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Abstract
Phylogeographic studies of Philippine birds support that deep genetic structure occurs

across continuous lowland forests within islands, despite the lack of obvious contemporary

isolation mechanisms. To examine the pattern and tempo of diversification within Philippine

island forests, and test if common mechanisms are responsible for observed differentiation,

we focused on three co-distributed lowland bird taxa endemic to Greater Luzon and Greater

Negros-Panay: Blue-headed Fantail (Rhipidura cyaniceps), White-browed Shama (Copsy-
chus luzoniensis), and Lemon-throated Leaf-Warbler (Phylloscopus cebuensis). Each spe-

cies has two described subspecies within Greater Luzon, and a single described

subspecies on Greater Negros/Panay. Each of the three focal species showed a common

geographic pattern of two monophyletic groups in Greater Luzon sister to a third monophy-

letic group found in Greater Negros-Panay, suggesting that common or similar biogeo-

graphic processes may have produced similar distributions. However, studied species

displayed variable levels of mitochondrial DNA differentiation between clades, and genetic

differentiation within Luzon was not necessarily concordant with described subspecies

boundaries. Population genetic parameters for the three species suggested both rapid pop-

ulation growth from small numbers and geographic expansion across Luzon Island. Esti-

mates of the timing of population expansion further supported that these events occurred

asynchronously throughout the Pleistocene in the focal species, demanding particular

explanations for differentiation, and support that co-distribution may be secondarily

congruent.
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Introduction
Widespread lowland rainforest bird species are of great interest for studying phylogeographic
structure, which links genetics and geography [1, 2, 3, 4]. In regions where lowland rainforest
has fewer putative geographic/ecological barriers, species may be expected to be widespread,
with limited phylogeographic structure [5, 6, 7]. However, many bird species exhibit strong
genetic differentiation across seemingly continuous lowland forests, suggesting that current or
past landscape features restrict gene flow between populations [8, 9, 10, 11, 12, 13, 14, 15]. In
the naturally fragmented insular landscapes of Southeast Asia, widespread lowland rainforest
species often show extensive phylogeographic structure associated with repeated cycles of con-
nection and isolation of island complexes across the region during Quaternary climatic changes
[16, 17, 18, 19, 20]. However, the possibility of isolation and genetic differentiation within con-
tinuous lowland forests has received relatively little attention compared to isolation across
marine barriers (but see [21, 22] and references therein).

Island systems offer advantages for evolutionary studies because of their unique properties
(e.g. [23, 24]), which have promoted both adaptive radiations (e.g. [25, 26, 27, 28, 29]), and
high levels of endemism (e.g., [30, 31, 32,]). However, in island birds, allopatric differentiation
between populations on separate islands is thought to be the dominant mode of speciation
(e.g., [33, 34]). Evidence from other seemingly less-vagile vertebrates, however, suggests that
speciation may occur within a single island. Recent studies have shown this phenomenon to be
particularly pervasive in groups such as amphibians (e. g. [35, 36]), reptiles (e. g. [37, 38, 39,
40]), and small mammals (e.g. [41, 42, 43]). For birds, intra-island speciation has been sug-
gested to occur mainly in large, topographically complex islands (>100,000 km2, e.g. [21, 34,
44], but see [45]). However, intra-island speciation in apparently continuous habitats, such as
lowland rainforests, may be overlooked because taxa showing diagnostic morphological differ-
ences are generally treated either as subspecies or as part of geographic clines on the basis of
habitat continuity and potential reproductive links (e.g. [29]).

The Philippine archipelago provides a natural model to test for genetic differentiation in
continuous habitats within islands. With the exception of Palawan and some of its offshore
islands which were apparently united to the Sunda Shelf (reviewed in [46]), the Philippine
archipelago is oceanic in origin (reviewed in [47]). After its origin by complex geological activ-
ity, the archipelago was subjected to climatic and sea-level changes in the Pleistocene [48, 49]
that produced cycles of isolation and aggregation of islands into larger landmasses, providing
opportunities for both dispersal and isolation [48]. These Pleistocene Aggregate Island Com-
plexes, or PAICs [49] were apparently never joined to other PAICs, because they were sepa-
rated by deep water channels (>120 m, [48]).

The dominant paradigm for explaining the high diversity levels in the Philippines has been
based on the arrangement of exposed land among aggregated islands during Pleistocene sea-
level changes (reviewed in [32]), predicting that most speciation events among PAICs are due
to vicariance [16]. Recent work, however, has shown that the PAIC paradigm may not explain
many observed diversity patterns (reviewed in [32]), and that dispersal or within-PAIC differ-
entiation may have played a more important role than expected. We tested the prevalence of
the PAIC paradigm in three primarily lowland rainforest passerine birds: Blue-headed Fantail
(Rhipidura cyaniceps, Rhipiduridae), White-browed Shama (Copsychus luzoniensis, Turdidae)
and Lemon-throated Leaf-Warbler (Phylloscopus cebuensis, Phylloscopidae). These taxa are co-
distributed within the Greater Luzon PAIC, which includes the present-day islands of Luzon,
Polillo, Catanduanes, and Marinduque; and in the Greater Negros-Panay PAIC, which includes
Negros, Panay, Cebu, Ticao, and Masbate islands. Each species is common in forested habitats
on these islands, and they are regularly found together in mixed species flocks. Both inter- and
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intra-island plumage differences have been documented in these species, as suggested by recog-
nized subspecies throughout their range (Fig 1, [29, 31]). In each species, multiple described
subspecies are endemic to Greater Luzon (two in R. cyaniceps and P. cebuensis, three in C. luzo-
niensis), and single subspecies are endemic to Greater Negros-Panay.

We used tools from phylogenetics and phylogeography to estimate historic demographical
patterns in these co-distributed Philippine passerines. Given the extensive effects of Pleistocene
climatic changes in Southeast Asia [48, 50, 51, 52, 53], we may expect substantial changes in
their geographic distribution, and consequently, that some populations may have experienced
demographic changes. However, the effects of Pleistocene climatic changes in the oceanic Phil-
ippines remain little studied; thus, phylogeographic approaches may be of great utility in pro-
posing primary hypotheses about the evolutionary history of the Philippine biota. Results were
used for discriminating between different scenarios likely responsible for producing phylogeo-
graphic structure, such as the PAIC paradigm [48]. Based on a previous study that documented
within-PAIC differentiation [54], we tested the following hierarchical biogeographic hypothe-
ses for the co-distributed species in this study (Fig 2): a null hypothesis (H0) corresponding to
the classical PAIC paradigm, in which genetic differentiation is expected to be partitioned
between clades restricted to PAICs; alternative hypotheses involving genetic differentiation as a
result of different colonization events, resulting in unrelated clades in a single PAIC (H1), and
within-island genetic differentiation, in which sister clades are distributed in a single PAIC
(H2).

Materials and Methods

Taxon sampling
The three focal species are endemic to the Greater Luzon + Greater Negros-Panay PAICs. In
addition to these islands R. cyaniceps is also found on Tablas Island (Romblon Island Group).
Neither R. cyaniceps nor C. luzoniensis are present on Cebu (Fig 1). Of the total samples, 40
corresponded to Copsychus luzoniensis, 28 to Phylloscopus cebuensis and 50 to Rhipidura cyani-
ceps (S1 Table, see Acknowledgements). To ensure thorough assessment of differentiation pat-
terns within Greater Luzon, we sequenced multiple individuals from as many localities as
possible. A Gratuitous Permit (GP) to conduct research and collect specimens in all sampling
localities was issued by Mundita S. Lim, Director of the Biodiversity Management Bureau
(BMB), Republic of the Philippines. Field studies did not involve endangered or protected spe-
cies. Birds were captured using mist-nets. Nets were checked every hour, with birds immedi-
ately released if not needed for future study. Birds were euthanized via thoracic compression or
isoflurane open-drop. This project operated under the University of Kansas Animal Care and
Use Committee (IACUC approval AUS no. 174–01), issued to R.G.M. at the University of
Kansas.

Because species-level relationships of R. cyaniceps and C. luzoniensis have been studied pre-
viously, outgroup choice was straightforward. Species selected as outgroups for C. luzoniensis
were Copsychus niger from Palawan Island, Philippines, and Copsychus malabaricus, a widely
distributed species in southeastern Asia [19, 20]. Outgroup selection for R.cyaniceps relied on
two recent studies [55,56], showing that the three traditionally recognized endemic Philippine
Rhipidura (including cyaniceps) are a monophyletic group, thus we included samples of the
other two endemic Philippine species. Finally, because the monophyly of P. cebuensis has been
questioned, with some authors lumping this species and P. olivaceus into a single taxon [57,
58], we included samples of the latter, which is likely the sister species of P. cebuensis [59]. We
also included samples of P. ijimae and P. coronatus as additional outgroups [60].
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Fig 1. Map of the Philippines showing the limits to Pleistocene Aggregates Island Complexes PAIC (outline) and emerged land (shaded) based on
Heaney (1985), study areas are in dark grey. Dotted circles represent sampling localities (See S1 Table for details). Maps show distribution for each taxa,
and the subspecies described (Dickinson et al. 1991). Dashed lines represent putative borders for currently accepted subspecies in Luzon.

doi:10.1371/journal.pone.0134284.g001
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DNA sequencing
DNA was extracted from frozen tissue using Proteinase K digestion procedures following the
manufacturer’s protocols (DNeasy; Qiagen, http://www.qiagen.com/). Markers selected for this
work have been used widely in bird systematics and biogeography, and include the entire sec-
ond subunit (ND2, 1041 bp) and third subunit (ND3, 351 bp) of nicotinamide adenine dinu-
cleotide dehydrogenase. These markers were amplified with the external primers L5215 and
H6313 for ND2 [61] and L10755 and H11151 for ND3 [62], as well as the ND2 internal prim-
ers 487L (provided by C. Oliveros C., unpublished), ND2-SWH [63], and H5766 [61].

To obtain independent assessments of phylogenetic relationships, we also sequenced three
nuclear markers: myoglobin intron 2 (Myo2, 541bp), glyceraldehyde-3-phosphodehydrogen-
ase intron 2 (G3pdh, 358 bp), and beta-Fibrinogen intron 5 (FIB5 565 bp). The Copychus and
Phylloscopus nuclear datasets included Myo2 and G3pdh, but not FIB5, whereas the Rhipidura
nuclear dataset included FIB5 only. Amplification and sequencing of FIB5 used the primers
FIB5 and FIB6 [64] as well as the internal primers FIB5F2 and FIB6R2 [65]; G3pdh used prim-
ers G3p13a and G3p13b [65, 66] and Myo2 used the primers Myo2 and Myo3F [67, 68], as
well as the internal primers 340R, MyoIntR and MyoINTF [68].

Genomic DNA was amplified using 5-primeTaq DNA polymerase under standard PCR
thermocycling protocols and visualized in agarose gels stained with ethidium bromide. Result-
ing products were cleaned with ExoSAPIT (GE Healthcare Corp.) and the purified products
were cycle-sequenced with ABI Prism BigDye v3.1 terminator chemistry. Cycle-sequenced
products were purified with ethanol precipitation, and sequenced on an ABI 3730 automated
sequencer. Sequences were aligned using MAFFT [69], as implemented in Geneious 7.0.2 [70].

Fig 2. The set of hierarchical hypothesis tested in this study, with their geographic representation and
phylogenetic expec. Blue: Greater Luzon, Red: Greater Negros-Panay; green: Bicol Peninsula. Areas in
light grey were not considered.

doi:10.1371/journal.pone.0134284.g002
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Alignments for each gene were further inspected by eye, and insertions and deletions (indels)
were adjusted as necessary. Heterozygous positions in the nuclear introns, determined by dou-
ble-peaks of similar height, were coded following the IUPAC ambiguity codes.

Phylogenetic Analyses
Phylogenetic relationships were reconstructed from the concatenated dataset for each taxon
through Maximum Likelihood analysis (ML) as implemented RAxML 7.0.3 [71], which allows
for different sequence evolution models to be incorporated into the analysis; nodal support was
assessed via non-parametric bootstrapping [72] with 1000 replicates. We also used Bayesian
Inference (BI) on the complete dataset for each species using MrBayes 3.2. [73]. Each dataset
was partitioned by gene and codon positions for the nuclear intron and mitochondrial genes
respectively [74, 75]. The Akaike Information Criterion (AIC), as implemented in MrModeltest
[76], was used to determine the best substitution model for each partition. BI was implemented
for 107 generations and sampled every 500 generations. Stationarity of the MCMC chains was
assessed in Tracer v1.5.0 [77], after which the first 30% generations were discarded as initial
burn-in. All remaining trees in the summary were used to produce a single 50% majority-rule
consensus tree. In order to ensure that examination of tree space was appropriate, topological
convergence was assessed in the on-line application AWTY [78] by using the compare func-
tion, which plots posterior probabilities of all splits for paired MCMC runs. Inspection for sta-
tionarity revealed that parameter and topological space were searched thoroughly.

Population genetic parameters
All population parameters were estimated from the mitochondrial dataset (ND3 and ND2) for
each species. Genetic diversity was assessed using indices of haplotype diversity (Hd) and nuce-
lotide diversity (π), with samples grouped by present-day island boundaries (Fig 1).

Following the phylogenetic results, Luzon samples were further divided according to the
obtained clades, corresponding to northern Luzon and the Bicol Peninsula. However, the geo-
graphic structure in these clades showed the Zambales region (in western Luzon) samples
grouped with the northern Luzon clade in both R. cyaniceps and P. cebuensis, but with the
Bicol Peninsula clade in C. luzoniensis. These arrangements suggest particular dynamic biotic
processes in the Zambales region, for which we conducted separated analyses for the popula-
tions of the three species. As a relative measure of divergence between populations, we esti-
mated Nei’s genetic distance values (Dxy), using DNAsp v5 [79] with a Jukes-Cantor
correction [80], between groups of populations identified in the phylogenetic results.

Genetic structure in the three species was explored using three-way AMOVA and Fst. For
the AMOVA analysis, samples were arranged in groups corresponding to the clades found in
the phylogenetic analyses. The significance of the AMOVA results was assessed through 10,000
non-parametric permutations. The parameter Fst was calculated through pairwise differences
between haplotypes; significance of the Fst parameter was also assessed with 10,000 permuta-
tions. Finally, as an additional measure of gene flow, we calculated the number of migrants per
generation (Nm). Because some studies have shown that populations of R. cyaniceps and C.
luzoniensis in the Greater Negros-Panay PAIC and the Romblon Island Group are evolution-
arily distinct from those in Greater Luzon [20, 55, 81], AMOVA analyses were repeated using
the same parameters as described above but excluding populations in these island groups. All
statistics were calculated in Arlequin ver. 3.5.1.3 [82]. Interpretation of Fst and Nm values fol-
lowed the guidelines in Hartl and Clark [83].

We tested whether populations of the three species had experienced demographic changes
by calculating Fu’s Fs statistic [84], which indicates whether individual populations are evolving
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according to the Wright-Fisher model. Significance of Fu’s Fs was determined using a p-value
of 0.02 as suggested by Fu [84]. We also calculated Tajima’s D statistic [85], another measure of
the selective neutrality of markers in a population. Significance of Fu’s Fs and Tajima’s D were
calculated by constructing 1000 coalescent simulations in DnaSP v5 [79].

Population history was further inferred by plotting mismatch distributions [86, 87] and cal-
culating their significance using Ramos-Onsins and Rozas R2, which is better suited for small
sample sizes [88]. R2 significance was estimated through 1000 coalescent simulations for the
different clades (and the Zambales subpopulation) of each species in DnaSP v5 [79]. For clades
showing significant population growth, the parameter Tau (τ) was used to calculate the time t
of potential step-wise expansion from a relatively small, but constant population to a large pop-
ulation of sizeƟ1 over t generations in the past, with t = τ/2u, where τ = age of expansion (in
mutational units) and u = 2μk, where μ = mutation rate and k = the length of the sequence
[87]. We used mutation rates of 1 x 10−9 substitutions/site/year (s/s/y), which is supported by a
large dataset of studies on passerine birds [89], 2.7 x 10−9 s/s/y, which is a ND2 specific muta-
tion rate calculated from mockingbirds in the Galapagos Islands [90], and a faster rate of 4
X10-9 s/s/y, which accounts for uncertainties about mitochondrial substitution rates [91, 92].
Some researchers have suggested that the estimation of τ according to Rogers [93] often leads
to an underestimation of the age of expansion, due to the omission of heterogeneity in muta-
tion rates among sites [94]. Thus, we calculated τ values by applying a least-squares approach,
as implemented in Arlequin ver. 3.5.1.3 [82]. Confidence intervals for τ were calculated using
3000 parametric bootstrap replicates [94], as implemented in Arlequin ver. 3.5.1.3 [82].

Finally, because it has been suggested that bifurcating trees may not always fully represent
intraspecific phylogenies due to the coexistence of ancestral and derived haplotypes in a given
sample [95], we also estimated Median-joining networks using a median-joining method [96]
in Networks 4.6.0.0 (http://www.fluxus-engineering.com), assigning equal weights to all vari-
able sites and with default values for the epsilon parameter (Ɛ = 0).

Results

Phylogenetics
In all, 1967 characters were included in the complete dataset for R. cyaniceps, 2198 characters
for C. luzoniensis, and 2429 characters for P. cebuensis. Sequences for R. cyaniceps, C. luzonien-
sis, and P. cebuensis are deposited in GenBank (S1 Table). Sequence characteristics for each
gene partition and the selected models of evolution are provided in S2 Table.

Phylograms from the mitochondrial DNA (mtDNA) dataset were identical to those
obtained from the complete dataset in R. cyaniceps (Fig 3, see [55]), as well as for C. luzoniensis
(Fig 4) and P. cebuensis (Fig 5). Nuclear phylograms (nDNA) for each species showed two sis-
ter clades including all of the Greater Luzon PAIC samples and Greater Negros-Panay PAIC
(Negros and Panay islands) samples. However, no structure in the nDNA datasets was appar-
ent within Greater Luzon, likely due to the fourfold higher effective population size, longer coa-
lescence times, male biased dispersal, and slower mutation and rates of nDNA markers,
consistent with expectations from coalescent theory [97].

ML and BI results were largely congruent in all three cases (Figs 3, 4, and 5). All analyses
showed each of the three taxa as monophyletic. In each case, there were three relatively well-
supported clades: a Western Visayas clade (Greater Negros-Panay PAIC), and two clades from
Greater Luzon, corresponding to northern and southern parts of the island. Samples from the
Zambales region in western Luzon were embedded within the northern Luzon clade in R. cya-
niceps and P. cebuensis, but with the Bicol Peninsula clade (including Catanduanes Island) in
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Fig 3. Maximum Likelihood tree andmedian-joining haplotype network of the mtDNA dataset for R. cyaniceps. Numbers in the branches refer to
bootstrap support for the ML (before slash) and posterior probabilities from the BI (after slash). In the Median-joining haplotype network each ellipse
represents a unique haplotype; different sizes and shading (a black shaded portion represents an individual sharing that haplotype) according to the
frequency of occurrence. Each line connecting haplotypes represent a single mutational step. Numbers along lines indicate two or more steps separating
haplotypes. Small open circles represent missing (unsampled) haplotypes.

doi:10.1371/journal.pone.0134284.g003
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Fig 4. mtDNA phylogram of C. luzoniensis. Numbers in the branches refer to bootstrap support for the ML (before slash) and posterior probabilities from
the BI (after slash). Median-joining haplotype network for the mtDNA dataset. Arrows signal haplotypes found in the Mingan Mountains, eastern Luzon. See
Fig 3 for details.

doi:10.1371/journal.pone.0134284.g004
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C. luzoniensis. One additional monophyletic grouping included the Tablas island samples of R.
cyaniceps, as previously reported [55].

Phylogeography
Genetic structure (Table 1) analyses revealed high values of differentiation between PAICs.
High values for Nei’s corrected distance (Dxy) were found for comparisons between Greater
Luzon PAIC and Greater Negros-Panay PAIC for R. cyaniceps and C. luzoniensis, consistent
with recent systematic treatments in which these populations have been recognized as full spe-
cies (R. albiventris and C. superciliaris, respectively, [20, 55, 81, 98]). Divergence also was

Fig 5. mtDNA phylogram of P. cebuensis. Numbers in the branches refer to bootstrap support for the ML (before slash) and posterior probabilities from the
BI (after slash). Median-joining haplotype network for the mtDNA dataset. See Fig 3 for details.

doi:10.1371/journal.pone.0134284.g005
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found within PAIC boundaries, as in Greater Luzon PAIC, where values of genetic flow and
genetic differentiation are also high [82]. High levels of haplotype diversity (Hd) and low levels
of nucleotide diversity (π) were observed in the populations of the three species (Table 2), sug-
gesting rapid population growth according to Category 2 in Grant and Bowen [99].

Mismatch distributions (Fig 6) and Ramos-Onsins and Rosas´R2 values (Table 2) showed
similar patterns with respect to geographic areas across species. In northern Luzon, mismatch
distributions for R. cyaniceps and P. cebuensis showed a unimodal pattern, suggesting popula-
tion expansion; R2 values were significant in both species. In C. luzoniensis, a ragged pattern is
apparent, suggesting that populations may be at demographic equilibrium. This same unimo-
dal pattern is also apparent in Bicol Peninsula populations of R. cyaniceps and C. luzoniensis, in
which significant R2 values were obtained for both species, suggesting recent population expan-
sion in the area. For P. cebuensis, the Bicol Peninsula clade showed a multimodal pattern, sug-
gesting persistence through small and isolated populations or a population bottleneck [100].
The Zambales populations of both R. cyaniceps and C. luzoniensis (small sample size in P.
cebuensis prevented analysis) showed a bimodal pattern, suggesting either that for both species,
there has been a relatively constant effective population size in the past [100], or probably, an
admixture of distinct populations, which may be expected as both of these subpopulations are
part of larger genetic groups located either in Northern Luzon and the Bicol Peninsula, respec-
tively. Finally, the Greater Negros-Panay in R. cyaniceps and C. luzoniensis showed a multi-
modal pattern, suggesting either population bottleneck or persistence of small and isolated
populations, which seems highly probable as this PAIC is presently partitioned in smaller
islands fragments, in comparison to Greater Luzon PAIC. However, these results are only pre-
liminary and should be taken with caution, given the sample size and geographic coverage,
which prevented conclusive demographic inferences, especially for P. cebuensis.

Three-way AMOVA results (Table 3) suggested that the greatest variation in genetic struc-
ture of the three species is found among groups, which correspond to clades obtained in the

Table 1. Gene flow parameters estimated for the three lowland Passerines under study. Above the diagonal in each species, are Fst (Nm); below the
diagonal, values of Dxy (Da), where Dx indicates the average number of nucleotide substitutions per site between populations (percentage), and Da indicates
the average number of net nucleotide substitutions per site between populations (Nei 1987).

N Luzon Zambales Bicol Pen Visayas

Taxon Rhipidura cyaniceps
Clade N Luzon - 0.05921* (4.11) 0.85980 (0.04) 0.92014 (0.05)

Zambales1 0.092 (0.037) - 0.95550 (0.02) 0.93976 (0.03)

Bicol Peninsula 3.135 (2.881) 2.993 (2.886) - 0.96732 (0.03)

Visayas 4.960 (4.535) 4.980 (4.665) 4.638 (4.373) -

Taxon Copsychus luzoniensis

Clade N Luzon - 0.71289 (0.09) 0.73042 (0.17) 0.89520 (0.04)

Zambales1 3.333 (2.839) - 0.20805 (0.89) 0.92532 (0.04)

Bicol Peninsula 2.437 (1.831) 0.827 (0.298) - 0.91109 (0.04)

Visayas 6.607 (6.084) 6.027 (5.844) 5.772 (5.318) -

Taxon Phylloscopus cebuensis
Clade N Luzon - -0.19531* (0.0) 0.72870 (0.18) 0.89845 (0.06)

Zambales1 0.054 (0.00) - 1.00000 (0.0) 0.92982 (0.03)

Bicol Peninsula 0.403 (0.295) 0.289 (0.289) - 0.93363 (0.09)

Visayas 1.505 (1.356) 1.235 (1.163) 1.245 (1.064) -

* Not significant at P < 0.05
1 Not actually a clade (See Methods)

doi:10.1371/journal.pone.0134284.t001
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phylogenetic analysis and PAIC distribution limits. High Fst values [83] were obtained in all
comparisons involving populations from Greater Negros-Panay PAIC and populations in
Greater Luzon PAIC (Table 2), as predicted by the PAIC paradigm [49]. However, high and
significant Fst values (>0.72) were also obtained for within-PAIC comparisons, particularly
involving Northern Luzon and the Bicol Peninsula populations in the three species. Values of
Fst from populations in Zambales and Northern Luzon showed no significant genetic structure
in R. cyaniceps and P. cebuensis, but were moderate (0.21) for C. luzoniensis populations from
the Zambales and Bicol Peninsula. Gene flow was low [83] among most populations within the
three focal species (Table 1), suggesting less than one migrant per generation. However, gene
flow was more prevalent between populations of R. cyaniceps in northern Luzon and the Zam-
bales (4.11 migrants per generation), and between populations of C. luzoniensis from Zambales
and Bicol (1 migrant per generation). Population expansion in Northern Luzon was supported
by significantly negative values obtained for Fu’s Fs [84] in both R. cyaniceps and P. cebuensis
(Table 2). Remaining populations may have experienced population growth; however, small
sample sizes may influence statistical power to detect them. Tajima’s D values [84] corrobo-
rated the results obtained with the Fu’s F statistic, also suggesting population expansion or sta-
bilizing selection [99]. Additionally, the Bicol Peninsula clade of R. cyaniceps showed
significant negative values, suggesting also demographic expansion in this population.

Although estimated population expansion dates are heavily dependent on the mutation
rates used, all of them and their respective confidence intervals fall within the Pleistocene
(Table 4). Median population expansion times using the standard 2% [89] rate support early

Table 2. Molecular diversity and tests of neutral evolution for the three species in this study, grouped by region and clade.

No. h Hd ± SD π ± SD R2 Tajima’s D Fu’s F s

Rhipidura cyaniceps

All 49 33 0.969 ± 0.014 0.02326 ± 0.00322

N Luzon 26 22 0.988 ± 0.014 0.00419 ± 0.00041 0.0596** -1.7389* -15.5073***

Zambales 5 3 0.7 ± 0.218 0.00207 ± 0.00103 0.40000 -1.14551 3.0225

Bicol Peninsula 9 5 0.722 ± 0.159 0.00230 ± 0.00120 0.1361* -1.7278* -1.7836

Visayas 5 5 1 ± 0.126 0.00457 ± 0.00123 0.19153 -0.9978 -1.1125

Copsychus luzoniensis

All 40 31 0.985 ± 0.010 0.02139 ± 0.00314

N Luzon 20 13 0.947 ± 0.03 0.00612 ± 0.00074 0.0912 -1.1237 -1.6843

Bicol Peninsula 10 9 0.978 ± 0.054 0.00585 ± 0.00108 0.0784*** -0.09830 0.20439

Zambales 6 6 1 ± 0.096 0.00445 ± 0.00194 0.2493 -1.3152 -1.8546

Visayas 4 4 1 ± 0.177 0.00578 ± 0.00154 0.2016 0.2616 0.0432

Phylloscopus cebuensis

All 30 7 0.618 ± 0.091 0.0043 ± 0.00105

N Luzon 18 10 0.81 ± 0.093 0.00125 ± 0.00029 0.0733*** -1.9079* -6.0145***

Zambales 3 1 - - -

Bicol Peninsula 5 3 0.7 ± 0.218 0.00189 ± 0.00075 0.2630 -0.6682 1.0900

Visayas 4 3 0.833 ± 0.222 0.00169 ± 0.00053 0.2732 0.6501 0.3596

No., number of samples; h, number of haplotypes; Hd, Haplotype diversity and standard deviation; π, Nucleotide diversity and standard deviation; R2,

Ramos-Onsins and Rozas.

* P>0.05

** P>0.001

*** P>0.00001
1 P = 0.058

doi:10.1371/journal.pone.0134284.t002
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Pleistocene for R. cyaniceps (1.5 mya) and early to middle Pleistocene for P. cebuensis (0.8
mya). In the Bicol Peninsula, estimates of population expansion strongly suggest two different
events. For C. luzoniensis, estimates suggest mid to early Pleistocene events, whereas popula-
tions of R. cyanicepsmay have expanded in the late Pleistocene.

Mitochondrial haplotype networks (Figs 3, 4, and 5) for the three species reflected the same
population structure revealed by the phylogenetic analyses, in which high (in R. cyaniceps and
C. luzoniensis, 40 and 41 mutational steps respectively) to low (3 in P. cebuensis) numbers of
mutational steps separated Greater Negros-Panay populations from Luzon populations. Luzon
birds were grouped in two different haplotype clusters in R. cyaniceps and C. luzoniensis, in
which 19 and 7 mutational steps, respectively, separated the Bicol Peninsula clades from
Northern Luzon clades. Haplotype networks in the three species showed a star-like pattern,
suggesting historical demographic expansion after isolation [3]. Apparent signs of secondary
contact for C. luzoniensis were observed in the Mingan Mountains in eastern Luzon, where
analyses showed representatives of north and south haplotype groups. One of the haplotypes

Fig 6. Mismatch distributions for each focal taxon.Dots represent the observed mismatch distributions, the continuous line represent the expected
mismatch distributions. Due to sample size, no mismatch graph was calculated for P. cebuensis from the Zambales region in Greater Luzon PAIC. * N Luzon
+ Zambales for R. cyaniceps and P. cebuensis; Bicol Peninsula + Zambales in C. luzoniensis.

doi:10.1371/journal.pone.0134284.g006
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Table 3. AMOVA values estimated for the lowland passerines under study.

Source of variation Sum of squares Variance components % of variation

Rhipidura cyaniceps
Among groups 515.241 18.82169 91.06*

Among populations within groups 3.066 0.16495 0.80

Within populations 74.020 1.68227 8.14

Total 592.327 20.66892

Copsychus luzoniensis

Among groups 224.704 5.11438 35.29*

Among populations within groups 65.813 6.85668 47.32

Within populations 90.733 2.52037 17.39

Total 381.250 14.49143

Phylloscopus cebuensis

Among groups 16.974 1.21784 89.27*

Among populations within groups 0.032 -0.02769 -2.03

Within populations 4.528 0.17415 12.76

Total 21.533 1.36430

*Not significant at P < 0.05

doi:10.1371/journal.pone.0134284.t003

Table 4. Estimated population expansion dates for the three taxa in Luzon Island. Values are given for subpopulations in either NC Luzon (R. cyani-
ceps and P. cebuensis) or Bicol Peninsula (C. luzoniensis) that showed evidence of population expansion (see text). Columns indicate values of τ and three
age estimates along with their 95% confidence intervals. Rates based on: 1Weir and Schluter 2008, 2Arbogast et al. 2006, and 3Lim et al. 2011. Mutation
rates in Myr-1.

Taxon Population τ μ = 0.011 μ = 0.0272 μ = 0.043

Phylloscopus cebuensis

N Luzon Estimated 3 1,077,586 399,106 269,396

Lower bound 0.375 134,698 49,888 33,674

Upper bound 4.078 1,464,798 542,518 366,199

Median 2.322 834,051 308,908 208,512

Copsychus luzoniensis

Bicol Peninsula Estimated 4.73828 1,701,968 551,165 372,036

Lower bound 1.844 662,356 245,317 165,589

Upper bound 7.057 2,534,841 938,830 633,710

Median 4.5 1,616,379 598,659 404,094

Rhipidura cyaniceps

NLuzon Estimated 4.37891 1,572,884 582,549 393,221

Lower bound 2.84 1,020,114 377,820 255,028

Upper bound 5.727 2,057,112 761,893 514,278

Median 4.339 1,558,548 577,240 389,637

Bicol Peninsula Estimated 0.55273 198,538 73,532 49,639

Lower bound 0 0 0 0

Upper bound 1.523 547,054 202,612 136,763

Median 0.581 208,692 77,293 52,173

doi:10.1371/journal.pone.0134284.t004
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nested with the Bicol peninsula samples, the other nested with Northern Luzon samples (Fig
4).

Discussion
The observation that endemic species’ distributions in the Philippines corresponded to biogeo-
graphic subprovinces produced a paradigm that dominated biogeographic and taxonomic
research for over 25 years, in which repeated cycles of connection and isolation within different
PAICs occurred in concert with climatic shifts and sea level change in the Pleistocene, promot-
ing biotic evolution in the archipelago (reviewed in [33]). Although the PAIC paradigm pro-
vides a functional explanation for biotic evolution in the Philippine archipelago, molecular
analyses have suggested that the this paradigm only explains a portion of diversity patterns in
the archipelago, highlighting mixed models as potentially better explanations [18, 33, 39, 54].

Genetic differentiation in the three lowland passerine species in this study also corresponds
to a mixed model. Consistent with the PAIC paradigm (H0), phylogenetic trees of the three
species showed monophyletic sister groups in Greater Luzon and Greater Negros-Panay PAIC.
The pattern departs from strict PAIC expectation within Luzon, with substantial structure dis-
covered in this clade in all three species (H2). Populations in each of the species showed levels
of genetic divergence higher than those proposed for the recognition of full species [11, 63, 101,
102], except for P. cebuensis. Genetic differentiation within Luzon is particularly evident in R.
cyaniceps and C. luzoniensis, where high Fst values are coupled with a low estimated number of
migrants, suggesting the existence of a past barrier to gene flow within the island. Additionally,
the association of samples from the Zambales region either with northern Luzon (in R. cyani-
ceps and P. cebuensis), or the Bicol Peninsula, as in C. luzoniensis suggests that this region in
western Luzon has had a dynamic biotic history, in which lowlands may have connected at dif-
ferent times with Northern Luzon or the Bicol Peninsula lowland rainforests.

Following the premises of the PAIC paradigm, most attention on bird differentiation in the
Philippines has been devoted to patterns among PAICs [29]. In contrast, within-island differ-
entiation has received relatively little attention [59, 103, 104, 105]. Phylogeographic results in
this study showed that genetic differentiation also has occurred within the limits of Greater
Luzon PAIC, as in the Zambales region, where phylogenetic patterns suggest a dynamic his-
tory, with populations of different species having close relationships to populations on opposite
ends of the island.

All of the estimated dates and confidence intervals for population expansion suggest that
these events occurred throughout the Pleistocene, spanning several proposed glacial cycles
[106], corresponding with models of rainforests expansion and contraction during glacial peri-
ods in southeastern Asia [52]. Evidence for demographic expansion in populations of the three
species support a scenario in which isolation occurred in different refugia located in Northern
Luzon for R. cyaniceps and P. cebuensis and in the Bicol Peninsula for C. luzoniensis and R. cya-
niceps. In the case of C. luzoniensis, population expansion is further supported by secondary
contact between the two distinct phylogroups in the Mingan Mountains, in eastern Luzon.

Considered together, intra-PAIC differentiation patterns and evidence of demographic
expansion suggest that populations of some species were fragmented during at least some Pleis-
tocene climatic cycles [49, 59]. A recent study, however, suggested that lowland rainforest con-
nectivity in the Philippines increased during the Pleistocene Last Glacial (LGM, [53]).
Although forest may have been widespread in the LGM, differentiation and even population
expansion in the focal species likely predated the onset of that period in the three, thus suggest-
ing the main effect of lowland rainforest connectivity was probably biotic redistribution.
Although forest connectivity may have increased during glacial periods in some regions [53],
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the structure and communities of these lowland rainforests may have been different from pres-
ent-day communities [107, 108], rendering the habitats unsuitable, which may support that
populations of the three focal species in Luzon have maintained their differentiation due to
ecological vicariance [43, 55]. Environmental niche modelling research has shown that
response to environmental change is species-specific [109, 110] and that modifications in some
of the abiotic variables may influence distributional patterns, which in turn may have pro-
moted genetic divergence [54]. Also, despite forest connectivity, genetic distances and Fst val-
ues for the focal species closely resemble the patterns detected in montane forest taxa [59, 103,
105], for which geographic isolation has played a key role (reviewed in [111]).

Taken together, phylogenetic and phylogeographic patterns in these lowland rainforest
endemic birds point to a more dynamic evolution of the Philippine archipelago biota than pre-
dicted by the PAIC paradigm. For the three species in this study, a model incorporating the
effects of sea level change and climatic changes seems adequate to explain historical demo-
graphic patterns. Although sea level changes may have functioned as barriers promoting diver-
gence between PAIC populations, habitat isolation due to climatic changes may have restricted
(and perhaps reinforced in different glacial cycles) gene flow in populations within the same
PAIC [42, 54]. Results in this study and other studies have revealed that diversity in the Philip-
pines is not only structured between PAICs, but also within PAICs. This result is consistent
with recent studies in mammals and reptiles (e.g. [39, 42, 46]), and birds [54, 54, 59, 101, 103,
105, 112].

Our study adds to the growing body of evidence showing that speciation and genetic differ-
entiation may occur within a single island, probably as a consequence of the Pleistocene cli-
matic changes. Recent studies for birds (reviewed in [21]) and mammals in Borneo (e.g. [113])
shown that speciation and differentiation may be more common than expected, either in land-
bridge islands in the Sunda Shelf, or in oceanic islands, as in the Philippine archipelago [36, 37,
38, 39, 40, 42, 43, 46, 104, 105, this study], where lowland differentiation in birds is widespread
within the two largest Philippine islands of Luzon [54, 104] and Mindanao [54], yet it remains
undocumented in smaller islands.

Taxonomy
Results in this and other studies have repeatedly suggested that the current taxonomy for the
Philippine biota does not accurately reflect diversity in the archipelago, which means that cur-
rent species diversity estimates are better interpreted as conservative [114, 115]. Birds have
been long considered as a group with a relatively good taxonomic knowledge; however, the
application of the biological species concept in allopatric contexts, such as the Philippine archi-
pelago, has been controversial because of difficult inferences about reproductive isolation
between geographically isolated populations [116].

Phylogenetic patterns showed two main clades: one grouped all of the Greater Luzon sam-
ples; the other grouped all of the Greater Negros-Panay samples. High genetic distances and
Fst values indicate substantial differentiation between these populations in all focal species,
with the exception of P. cebuensis (1.3% average). Populations of the other two taxa in Greater
Negros-Panay both show deep genetic differentiation from Luzon populations and diagnostic
characters that allow them to be recognized as full species [20, 55].

Additional genetic variation was also discovered within the bounds of a single PAIC. In
Greater Luzon PAIC, phylogenetic analyses showed two well-supported monophyletic sister
groups. This arrangement apparently agrees with current taxonomy, as there are two recog-
nized subspecies for each taxon [29, 57]; however, geographic ranges between recognized sub-
species and phylogeographic groups do not match. In the case of R. cyaniceps, the two
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recognized subspecies cyaniceps and pinicola were included in the same clade, suggesting that
morphological variation may be clinal [117] and even ecological, as pinicola is mainly restricted
to pine forests [29, 117]. The second clade includes all of our samples from the Bicol Peninsula.
An average genetic differentiation of 3% (range 2.9–3.1%), and high Fst values (average 0.9,
range 0.85–0.95) between the two groups suggests a long period of genetic isolation. Disagree-
ment between current taxonomy and phylogeographic groups was also found in C. luzoniensis.
Samples from Luzon Island were included in two sister clades, with populations from northern
Luzon sister to those from western, central, and southern Luzon (Bicol Peninsula), and Catan-
duanes Island. Deep genetic divergence (average 2.9%, range 2.4–3.3%) and high Fst values
(average 0.72, range 0.71–0.73) also suggest long isolation and consequent differentiation.
Finally, the only case where taxonomy apparently agrees with our work is in P. cebuensis. The
two recognized subspecies luzoniensis and sorsogonensis seem to match the monophyletic
groups obtained; this subespecific arrangement is supported by a low genetic differentiation
(average 0.3%, range 0.3–0.4%) but high Fst values (average 0.86, range 0.7–1).

Throughout the northern Philippines, molecular studies in birds have found values of
genetic divergence ranging from 2.7% to 13.8% between populations of the same taxon, sug-
gesting that species boundaries in a number of avian species should be revised [11, 19, 55, 105,
118, 119]. These values bracket the genetic divergence found in the two clades of R. cyaniceps
and C. luzoniensis found in Luzon Island. It has been suggested that evidence from a single
dataset may not be enough, underscoring the need for additional evidence such as morphologi-
cal and song characters [120, 121]. In the focal species, morphological differentiation is evident
when comparing Greater Luzon and Greater Panay Negros lineages, as each has diagnostic
characters. However, this task is complicated when comparing lineages within Luzon, as they
look almost identical at first sight. However, a cursory inspection in C. luzoniensis revealed that
birds from Bicol and the Polillo islands differ from the northern Luzon birds in the size of the
white spots on the undertail (a trait that allowed the recognition of the Polillo taxon parvima-
culatus), suggesting that diagnostic characters are present. In R. cyaniceps, birds from the Bicol
Peninsula apparently have darker plumage [116]. This situation is reversed in P. cebuensis,
which has the lowest genetic divergence but clear diagnosable characters; subspecies in Luzon
differ in the amount and brightness of yellow in the throat and undertail coverts, being brighter
in the Bicol Peninsula sorsogonensis [122].

Species delimitation may be controversial due to different philosophies and species concept
applicability [123]. This may be even more complicated when genetic divergence is not accom-
panied by clear morphological difference and when this divergence has occurred within the
same island e. g. [124]. However, genetic differentiation may occur without corresponding
morphological differentiation [125], and recent work in the Philippine archipelago has demon-
strated that speciation has occurred within a single island [36, 37, 38, 39, 40, 42, 43, 46, 104,
105]. Whatever philosophy is applied, genetic differentiation and speciation has occurred
within a single PAIC, thus deviating from classic PAIC differentiation expectations.
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