA), as well as the sampling weight, cluster, and
strata variables provided by NCHS. This methodology adjusts for non-coverage as well as non-
response, and allows for the oversampling of under-represented groups. Sampling weights
from each two-year survey (2003–04, 2005–06) were combined according to NCHS recom-
mendations and proportionally scaled by the respective subsamples of individuals with avail-
able data from each survey.

To account for differences attributable to circulating blood cholesterol concentrations, cho-
lesterol-adjusted α-tocopherol values (μmol /mmol) were calculated by dividing serum α-
tocopherol concentrations (μmol/L) by total cholesterol (mmol/L) [24]. Based on two cutoff
values (<12, 30 μmol/L), serum α-tocopherol concentration was dichotomized and low serum
status was expressed as a percentage. In addition, a cholesterol-adjusted α-tocopherol cutoff of
5.8 μmol/mmol was also derived by dividing the criterion of α-tocopherol adequacy (serum
concentration of 30 μmol/L) by the desirable total blood cholesterol concentration (5.17 mmol/
L; 200 mg/dL) recommended by the National Heart, Lung and Blood Institute [25]. Observa-
tions with missing values for cholesterol (n = 2) were excluded from histograms and frequen-
cies of cholesterol-adjusted α-tocopherol.

Results for unadjusted- and cholesterol-adjusted α-tocopherol concentrations were reported
as totals and stratified by covariates, which were determined by a priori literature review. The
proportions of the sample population with an α-tocopherol concentration below 12 and
30 μmol/L and a cholesterol-adjusted α-tocopherol status below 5.8 μmol/mmol were consid-
ered by subgroups. We stratified according to any self-reported supplement use, sex, race/eth-
nicity [non-Hispanic White, non-Hispanic Black, Mexican American, any other], and age
groups (�20–30,�31–50, 51+ years). Individuals who self-identified as multi-racial, any other
Hispanic (excluding Mexican American), or other races/ethnicities were included in the “any
other” category. Age as a continuous variable was categorized into three groups.

Differences in proportions below cutoffs, stratified by subgroups (by supplement use, sex,
race/ethnicity, age), were compared by Rao-Scott chi squared tests, which account for the com-
plex survey design [26]. Accounting for familywise error rate, Rao-Scott chi square tests were
considered significant with a Bonferroni correction (alpha value of 0.05 divided by four
hypotheses). We assessed the association between supplement use and low vitamin E status
(30 μmol/L) through multivariate logistic regression which accounts for the complex survey
design (SAS surveylogistic procedure). The initial model included known and suspected risk
factors or correlates of the outcome (based on a priori literature search) and two-way interac-
tion terms between independent variables. Only variables with a p-value� 0.01 were retained
using a step-by-step elimination approach to reach the final parsimonious model.

Results
A total of 7,922 participants with measurements of serum α-tocopherol concentrations were
included in this analysis. Distributions of serum concentrations of α-tocopherol for the entire
population were stratified by FOOD and FOOD+DS use (Fig 1). The mean (± SEM) of α-
tocopherol was 29.6 ± 0.2, 24.9 ± 0.2, 33.7 ± 0.3 μmol/L for the total population� 20y, FOOD
and FOOD+DS use, respectively. The mean cholesterol-adjusted α-tocopherol value was 5.8 ±
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�0.1, 4.9 ±<0.1, 6.5 ± 0.1 μmol/mmol for the total population� 20y, FOOD and FOOD+DS
use, respectively (Fig 2). The mean α-tocopherol for men� 20y was 25.0 ± 0.2 and
33.8 ± 0.4 μmol/L and for women� 20y was 24.9 ± 0.2 and 33.7 ± 0.3 μmol/L by FOOD and
FOOD+DS use, respectively (Fig 3A and 3B). The mean α-tocopherol was 25.7 ± 0.2,
35.7 ± 0.5 μmol/L for Caucasians, 23.5 ± 0.3, 30.5 ± 0.7 μmol/L African-Americans, 25.1 ± 0.2,
33.0 ± 0.5 μmol/L for Mexican-Americans, and 23.5 ± 0.4, 30.7 ± 0.6 μmol/L for all
others� 20y by FOOD and FOOD+DS use, respectively (Fig 4).

Using the Institute of Medicine [2] definition of vitamin E deficiency, 12 μmol/L, corre-
sponding to<12% hydrogen peroxide-induced in vitro erythrocyte lysis, only 0.6% of Ameri-
cans are clinically deficient (Table 1). The prevalence of vitamin E deficiency did not differ
with age, sex, or race/ethnicity. We further examined this dataset seeking to identify the preva-
lence of the population below the criterion of vitamin E adequacy, 30 μmol/L, which was
selected because it represents the concentration associated with the EAR [18], the average
serum concentration for American adults [11], and the level at which urinary α-CEHC excre-
tion increases [12,17], and the concentration associated with the lowest mortality risk in the
Alpha-Tocopherol Beta-Carotene (ATBC) study [10]. A greater prevalence of individuals not
reporting supplement use had serum α-tocopherol concentrations below 30 μmol/L (p<0.01;
Table 1). The prevalence of not meeting the criterion of vitamin E adequacy was higher among
younger populations (Fig 5A). Over 87% of individuals between 20-30y had serum α-tocoph-
erol concentrations below 30 μmol/L whereas 67.9% of those 31–50 and 43.1% of those 51+y
were below the criterion of adequacy for vitamin E (p<0.01). Significantly more males (64.1%)

Fig 1. Distribution of serum α-tocopherol concentrations among individuals�20y, excluding pregnant or lactating women, stratified by
supplement use. Lines represent density (as a percentage) through non-parametric kernel density estimation.

doi:10.1371/journal.pone.0135510.g001
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than females (61.0%) have serum α-tocopherol levels below 30 μmol/L (p<0.01; Table 1).
There are race/ethnicity differences in vitamin E status with a higher prevalence of inadequate
vitamin E status among non-Hispanic Blacks (77.5%) than Mexican Americans (62.2%), other
races (71.9%) and the lowest prevalence in non-Hispanic whites (57.2%) (p<0.01; Table 1). In
all cases (sex, race/ethnicity, age), a smaller proportion of FOOD+DS users failed to meet the
criterion of vitamin E adequacy (Table 1). These trends remained similar when serum α-
tocopherol was adjusted for total cholesterol (Table 2). Use of supplements was associated with
a reduced odds of low vitamin E status (<30 μmol/L; OR 0.17 [95% CI: 0.13–0.21]), adjusting
for age, sex, race/ethnicity, and two-way interaction terms (supplement use � age, sex � age).

Discussion
Using NHANES data collected between 2003–2006, we find the prevalence of clinical vitamin
E deficiency to be low, which was similar to observations from the 1999–2000 NHANES data-
set [11]. In this nationally representative survey of adults, serum α-tocopherol concentrations
ranged between greater than 0 and 84 μmol/L. Cholesterol-adjusted α-tocopherol values ran-
ged between greater than 0 and 23 μmol/mmol. Serum α-tocopherol concentrations increased
with age and supplement use, which has been observed by others [11,13,27]. Serum α-tocoph-
erol concentrations are significantly lower in adolescent girls (16 μmol/L) than premenopausal
women (31 μmol/L) [28]. Higher vitamin E status in persons 51+y may partially be explained
by increased dietary supplement usage [29]. A low vitamin E concentration is more prevalent

Fig 2. Distribution of serum α-tocopherol:total cholesterol concentrations among individuals�20y, excluding pregnant or lactating women,
stratified by supplement use. Lines represent density (as a percentage) through non-parametric kernel density estimation.

doi:10.1371/journal.pone.0135510.g002
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among African Americans and Mexican-Americans than in non-Hispanic Whites. This may
be at least partly due to lower use of dietary supplements overall in ethnic minorities [30].

While overt deficiency was rare in this nationally representative population, the prevalence
of not meeting the criterion of vitamin E adequacy was significantly higher among those
reporting exclusive dependence upon food sources. This finding is consistent with reports that
>90% of children [14,31] and adults [13,15,31] consume less than the EAR for vitamin E from
food sources.

Fig 3. Distribution of serum α-tocopherol concentrations among individuals�20y, excluding
pregnant or lactating women, stratified by sex and supplement use. A. Males. B. Females. Lines
represent density (as a percentage) through non-parametric kernel density estimation.

doi:10.1371/journal.pone.0135510.g003
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Dietary consumption of antioxidant rich foods is positively associated with increasing α-
tocopherol concentrations [32]. We and others [33] report that serum α-tocopherol levels are
lower in people depending exclusively upon dietary sources. Clearly, there is an opportunity
for increased consumption of vitamin E rich foods such as nuts, oils, and whole grains or die-
tary supplement use. The conclusion of a 2005 meta-analysis was that vitamin E supplements
should be avoided [34]. Although this meta-analysis reported higher mortality only for higher
doses, data from the Nurses’Health Study and Health Professionals Follow-up Study reported
the use of vitamin E supplements has declined ~50% from 2002 to 2006 and to the lowest level
(19.8% and 24.5%, respectively) since the early 1990s [35]. We propose that for many Ameri-
cans, especially those relying exclusively upon food sources, that serum α-tocopherol concen-
trations may not be adequate.

Vitamin E was first discovered for its role in supporting healthy pregnancy and develop-
ment [1], the high prevalence of inadequate vitamin E status among men and women of repro-
ductive age is concerning. According to global statistics, approximately 20–25% of couples
have fertility problems [36]. Vitamin E insufficiency has been associated with impairments in
spermatogenesis [37] and sperm competitiveness [38]. Men with higher dietary and supple-
ment intakes of vitamin E have less sperm DNA damage [39]. Epidemiological data [8] has
shown that infertile men had lower α-tocopherol concentrations in both the sperm (1.48 vs
1.68 μmol/L) and serum (17.8 vs 22.0 μmol/L) compared to fertile males. In normospermic
males with low fertilization rates, vitamin E supplementation decreased lipid peroxidation

Fig 4. Distribution of serum α-tocopherol concentrations among individuals�20y, excluding pregnant or lactating women, stratified by race-
ethicity and supplement. A. Non-Hispanic White. B. Non-Hispanic Black. C. Mexican American. D. Other. Lines represent density (as a percentage)
through non-parametric kernel density estimation.

doi:10.1371/journal.pone.0135510.g004
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levels in sperm from 12.6 to 7.8 nmol malondiadehyde per 108 spermatozoa [40], implying
improvements in sperm viability. In women, low vitamin E status may contribute to the rising
use of in vitro fertilization to become pregnant [9]. Increased production of biomarkers of oxi-
dative stress have been associated with acute pregnancy complications or spontaneous abortion
[41]. Vitamin E supplementation (400 IU daily) improved endometrial response during con-
trolled ovarian stimulation in women with unexplained infertility [42]. Finally, pre-eclampsia
is associated with significantly lower serum vitamin E levels [43]. More research is needed to
understand the role of vitamin E status on reproductive success in men and women.

Low vitamin E status has been associated with age-related changes in brain function [44,45].
Beydoun et al. [46] examined the relationship of antioxidant status with depressive symptoms
in US adults 20-85y and found lower serum levels of vitamins E (26 vs 30 μmol/L) and C (43 vs
60 μmol/L) as well as all carotenoids in depressed vs non-depressed counterparts. Maes et al.
[47] reported lower vitamin E concentrations (�23 μmol/L) in American individuals with
major depression vs normal volunteers (�32 μmol/L), as did a separate Australian cohort [48].
Healthy controls had α-tocopherol levels> 30 μmol/L whereas those with Alzheimer’s had an
average< 30 μmol/L [44]. These studies suggest that suboptimal vitamin E status may nega-
tively affect health.

In elderly men with comparable average serum α-tocopherol concentrations (~30 μmol/L),
each standard deviation decrease in serum α-tocopherol concentration was associated with
increased risks of hip fracture and any fracture [49]. Men with baseline serum α-tocopherol
levels averaging 30 μmol/L had a 10% lower risk of developing prostate cancer compared to
those at 18.6 μmol/L [50].

A 2008 review by Traber et al. [51] notes that male smokers from the Alpha-Tocopherol,
Beta-Carotene Cancer Prevention (ATBC) Study with the lowest serum α-tocopherol quintile
had significantly higher risk of total and cause-specific mortality than those in the highest
quintile [52]. The median baseline α-tocopherol level was 26.7 μmol/L in the ATBC Study with

Table 1. Prevalences of serum α-tocopherol concentrations below cut-offs (12 and 30 μmol/L) among individualsa in the United States (NHANES
2003–2006) (TOTAL), stratified by reported food use (FOOD), food and supplement use (FOOD+DS) and demographic characteristics (%).

Total Sex Race/Ethnicity Age (y)

Non-
Hispanic

Non-
Hispanic

Mexican
American

Other b

Male Female p c White Black p c 20–30 31–50 51+ p c

n = 7922a n = 4084 n = 3838 n = 2864 n = 929 n = 2795 n = 1334 n = 1529 n = 2785 n = 3608

Total 12 0.6 0.7 0.5 0.30 0.7 0.8 0.5 0.6 0.77 1.4 0.5 0.4 0.04

30 62.5 64.1 61.0 <0.01 57.2 77.5 62.2 71.9 <0.01 87.4 67.9 43.1 <0.01

n = 3873 n = 1781 n = 2092 n = 1484 n = 347 n = 1481 n = 561 n = 521 n = 1182 n = 2170

FOOD
+DS

12 0.4 0.2 0.5 0.07 0.6 0.0 0.3 <0.1 — 0.8 0.5 0.2 0.23

30 45.9 45.7 46.0 0.89 39.6 61.0 47.3 57.4 <0.01 79.2 54.0 28.5 <0.01

n = 4049 n = 2303 n = 1746 n = 1380 n = 582 n = 1314 n = 773 n = 1008 n = 1603 n = 1438

FOOD 12 0.9 1.2 0.6 0.02 0.8 1.2 0.8 1.1 0.82 1.8 0.5 0.7 0.10

30 81.3 80.4 82.3 0.13 78.7 87.2 81.2 84.3 <0.01 92.7 80.8 71.2 <0.01

a Sample size (n = 7,922) excludes individiuals: <20 years; who are pregnant lactating; with α-tocopherol concentrations >99 percentile; or unavailable

data for α-tocopherol concentration, age, sex, race-ethnicity. To account for complex survey design, SAS survey procedures (surveymeans) as well as

cluster, strata, and sampling weights (proportionally scaled to included sample) were used.
b Includes multi-racial and any other Hispanic individuals
c Based on Rao-Scott chi-square p-value

doi:10.1371/journal.pone.0135510.t001
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20th and 80th percentiles of 21.6 and 33 μmol/L, respectively. Basically, three quarters of ATBC
volunteers had α-tocopherol concentrations below 30 μmol/L and lower than the average base-
line value reported in reviews of vitamin E supplementation RCTS [34,53,54] (S1 Appendix).
This indicates that most vitamin E intervention trials tested the effects of supplementation in
persons with baseline serum α-tocopherol concentrations, i.e. 30 μmol/L that are higher than
concentrations associated with the EAR. In summary,>80% of adult FOOD and 61% of
FOOD+DS consumers fail to reach the criterion of vitamin E adequacy associated with the
EAR. Similar concentrations have been reported in Irish adults [13].

A strength of this study is that it is a nationally representative sampling of serum α-tocoph-
erol concentrations of Americans. A weakness is that a single time point blood sample does not
necessarily reflect long-term vitamin E status any more than it does for vitamin D. For decades,

Fig 5. Proportion (%) of adults�20y at or below the serum α-tocopherol concentration shown on the
Y-axis, excluding pregnant or lactating women, for the total population and by supplement use. The
dotted horizontal line represents a criterion of adequacy set at 30 μmol/L.

doi:10.1371/journal.pone.0135510.g005
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health professionals denied the need to investigate the role of vitamin D and health outcomes
because the prevalence of rickets, i.e. vitamin D deficiency, was low. It is unlikely that vitamin
D supplementation will benefit individuals with optimal vitamin D levels [55,56]. Similarly, the
role of vitamin E status in maintaining health should not be judged by supplementation studies
in individuals with optimal (>30 μmol/L) baseline α-tocopherol levels [34,53,54] (S1 Appen-
dix). Research is needed that correlates serum α-tocopherol concentrations with functional
outcomes.

Conclusion
Our findings provide evidence that most Americans have serum α-tocopherol levels below
30 μmol/L. The EAR, epidemiological and randomized controlled studies all indicate that
maintaining a serum α-tocopherol concentration of 30 μmol/L may have beneficial effects on
mortality, cognitive function and reproduction. Given the prevalence of inadequate vitamin E
status among those exclusively dependent upon food and decreasing use of vitamin E supple-
ments since these samples were obtained (NHANES 2003–2006), it will be important to con-
tinue monitoring vitamin E status in Americans. This paper corroborates the need for research
regarding to assessing serum α-tocopherol concentrations with respect to functional markers
and health outcomes.

Supporting Information
S1 Appendix. Baseline vitamin E (α-tocopherol, μmol/L) concentrations reported in
research summarized in 3 published meta-analyses.
(DOCX)
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