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Abstract

Higher cardiorespiratory fithess (CRF) and physical activity (PA) in old age are associated
with greater brain structural and functional integrity, and higher cognitive functioning. How-
ever, itis not known how different aspects of lifestyle such as sedentariness, light PA (LI-
PA), or moderate-to-vigorous physical activity (MV-PA) relate to neural activity in aging. In
addition, it is not known whether the effects of PA on brain function differ or overlap with
those of CRF. Here, we objectively measured CRF as oxygen consumption during a maxi-
mal exercise test and measured PA with an accelerometer worn for 7 days in 100 healthy
but low active older adults (aged 60—80 years). We modeled the relationships between
CRF, PA, and brain functional integrity using multivariate partial least squares analysis. As
an index of functional brain integrity we used spontaneous moment-to-moment variability in
the blood oxygenation level-dependent signal (SDgo. p), known to be associated with better
cognitive functioning in aging. We found that older adults who engaged more in LI-PA and
MV-PA had greater SDgo p in brain regions that play a role in integrating segregated func-
tional domains in the brain and benefit from greater CRF or PA, such as precuneus, hippo-
campus, medial and lateral prefrontal, and temporal cortices. Our results suggest that
engaging in higher intensity PA may have protective effects on neural processing in aging.
Finally, we demonstrated that older adults with greater overall WM microstructure were
those showing more LI-PA and MV-PA and greater SDgo p. We conclude that SDgo, p is @
promising correlate of functional brain health in aging. Future analyses will evaluate whether
SDgoLp is modifiable with interventions aimed to increase PA and CRF in older adults.
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Introduction

Higher cardiorespiratory fitness (CRF) and physical activity (PA) in old age is associated with
greater brain structural and functional integrity, and higher cognitive functioning [1-3]. In this
study we extend our understanding of the different and overlapping roles of CRF and PA in
brain resting state function in healthy but low-active older adults.

There are three main challenges in understanding how physical health and lifestyle PA relate
to brain function in older adults. First, it is not known how non-exercise lifestyle activities, such
sedentariness (prolonged and uninterrupted periods of sitting, such as watching TV) or light PA
(LI-PA; housework, gardening, relaxed walking) relate to brain function, although they account
for the majority of daily waking time. This is because lower intensity PA, in contrast to exercise-
related moderate-to-vigorous PA (MV-PA, e.g. jogging, walking stairs, biking), is not well cap-
tured by self-reports [4]. This is important, as sedentariness and MV-PA are associated with dif-
ferent physiological mechanisms and may differentially affect brain health. For example, general
sedentariness may negate or weaken the benefits of sporadic MV-PA: it is possible to be an
“active couch potato” who has normal CRF due to bouts of exercise, but is not immune to glu-
cose and fat metabolism risk caused by prolonged sitting [5-7]. Second, it is not known how the
effects of CRF and PA differ or overlap with respect to brain function. CRF, measured as maxi-
mal oxygen consumption during maximal physical effort, is a sum of various factors, such as
pulmonary diffusion capacity, cardiac output, erythrocyte levels, muscle capillary density and
respiration rate [8-10], many of which are genetically determined, at least in part [11]. There-
fore, although CRF and PA tend to be related, they may not be equivalent in their relationships
to brain health. Indeed, our recent work indicates that PA is more predictive of white matter
(WM) microstructure than CRF, and different levels of PA intensity relate to different aspects of
WM health. Specifically, less time spent sitting was related to microstructure of WM near the
hippocampus, more LI-PA was related to temporal lobe microstructure, while older adults
spending more time in MV-PA had lower volume of WM lesions [12]. Still, these objective mea-
sures of time spent in different intensities of PA have not yet been related to functional brain
health in aging. To address these two challenges, we objectively measured PA with an acceler-
ometer, which was worn for 7 consecutive days during all waking hours, in addition to CRF.

The third challenge is measuring brain function and the interpretation of the fitness- and
PA-brain function relationships. For example, depending on brain region and task, greater
CREF is associated with either increased or decreased change in blood oxygenation level depen-
dent (BOLD) signal, a proxy for neural activity [13-15]. As a result, it is unclear whether high
or low amplitudes of BOLD signal reflect optimal functional brain health, and how this associa-
tion varies regionally throughout the brain. Similarly, a moderate intensity walking interven-
tion was related to increased functional connectivity within the default mode network [16],
while the association between CRF and functional connectivity in middle-aged adults was both
positive and negative, depending on whether local or long-distance connections were consid-
ered [17]. To overcome the challenges in interpretation of conventional positive/negative task-
related changes in BOLD signal or different scales of functional synchrony between distinct
brain regions, here we employed a more general measure of neural function: moment-to-
moment variability in the BOLD signal during spontaneous brain activity.

Moment-to-moment variability in the BOLD signal (SDporp) is known to reflect the
dynamic range of neural processing, such as the modulation of functional networks and is sug-
gested to be a promising tool in mapping neural correlates of cognitive abilities in aging
[18,19]. Specifically, lower SDgo1p in certain brain regions is associated with older age, slower,
and less consistent performance on a perceptual matching task [20], as well as lower perfor-
mance on memory and reasoning tasks [21]. These findings suggest there is some optimal
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range of SDporp that may be decreasing with age in certain brain regions, and that older adults
differ in their deviation below this optimum, which is associated with individual differences in
cognitive performance.

In this study, we sought to determine how the level of physical fitness (measured as CRF)
and PA (measured via accelerometer) are related to functional brain health measured as
SDgorp. To this end, we collected resting functional magnetic resonance BOLD data from 100
healthy older participants (60-80 years). We modeled the relations between whole-brain voxel-
wise SDporp, CRF, and PA (mean daily sedentary time, time spent in LI-PA, and MV-PA)
within a multivariate partial least squares framework [22]. Given that: 1) advancing age is asso-
ciated with decreasing SDgorp, and 2) greater CRF, PA, and lower sedentariness are associated
with better cognitive and brain health outcomes in older adults, we predicted that greater
SDgorp in certain regions would reflect greater brain health and therefore positively correlate
with CRF and PA, and negatively with sedentariness. Although the relevance of SDpo;p in the
brain for physical fitness is not yet known, we hypothesized that some of the regions where
conventional measures of structural and functional brain integrity have been previously associ-
ated with greater CRF (e.g. hippocampus, temporal lobe, core regions of the default mode net-
work (precuneus and medial prefrontal cortex), fronto-parietal regions of the central executive
network, anterior cingulate, insula, and thalamus) would show this CRE/PA—SDyq; p relation-
ship [13-16,23-25].

In sum, we have shown previously that more active and less sedentary older people have
greater WM microstructural integrity and lower volume of WM lesions [12], that WM micro-
structure is positively related to behaviorally relevant SDporp [21], and that overall WM
microstructure provides a scaffold for neural processing in the grey matter (GM) [26]. There-
fore, we tested the hypothesis that WM microstructural integrity should be positively associ-
ated with CRF/PA-related SDpo1p. To this end, we used diffusion tensor imaging (DTI) to
infer about WM microstructure by quantifying the magnitude and directionality of diffusion of
water within a tissue. We used fractional anisotropy (FA) averaged over all major WM tracts as
a summary measure of fiber density, coherence, and myelination degree [27-29].

We found that older adults who spend more time daily on LI-PA and MV-PA had greater
SDgorp in multiple brain regions, and this relationship was positively associated with WM
microstructure.

Methods
Participants

A University of Illinois Institutional Review Board approved the study, and written informed
consent was obtained from all participants and the study was performed in accordance with
the 1964 Declaration of Helsinki. Participants received financial reimbursement.

We collected MRI, PA and CRF data from 150 community-dwelling healthy older adults
(51 males). The sample contained more females because fewer older males responded to
recruitment materials and met the following inclusion criteria: (1) were between the ages of 60
and 80 years old; (2) were free from psychiatric and neurological illness and had no history of
stroke or transient ischemic attack; (3) scored > 23 on the Mini-Mental State Exam (MMSE
[30]) and >21 on a Modified Telephone Interview of Cognitive Status (TICS-M [31]) question-
naire; (4) scored < 10 on the geriatric depression scale (GDS-15 [32]);, (5) scored > 75% right-
handedness on the Edinburgh Handedness Inventory [33];, (6) demonstrated normal or cor-
rected-to-normal vision of at least 20/40 and no color blindness;, (7) were cleared for suitability
in the MRI environment, that is, no metallic implants that could interfere with the magnetic
field or cause injury, no claustrophobia, and no history of head trauma. The participants were a
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pre-intervention cross-sectional subsample from an on-going randomized controlled exercise
trial (“Influence of Fitness on Brain and Cognition II” at ClinicalTrials.gov, clinical study iden-
tifier NCT01472744). We further excluded participants with MMSE < 27 to limit the analyses
to cognitively healthy older adults and exclude those with possible mild cognitive impairment.
This resulted in a sample of 133 participants (45 male). Out of 133, 100 participants (34 males)
had good quality MRI data available (see section on resting state and MPRAGE) and only these
datasets were considered for further analyses (age range 60-78, M. = 65.4 + 4.4 years, years of
education 12-26, M4, = 16.8 £ 3.5 years).

Physical activity assessment

Participants were instructed to wear the GT3X ActiGraph accelerometer (ActiGraph; Pensacola,
Florida) for 7 consecutive days on an elastic belt on the left (non-dominant) hip during all wak-
ing hours, except for when bathing or swimming. The participants completed a daily log to
record the time that the accelerometer was worn, and this log was used to verify the accelerome-
ter data for processing with the ActiLife v5.6.0 software. For the purposes of this study, a valid
day of data consisted of at least 10 hours of valid wear-time, with a valid hour defined as no more
than 30 consecutive minutes of zero counts with one minute sampling epochs. Only data for
individuals with a minimum of 3 valid days of wear time were included in analyses [34]. The 100
participants had on average 6.8 + 0.8 valid days of measurement (range 4-8), resulting in 95% of
the sample having 6 or more valid days required to reliably measure sedentary behavior [34].

Each valid measurement epoch (minute) was classified into sedentary, light, moderate, and
vigorous physical activity based on displacement magnitude and frequency. We used activity
intensity cut-off ranges appropriate for older adults [35] using MeterPlus v4.2 software (San-
tech, Inc.; San Diego, CA). Sedentary behavior was defined as <100, light activity as 100-1951,
moderate activity as 1952-5723, and vigorous activity as > 5724 counts/minute [35]. The total
minutes of each intensity, divided by total valid days, yielded average time (in hours or min-
utes) spent daily in a specific physical activity intensity (Table 1). Only 15 out of 100 partici-
pants showed any vigorous activity during the measurement week. We therefore summed
moderate and vigorous activity to obtain a “moderate-to-vigorous activity” (MV-PA) variable
[36]. Observed MV-PA was positively skewed and we performed a natural log-transformation
of this variable for further analyses.

The sample was defined as low-active and low-fit but generally healthy and living indepen-
dently, because the participants had to be eligible for the subsequent exercise intervention

Table 1. Descriptive statistics and correlations with age.

Variable n MeanSD Range r with age p-value
CRF (VOzmax ml/kg/min)
Males 34 2619 11-47 -44 .010
Females 66 20+6 9-39 -17 .168
Physical activity
(hours or min/day)
Sedentary 100 8.9+1.2hrs 5.8-11.6 .10 311
LI-PA 100 4.6x1.2hrs 2.3-8.7 -.06 .548
MV-PA 100 17+17min* 0.83min—1.28hour* -.32%* .001
Fractional anisotropy 71 .46+.02 39-.51 -.36 .002
*Raw data.

** MV-PA were In-transformed for correlations with age. There were gender differences only for CRF and not for any other variables.

doi:10.1371/journal.pone.0134819.1001
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study (capable of performing exercise, i.e. no physical disability that prohibits mobility) and
were expected to benefit from such lifestyle change. To define our sample we used both the
self-reports at study entry and verified them with the subsequent objective accelerometry data.
Eighty participants at study entry reported not to have participated in regular PA (maximum
of two moderate bouts of PA/week) in the past six months. The remaining 20 reported engag-
ing in some exercise upon recruitment. However, the subsequent accelerometer data analysis
revealed that only 32 of the total sample (17 from the 80 self-reported low-active individuals
and 15 of the 20 more active participants) met the minimum recommendations for PA (>150
min of moderate PA per week; [37]). This means that roughly % of participants in each sub-
group (active or not active by self-report) incorrectly assessed their PA levels. Clearly, this dis-
crepancy between self-reports and accelerometer data highlights the necessity of objective
assessment of PA for accurate sample description when studying the relationships between
brain health and PA in older adults. Importantly, the accelerometer data reflects all PA within
the 7-day period, while the PA recommendations refer to leisure time or planned exercise PA,
in addition to the lifestyle-related PA. Therefore, accelerometer estimates of PA include both
lifestyle activities (shopping, climbing stairs) and leisure exercise (jogging, bike trips). As fol-
lows, even less than 32 participants met the actual PA recommendations and, therefore, we
defined our sample as low-fit and low-active.

Cardiorespiratory fitness assessment

All participants obtained physician's approval to engage in cardiorespiratory fitness (CRF) test-
ing. CRF was defined as peak oxygen consumption [ml/kg/min], measured with indirect calo-
rimetry during a modified Balke graded maximal exercise test on a motor-driven treadmill test.
Oxygen consumption (VO,) was calculated from expired air sampled at 30-s intervals until
peak VO, was reached or the test was terminated due to volitional exhaustion and/or symptom
limitation. CRF was defined as the highest recorded VO, value (VO,max) after two of three cri-
teria were met: (1) a plateau in VO, after increase in workload; (2) a respiratory exchange ratio
>1.10; and (3) a maximal heart rate within 10bpm of their age-predicted maximum. Our sub-
jects represented a broad range of CRF values that were normally distributed and fell within
the 90% peak VO, max percentile (very poor to good, Table 1) according to gender- and age-
specific norms (ACSM's Guidelines for Exercise Testing and Prescription, www.acsm.org). As
men and women differ in VO,max due to body composition, lung size etc., we transformed
VO,max values into z-scores within each gender group to remove variance related to sex.

MRI acquisition

We acquired all images during a single session on a 3T Siemens Tim Trio system with 45 mT/
m gradients and 200 T/m/sec slew rates (Siemens, Erlangen, Germany). T2*-weighted resting
state images were acquired with fast echo-planar imaging (EPI) sequence with Blood Oxygen-
ation Level Dependent (BOLD) contrast (6min, TR = 2s, TE = 25ms, flip angle = 80 degrees,
3.4 x 3.4 mm” in-plane resolution, 35 4mm-thick slices acquired in ascending order, Grappa
acceleration factor = 2, 64 x 64 matrix), while the participants were asked to lie still with eyes
closed. Additionally, gradient field maps were acquired to account for geometric distortions
caused by magnetic field inhomogeneity [38]. The gradient field map was collected as 35,
4mm-thick slices, 3.4 x 3.4 mm? in-plane resolution, TR = 700ms, TE = 10ms, and flip

angle = 35 degrees. DTI images were acquired with a twice-refocused spin echo single-shot
Echo Planar Imaging sequence [39] to minimize eddy current-induced image distortions. The
protocol consisted of a set of 30 non-collinear diffusion-weighted acquisitions with b-

value = 1000s/mm? and two T2-weighted b-value = 0 s/mm” acquisitions, repeated two times
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(TR/TE = 5500/98 ms, 128 x 128 matrix, 1.7x1.7 mm? in-plane resolution, FA = 90, GRAPPA
acceleration factor 2, and bandwidth of 1698 Hz/Px, comprising 40 3-mm-thick slices). Resting
state, fieldmap, and diffusion images were obtained parallel to the anterior-posterior commis-
sure plane with no interslice gap.

High-resolution structural MR scans were acquired using a 3D MPRAGE T1-weighted
sequence (TR = 1900 ms; TE = 2.32 ms; TT: 900 ms; flip angle = 9°; matrix = 256 x 256;
FOV = 230mm; 192 slices; resolution = 0.9 x 0.9 x 0.9 mm; GRAPPA acceleration factor 2)
and used as an intermediate step in registration of functional images to standard MNI space.

BOLD variability (SDgo.p) calculation

Data processing was carried out using FSL v5.0.1 (FMRIB's Software Library, http://www.
tmrib.ox.ac.uk/fsl; Smith et al. 2004). The preprocessing included filtering out frequencies
<0.008Hz, slice timing correction, rigid body motion correction using MCFLIRT [40], and
removal of non-brain tissue with the Brain Extraction Tool [41]. Data were screened for
motion and all participants moved within a voxel dimension (< 4mm). Functional images of
each participant were aligned to the standard stereotaxic space of the MNT 152 T1 2mm” tem-
plate supplied in FSL in a three-step procedure. To improve the registration between the partic-
ipant’s functional and anatomical images we utilized the gradient field map data. First, the
gradient field map was unwrapped via PRELUDE [42], then geometric distortions in the EPI-
related images due to local magnetic inhomogeneity differences were compensated for with the
use of gradient field map data via FUGUE within FSL [43]. Ten out of 100 participants had
missing field map images. Second, each participant’s low-resolution functional images were
aligned with their high-resolution T1-weighted anatomical images using the Boundary-Based
Registration in FSL [44]. Third, the anatomical images were aligned to MNI 152T1 2mm° tem-
plate using 12 degrees of freedom affine linear registration [40].

Next, we used Multivariate Exploratory Linear Optimized Decomposition into Independent
Components (MELODIC v3.10) tool in FSL [45] to decompose the 4D fMRI time series into spa-
tial and temporal components using independent component analysis (ICA). AZB together with
Chanheng He and CNW identified artifact components for each subject using the criteria out-
lined in [46] based on the spatial pattern, time course, and power spectrum properties that were
characteristic of physiological noise, motion, and scanner-related artifacts. We note here that
motion timecourses were viewed simultaneously with the components’ timecourses, which made
it straightforward to classify motion components as noise. The artifactual components were
regressed out from the time series yielding the post-ICA ‘cleaned’ data. These post-ICA functional
data were further low-pass filtered to restrict the frequencies in our data to f < .1 Hz [47]. Next,
we extracted the mean time series from two regions (deep temporal WM and bilateral lateral ven-
tricles) in the post-ICA filtered data. The goal of including these two nuisance regressors was to
remove residual cardiorespiratory physiological noise that would be captured by signal changes
in the WM and ventricles [48-51] and was not removed by the ICA cleanup. The two nuisance
regressors (timeseries from WM and ventricles) were regressed out using the general linear
model with FEAT 6.00 (FMRI Expert Analysis Tool; http://www.tmrib.ox.ac.uk/analysis/
research/feat/). Finally, we calculated the standard deviation (SDpoyp) across the whole timeseries
for each voxel and smoothed the images with 6mm Gaussian kernel. We smooth the data as the
last step to preserve the original localization of the signal throughout all the preprocessing steps.
The resulting SDporp maps were upsampled to MNI space using registration steps described
above. To restrict all multivariate analyses to the GM, we masked the SDporp maps with the GM
tissue prior provided in FSL, thresholded at probability > 0.37, as described earlier in [26]. The
SDgorp maps of the 100 participants are deposited at http://neurovault.org/collections/608/.
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PLS multivariate analysis of relations among SDgo.p, PA and CRF

The behavioral PLS analysis [52,53] began with a correlation matrix (CORR) between our vari-
ables of interest (PA and CRF) and each voxel’s signal (SDporp); correlations were calculated
across subjects. Then, this CORR matrix was decomposed via singular value decomposition
(SVD): SVDcorr = USV”. This decomposition produces a left singular vector of behavioral
weights (U), a right singular vector of SDpop weights (V), and a diagonal matrix of singular
values (S). In other words, this analysis produces orthogonal latent variables (LVs) that opti-
mally represent relations between PA and CRF measures and SDgopp in GM voxels. Each LV
contains a spatial pattern depicting the brain regions where the SDgo1p shows the strongest
relation to PA and CRF. Each brain weight (in V) is proportional to the correlation between
PA and CRF with SDgpo; p. To obtain a summary measure of each participant’s expression of a
particular LV pattern, we calculated within-person “brain scores” by multiplying each voxel (i)’s
weight (V) from the particular LV (j) produced from the SVD in equation (1) by the SDporp
V;SD ;. Thus,
in a single measure, a brain score indicates the degree to which a subject expresses the multi-
variate spatial pattern captured by the particular LV. Significance of detected relations
between multivariate spatial patterns of SDgorp, PA and CRF was assessed using 1000 permu-
tation tests of the singular value corresponding to each LV. A subsequent bootstrapping pro-
cedure revealed the robustness of voxel saliences across 1000 bootstrapped resamples of our
data [54]. By dividing each voxel’s mean salience by its bootstrapped standard error, we
obtained “bootstrap ratios” as normalized estimates of robustness. We thresholded bootstrap
ratios at a value of > 3.00, which approximates a 99% confidence interval and corresponds to
p < .001.

value in that voxel for person (k), and summing over all () brain voxels: Y /|

DTl analysis

Visual checks were performed on every volume of the raw data of every participant by AZB. Sev-
enty-four participants had good quality DTI data. In one dataset, one volume with the corre-
sponding b-vectors and b-values was deleted from the dataset before processing due to an
artifact. Next, DTI data were processed using the FSL Diffusion Toolbox v.3.0 (FDT: http://www.
fmrib.ox.ac.uk/fs]) in a standard multistep procedure, including: (a) motion and eddy current
correction of the images and corresponding b-vectors; (b) removal of the skull and non-brain tis-
sue using the Brain Extraction Tool [41]; and (c) voxel-by-voxel calculation of the diffusion ten-
sors. Using the diffusion tensor information, FA maps were computed using DTIFit within the
FDT. All motion- and eddy-current outputs, as well as FA images were visually inspected.

We used TBSS [55,56], a toolbox within FSL v5.0.1, to create a representation of main WM
tracts common to all subjects (WM “skeleton”). This included: (a) nonlinear alignment of each
participant’s FA volume to the 1 x 1 x 1 mm® standard Montreal Neurological Institute
(MNI152) space via the FMRIB58_FA template using the FMRIB’s Nonlinear Registration
Tool (ENIRT, [57]; http://www.doc.ic.ac.uk/~dr/software); (b) calculation of the mean of all
aligned FA images; (c) creation of the WM “skeleton” by perpendicular non-maximum-sup-
pression of the mean FA image and setting the FA threshold to 0.25; and (d) perpendicular
projection of the highest FA value (local center of the tract) onto the skeleton, separately for
each subject. The outputs of all the above processing steps were carefully inspected by AZB. To
obtain a global FA measure, we averaged FA over the whole skeleton for each participant.
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Statistical analyses

All statistical analyses were performed using SPSS (v.16, SPSS Inc., Chicago, IL, USA). We used
multiple step-wise hierarchical linear regressions (with chronological age and gender) to inves-
tigate the relationships between brain scores expressing the CRE/PA—SDyg0; p relationship
and motion parameters. The brain scores of the PLS model relating SDporp to PA and CRF
were above 2.5 SD for two participants, and were Winsorized before regression analyses and
creating scatterplots. The relative motion was In-transformed for correlations as it was posi-
tively skewed.

The demographic data, FA, CRF and PA values, and brain scores are available in (S1
Dataset).

Results
Correlations between CRF, PA, and SDgo, p (CRF/PA—SDgo p model)

To identify multivariate patterns of relations between CRF, the three PA measures, and SDgorp
in the entire GM we performed behavioral PLS analysis. We refer to it as the CRE/PA—SDgo1p
model. The behavioral PLS analysis yields orthogonal latent variables (LVs) that optimally rep-
resent relations of SDpop p in GM voxels with CRF and number of hours spent on PA at three
intensities. The analysis yielded one significant LV (permuted p = 0.040, 52.63% cross-block
covariance explained by this LV), suggesting that more LI-PA and MV-PA was related to
greater SDporp in multiple GM regions (Fig 1A and 1B). CRF and sedentary time did not sig-
nificantly contribute to the model. Peak voxels’ location and bootstrap ratios for the CRF/PA—
SDgorp model are reported in Table 2.

CRF/PA—SDgo.p model: relationship to structural brain connectivity

In our previous studies we showed that behaviorally relevant SDgoy p is related to whole-brain
WM microstructure in older adults [21] and that greater PA was positively associated with
WM microstructure [12]. Therefore, after showing that greater LI-PA and MV-PA is beneficial

A B
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c CISMA cG 06

PMC/M1f, \ - :
:j 05 SED LI-PA

SPL/ o 04

latoCCIP Sos3

<
- o 02
i

.38 40 42 44 46 48 50 .52
GLOBAL FA

Fig 1. Multivariate relationships between CRF, PA, and SDgq, p (the CRF/PA—SDgo,. p model). A: PLS
spatial pattern of the CRF/PA—SDgo, p model. Red-yellow regions indicate greater SDgo, p With greater
LI-PA and MV-PA. Significant regions: bootstrap ratio >3.00. Abbreviations as in Table 2. B: Correlation
magnitudes (Pearson r) between CRF, sedentary time, LI-PA, MV-PA, and SDgo, p during rest (permuted
p<0.001, error bars represent bootstrapped 95% confidence intervals). CRF and sedentary time did not
contribute to the LV as their error bars cross zero.

doi:10.1371/journal.pone.0134819.g001
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Table 2. Significant clusters representing the CRF/PA—SDgo,p model from Fig 1.

Regions MNI coordinates (mm) BSR Cluster size (voxels)
X y z
L IFG -50.0 32.0 -4.0 4.9640 233
L FP/mPFC -14.0 42.0 -22.0 4.8574 1496
L FP/SFG 2.0 64.0 2.0 4.6585 318
RTP 36.0 22.0 -32.0 4.6298 720
R STG/TP 60.0 0.0 -4.0 4.6090 1332
L pOPER/SMG -40.0 -32.0 20.0 4.3541 258
L STG -62.0 -10.0 8.0 4.3281 846
R 1atOCCIP/IPC 16.0 -78.0 54.0 4.2861 58
R PCG/M1 62.0 0.0 24.0 4.2823 340
R SPL/IatOCCIP 40.0 -60.0 58.0 4.2524 49
R ACC/SMA 2.0 6.0 44.0 4.2336 147
L PCG/M1 -48.0 -12.0 42.0 4.1418 585
L PCG/SPL -30.0 -40.0 68.0 4.1398 81
L V3/v4 -40.0 -90.0 4.0 4.0959 57
L V1 -8.0 -102.0 0.0 4.0007 119
LTP -30.0 8.0 -24.0 3.8401 168
R cerebellum 50.0 -52.0 -42.0 3.8265 12
R FP 8.0 70.0 16.0 3.8245 20
R HIPP 16.0 -28.0 -4.0 3.7913 75
R PCG/SMG/SPL 52.0 -30.0 58.0 3.7820 109
L 1atOCCIP/ITG -54.0 -66.0 -10.0 3.6922 72
R precuneus/latOCCIP 18.0 -76.0 38.0 3.6450 26
LV2 -6.0 -78.0 0.0 3.6431 45
L insula -38.0 10.0 -6.0 3.5591 36
LTP -30.0 20.0 -34.0 3.56372 45
R SMG/SPL 50.0 -46.0 52.0 3.4958 14
L FP -26.0 66.0 14.0 3.4956 46
R precuneus 2.0 -66.0 18.0 3.4385 40
R PCG/PCC/precuneus 14.0 -32.0 44.0 3.3899 30
L HIPP -16.0 -28.0 -4.0 3.3413 19
LITG -46.0 0.0 -40.0 3.2206 15
L FP/mPFC -8.0 62.0 -18.0 3.1092 16

All peaks and clusters were determined using a voxel extent >10, minimum distance 10mm, and bootstrap ratio (BSR) >3.00. MNI, Montreal Neurological
Institute (mm). R: right; L: left; IFG: inferior frontal gyrus, FP: frontal pole; mPFC: medial prefrontal cortex, SFG: superior frontal gyrus; TP: temporal pole;
STG: superior temporal gyrus; pOPER: parietal operculum; SMG: supramarginal gyrus, lat: lateral; OCCIP: occipital cortex; IPC: intraparietal cortex; PCG:
post central gyrus; M1: primary motor cortex; SPL: superior parietal lobule; ACC: anterior cingulate cortex; SMA: supplementary motor area; V3/V4: visual
cortex lll, IV; V1: primary visual cortex; HIPP: hippocampus; ITG: inferior temporal gyrus; V2: secondary visual area; PPC: posterior parietal cortex.

doi:10.1371/journal.pone.0134819.t002

for brain function (i.e. related to greater SDporp), we tested the hypothesis that the CRF/PA-
related brain pattern of SDporp would be associated with WM microstructure. We expected
that participants who engage in more LI-PA and MV-PA should show an advantage in both
brain structure and function, and therefore greater WM microstructure should be related to
greater “brain scores” from the CRF/PA—SDgorp model. “Brain score” is a summary measure
of each participant’s expression of the significant LV pattern from Fig 1. Thus, a person with a
higher brain score showed higher LI-PA and MV-PA and greater SDgo; p in the voxels
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depicted in Fig 1 A. As there was a negative association between FA and age, and brain scores of
CRF/PA—SDgorp model and age (r = -.23 p =.021, n = 100), we performed a hierarchical mul-
tiple linear regression analysis to investigate age-independent links between the brains scores
and WM microstructure. The brain scores were the dependent variable, age was the first inde-
pendent variable and global FA was the second independent variable. We found that higher FA
accounted for a significant amount of variance in the CRE/PA—SDy0y p association, in addi-
tion to variance related to age (R” change,g. = 0.034, F change,g. = 2.41, df = 69/1, p-value =
125, R? changegjobaira = 0.121. F changegigbaira = 9.753, df = 68/1, p-value = .003). We note
that there was a trend toward a positive relationship between MV-PA and FA (r =.20 p =.101,
n = 71), while CRF, sedentary time, and LI-PA were not associated with global FA.

Exploring the effects of in-scanner motion on CRF/PA—SDgo, p
associations

We found that people who engage more in LI-PA and MV-PA show greater SDpo;p (CRF/PA—
SDgorp model, Fig 1). If our findings were driven by individual differences in motion then this
would predict that more active people moved more in the scanner. This is unlikely but we tested
this to ensure that our results were not confounded by motion. We performed three analyses: 1)
We tested the in-scanner motion—SDgoy p relationship directly in a behavioral PLS model with
motion parameters from the resting state acquisition as the behavioral variable; 2) We related
CRF and PA measures to in-scanner motion; 3) We correlated the brain scores from the CRF/
PA—SDgorp model with motion parameters.

The relative motion (volume-to-volume displacement of subject’s head) should have the
most influence on moment-to-moment variability in the BOLD signal during the resting state
acquisition. Therefore, we used the mean relative motion quantified by the motion correction
algorithm during preprocessing as the measure of the average volume-to-volume displacement
of subject’s head during the scan. If motion during scanning contributed to the CRF/PA—
SDgorp relationship, we expected: 1) a significant positive relationship between mean relative
motion and SDgorp; 2) a significant positive relationship between mean relative motion and
PA; and 3) a significant positive relationship between mean relative motion and the brain
scores from the CRF/PA—SDgo1p model.

Our results did not support the possibility that in-scanner motion contributes to the
SDgorp and the CRF/PA—SDgoy p associations. First, the PLS behavioral analysis relating rela-
tive motion to SDpoyp relationship did not yield a significant LV (p = .375), suggesting that
there was no relationship between moment-to-moment subjects’ motion in the scanner and
the moment-to-moment variability in the BOLD signal. Second, we found that participants
with higher CRF, PA, and less time spent in sedentary behavior showed not more, but less rela-
tive motion during the resting state scan (CRF: r = -.38, p < .001, n = 100; sedentary time: r =
23,p=.022,n=100; MV-PA: r =-.27, p =.008, n = 100). LI-PA was not related to relative
motion. Third, we found that relative motion was not related to the brain scores representing
the CRF/PA—SDgorp model (r =.005, p =.957, n = 100).

Discussion

We used a whole-brain, multivariate approach to investigate the associations of objective indi-
ces of physical fitness and activity (CRF and PA) with brain functional resting state properties
(moment-to-moment variability in the BOLD signal) in healthy older adults. This allowed us
to demonstrate that older adults who engage in more PA (LI-PA and—to a greater extent—
MV-PA) have greater SDporp in multiple regions, while CRF and sedentary behavior did not
significantly contribute to variance in SDporp. Next, the inter-individual differences in the PA
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—SDgorp relationships were associated with global WM microstructure, above and beyond
the effects of chronological age. Moreover, we demonstrated that the in-scanner motion did
not drive the association of PA with SDyoyp. Here we discuss the implications of this first dem-
onstration of an association between objectively measured PA, brain function, and structure in
an older population.

SDgo.p as a candidate functional correlate of brain health

In the current study, we showed that older, low-active adults who engage regularly in more
LI-PA and MV-PA have greater variability in the spontaneous low-frequency BOLD signal.
Given that previous evidence has shown that: 1) greater SDgo p in older age relates to better
cognitive functioning; 2) the brain’s network organization may benefit from greater SDgorp in
specific regions; and that 3) regions showing the PA—SDgor p relationship overlap with
regions where some conventional neural functional measures are related with CRF and PA, we
interpret our findings to suggest that a positive relationship between SDgorp and PA reflects
better functional brain health.

First, recent studies exploring the significance of SDgo1p for cognitive performance in aging
demonstrated that older adults show lower SDgpp p than young adults, and that greater SDporp
in multiple GM regions is related to faster and more consistent performance on a perceptual
matching task [20], and better fluid abilities and memory in older adults [21]. These previous
findings suggest that preserving optimal (i.e. higher) levels of SDpoy p in specific brain regions
in advanced age is beneficial for cognitive functioning. Here we show that SDpo; p may serve
as one of the correlates of functional brain health related to physical activity and health.

Second, many of the brain regions showing the PA- SDyq; p relationship play an important
role in brain network organization. Therefore, our results support the notion that the brain net-
work function should benefit from their greater SDpo;p [21], assuming it represents greater
dynamic range or kinetic energy of neural processing [18]. Specifically, regions identified in the
current study play an important role in major resting state networks: M1/PMC constitute the
hubs of the motor network [58], precuneus, mPFC, HIPP, medial STG, SPL, lateral OCCIP are
hubs of the default mode network (DMN; [59,60]), and FP, anterior insula, SMG, and ACC
constitute networks that have been associated with executive control and salience detection
[61]. These hub regions have been defined in structural and functional network analyses as
highly connected within a certain network or community (DMN, motor [62-65]) or support
communication between distinct networks (63-65). Therefore, we speculate that greater
SDgorp in these hub regions likely reflects neural processing related to integrating local and
distributed neural communities. In addition, several regions identified in the current study
(e.g. precuneus, insula, ACC, SMG) overlap with regions where greater SDgoy p is related to
cognitive performance (21), supporting the claim that cognitive performance is thought to
depend on modulating and combining the activity of neural networks in different ways [66,67].

Third, the observed relationship between PA and SDpoyp is in line with previous findings
linking physical health, measured as CRF, with brain function, especially in regions showing
PA- SDgorp relationship in the current study. For example, older [13] or middle-aged adults
[14] with greater CRF have greater BOLD signal amplitude in fronto-parietal regions during a
selective attention task [13] or in hippocampus, precuneus, insula, cingulate, and other frontal,
temporal, and occipital regions during successful spatial encoding [14]. Importantly, there is
growing evidence from randomized control trials in older adults that 12-month bi-weekly
resistance training can increase BOLD response during a selective attention task in the anterior
temporal cortex and insula [25], a 6-month aerobic training program can enhance fronto-pari-
etal [13] or medial prefrontal BOLD response [14], and a 12-month aerobic walking program
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increases functional connectivity between regions in the default and frontal executive network
[16]. In addition, endurance-trained middle-aged adults (age 40-65) have greater working
memory-related neural activation in multiple temporal, frontal, and parietal regions than their
sedentary peers [15]. Together, these studies suggest that fitter and more active adults show
greater BOLD signal amplitude or greater functional connectivity during task performance.
We speculate that the mechanisms of greater amplitude of BOLD signal fluctuations could be
similar to greater SDporp observed in more physically active older adults in our sample. We
plan to investigate this claim directly in future studies linking SDpoy p with functional connec-
tivity and BOLD amplitude. In addition, further investigations (such as time frequency analy-
sis, perfusion imaging, calibrated fMRI, and optical imaging) are needed to tease apart the
effect of neural, vascular, and neurovascular coupling aspects of BOLD signal on SDpo;p in
relation to CRF and PA. In sum, SDgpoy p is a candidate brain health index that could unify and
provide a better explanation of previous mixed findings based on different conventional func-
tional neuroimaging measures.

CRF and PA are not equivalent in their role in functional brain health

We did not observe the expected positive relationship between CRF and SDgorp. We suggest
that some aspects of lifestyle behaviors that influence brain function and aging may not be cap-
tured by CRF. In addition, a genetic component of CRF [68] that adds to greater CRF regard-
less of PA may contribute to the associations between CRF and brain function. Alternatively,
motivation or subjective threshold of exhaustion may influence the value of VO,max reached
during the treadmill test, especially in older low active adults, and therefore add noise to the
CREF score.

In addition, it is possible that with careful preprocessing of the resting state data we removed
some variance in the BOLD signal of vascular origin that would be related to cardiovascular
aspects of physical health captured by CRF. As noted earlier, additional investigations with dif-
ferent imaging and analytical approaches are needed to tease apart vascular from neural aspects
of SDporp. We highlight that in the current study we demonstrated in three different analyses
that the relationship between PA and SDporp was not driven by the motion during resting
state acquisition. Neither was total relative motion directly related to SDpopp, nor was motion
related to brain scores reflecting the PA—SDg oy p relationship. Moreover, adults who had
higher CRF and PA showed less motion during the resting state. We speculate this may be
related to either greater physical comfort of more fit/active people in staying still (or some
physical discomfort that also prevents less active individuals from engaging in PA), or their
better adherence to experimental instructions.

Finally, sedentary time did not significantly contribute to SDporp. We speculate that in our
relatively low-active and low-fit sample the variance in sedentary time was not sufficient to
detect robust relationships with brain function. In other words, it was LI-PA and MV-PA
rather than sedentary behavior that made a difference with respect to brain functional proper-
ties in this low active, low fit but otherwise healthy older sample. An ongoing exercise interven-
tion study including this group of participants will shed more light on the discrepancy between
CRF, PA, and sedentariness in relation to brain function.

Both WM structure and GM function benefit from PA

We showed that older adults with greater global FA exhibited more positive brain scores, i.e.
had greater PA and greater SDpo; p. Our study therefore further extends previous reports of a
positive relationship between WM microstructure and physical fitness and activity, as mea-
sured by either CRF or PA [12,69-72]. We propose that anti-inflammatory and pro-
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myelination effects of PA on the aging brain may explain the link between PA-related SDpo1p
and WM microstructure. For example, increased PA may protect the oligodendrocytes against
damage, such as related to oxidative stress [73,74] and the age-related reduction in myelin
integrity [75]. In addition, PA and exercise reduce systemic markers of inflammation [76],
while increased inflammatory markers are associated with lower WM microstructure in
healthy non-demented older adults [77,78]. Together, our data suggests that PA benefits both
WM microstructure and GM function, as patterns and magnitude of SDgoy p at rest reflecting
brain functional health are supported by WM microstructure in healthy aging. Future studies
will assess the role of GM volume and density in these relationships.

Conclusions

We demonstrated a positive association between PA, variability in the BOLD signal, and WM
microstructure in healthy low-active older adults. We found that greater LI-PA and MV-PA
coincided with greater SDporp in regions where function is known to benefit from greater CRF
and PA, and which play an important role in within and between-network communication in
the brain. Therefore, our results suggest that greater PA in older age and the related physiologi-
cal and neural mechanisms may support optimal neural processing in key regions, as well as
WM integrity of tracts connecting these distributed regions. We conclude that SDpop is a
promising neural correlate of functional brain health in healthy older adults and the objective
assessment of PA is an important tool in investigating functional aspects of brain health. The
ongoing longitudinal and intervention studies will shed more light on the potential of SDporp
in detecting changes in brain function as a result of increased PA, cognitive stimulation, and
dietary supplements.
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