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Abstract
While collective intelligence (CI) is a powerful approach to increase decision accuracy, few

attempts have been made to unlock its potential in medical decision-making. Here we inves-

tigated the performance of three well-known collective intelligence rules (“majority”, “quo-

rum”, and “weighted quorum”) when applied to mammography screening. For any particular

mammogram, these rules aggregate the independent assessments of multiple radiologists

into a single decision (recall the patient for additional workup or not). We found that, com-

pared to single radiologists, any of these CI-rules both increases true positives (i.e., recalls

of patients with cancer) and decreases false positives (i.e., recalls of patients without can-

cer), thereby overcoming one of the fundamental limitations to decision accuracy that indi-

vidual radiologists face. Importantly, we find that all CI-rules systematically outperform even

the best-performing individual radiologist in the respective group. Our findings demonstrate

that CI can be employed to improve mammography screening; similarly, CI may have the

potential to improve medical decision-making in a much wider range of contexts, including

many areas of diagnostic imaging and, more generally, diagnostic decisions that are based

on the subjective interpretation of evidence.

Background
Beliefs in individual experts and genius are deeply engrained in western societies yet research
on collective intelligence has shown that groups can often outperform individuals when solving
cognitive problems [1–4]. One of the earliest example is provided by Galton [5], who showed
that the weight of an ox can be determined almost perfectly by pooling a large number of indi-
vidual guesses. Over the last decades, impressive feats of collective intelligence (CI) have been
described in a wide range of animal species including microbes, insects, fish, birds and humans
[6–12]. In the human domain, a key challenge exists in identifying those contexts where
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decisions can be improved with CI, and to design decision-making systems that unlock this
potential [13–15].

To date, relatively few studies have applied CI to the field of medical decision-making (but
see [16–18]). Here we investigated the scope for CI among radiologists independently inter-
preting mammograms. Breast cancer is the most prevalent cancer type in females and currently
accounts for 29% of all new cancer cases in the U.S. with relatively consistent incidence rates
since 2003 [19]. Mammography is the prime diagnostic tool for early detection of breast cancer
and also the most commonly used radiological screening method. During interpretation of
screening mammograms, physicians face a trade-off between achieving a high true positive
rate (i.e., the proportion of cancer cases correctly recalled for additional workup, or sensitivity)
and a low false positive rate (i.e., the proportion of non-cancer cases incorrectly recalled for
additional workup, or 1—specificity) [20,21]. Interpretations by a single radiologist as done in
the U.S. and independent double reading of mammograms by two radiologists in combination
with consensus discussion in cases of discordant opinions as done in Europe are the most com-
mon evaluation methods [22]. We stress that, despite substantial improvements in mammog-
raphy screening, considerable scope for CI remains. According to the current Mammography
Factsheet of the National Cancer Institute (U.S. Department of Health and Human Services),
for example,”screening mammograms miss about 20 percent of breast cancers that are present
at the time of screening” [23].

Materials and Methods
In order to assess the potential for CI in mammography screening, we investigated the perfor-
mance of three well-known CI-rules (Table 1). For any given mammogram, these rules inte-
grate the independent assessments of multiple radiologists into a final decision (i.e., recall the
patient for additional workup or not). The three rules differ in how they aggregate the individ-
ual assessments (‘recall’ or ‘no recall’) into a final decision and how much prior knowledge is
required for their implementation (Table 1). Specifically, these rules prescribe that a patient is
recalled whenever (i) a majority of the independent individual assessments is ‘recall’ (‘major-
ity’), (ii) the frequency of independent individual assessments for ‘recall’ is higher than a pre-
established quorum threshold (‘quorum’) and (iii) the frequency of the weighted independent
individual assessments for ‘recall’ is higher than a pre-established quorum threshold (‘weighted
quorum’). Importantly, all three CI-rules are predicted to increase the decision accuracy of
groups compared to single decision makers [24–26].

To investigate the performance of these CI-rules, we used one of the largest available mam-
mography datasets, consisting of 16,813 interpretations by 101 radiologists of 182

Table 1. Three CI-rules1.

Decision rule Promotes collective intelligence whenever Information requirement

Majority Recall patient whenever a majority of the
assessments is ‘recall’.

Each individual decision maker has an
accuracy above 50%.

None.

Quorum Recall patient whenever the fraction of the ‘recall’
assessments is higher than the pre-established
quorum threshold.

The quorum threshold is set between the
average true and false positive rate of
decision makers.

The average true and false
positive rate of decision
makers.

Weighted
quorum

As ‘quorum’, but the votes of individual decision
makers are weighted according to their individual
performance.

As ‘quorum’. The accuracy of individual
decision makers.

1 Note that these CI-rules are a sequence of increasingly complex rules: the majority rule is a special case of the quorum rule with the quorum threshold

set to 0.5, and the quorum rule is a special case of the weighted quorum rule with the individual weights set to 1.0.

doi:10.1371/journal.pone.0134269.t001
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mammograms in a test set study setting [27,28]. All cases included in the test set were ran-
domly selected from screening examinations performed on women aged 40 to 69 between 2000
and 2003 from six U.S. mammography registries participating in the Breast Cancer Surveil-
lance Consortium (S1 Text). Each screening examination included both current and previous
views for comparison, consisting of craniocaudal (CC) and mediolateral oblique (MLO) views
of each breast (4 views per woman for each of the screening and comparison examinations),
which is standard practice in the U.S. [27]. As this dataset contains the independent assess-
ments by multiple radiologists of the same mammogram (mean number of independent read-
ings per mammogram = 92), and the true status of each mammogram (S1 Text), it allows us to
investigate the performance of the above CI-rules. We stress that, while the above dataset has
recently been used to investigate the performance of individual radiologists [29–31], up to
now, its potential to investigate CI in mammography screening has not yet been harnessed.

Throughout, we composed groups of size n (range: 1 to 15) by randomly drawing n radiolo-
gists from the total pool of radiologists. To assess the performance of the majority rule
(Table 1) and how this depends on group size we determined, for each mammogram, whether
the majority of the n radiologists classified the mammogram as ‘recall’ or ‘no recall’. We only
used odd group sizes to avoid the need for a tie-breaker rule. After classifying all mammograms
in this way (i.e. following the majority), we used the known cancer status of each mammogram
to calculate the average true and false positive rate and the overall accuracy (i.e., the proportion
of mammograms which are correctly classified) achieved when employing this procedure. To
assess the performance of groups that employ the quorum rule (Table 1) we randomly assigned
half of the mammograms to a training set and the other half to a validation set. The training set
was used to calibrate the quorum threshold which, in order to achieve gains in both true and
false positives, has to be set below the average true positive rate and above the average false pos-
itive rate of the individual radiologists [26]. We thus calculated the average true and false posi-
tive rate of the n radiologists in the training set and set the quorum threshold halfway between
these values (see below for alternative ways of setting the quorum threshold). We then evalu-
ated the performance of the quorum rule in the validation set. For each mammogram in the
validation set we determined the fraction of the n radiologists that classified the mammogram
as ‘recall’. If this fraction was higher than or equal to the quorum threshold, then the mammo-
gram was classified as ‘recall’, if not as ‘no recall’. After classifying all mammograms in the vali-
dation set, we used the known cancer status of each mammogram to calculate the average true
and false positive rate and the overall accuracy of the quorum rule. Our weighted quorum rule
(Table 1) resembles the quorum rule but additionally prescribes that the assessments of each
radiologist is weighted according to her previous performance (S1 Text). In particular, we
employ a commonly employed heuristic decision rule for binary choice scenarios as investi-
gated by us [24,32,33]: if the performance of radiologist i is pi, then its vote has to be weighted
by wi ¼ logð pi

1�pi
Þ. We thus followed the same procedure as described for the quorum rule, but

used the training set to estimate the performance of each radiologist and used these estimates
to set the weights in the validation set (S1 Text). For each CI-rule and each group size n, we
repeated this procedure 2,500 times (including new and independent assignments of the mam-
mograms to the training set and to the validation set) and then calculated the mean (± SEM).
We compared this to the average performance and the performance of the best radiologist in
each group (S1 Text).

Ethics Statement
Data used for this research were collected during the course of a mammographic test set study
designed to evaluate an intervention designed to improve mammographic accuracy among
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community radiologists [27,31]. The study involved radiologists from U.S. breast cancer regis-
tries including Carolina Mammography Registry, San Francisco Mammography Registry, New
Hampshire Mammography Network, New Mexico Mammography Project, Vermont Breast
Cancer Surveillance System, and Group Health Cooperative in western Washington, all affili-
ated with the Breast Cancer Surveillance Consortium (BCSC). The data were assembled at the
BCSC Statistical Coordinating Center (SCC) in Seattle and analysed at the Leibniz-Institute of
Freshwater Ecology and Inland Fisheries (IGB) in Berlin, Germany. All registries as well as the
SCC and IGB received institutional review board approval for either active or passive consent-
ing processes or a waiver of consent to enroll participants, pool data and perform statistical
analysis. All procedures are in accordance with the Health Insurance Portability and Account-
ability Act and all data were anonymized to protect the identities of women, radiologists and
facilities.

Results and Discussion
Fig 1 shows the results from these analyses. We find that, as group size increases, all three CI-
rules achieve both increases in true positives (Fig 1A) and decreases in false positives (Fig 1B).
As a consequence, larger groups make more accurate decisions (Fig 1C). The simultaneous
improvements in true and false positives is remarkable, as the trade-off between true and false
positives is one of the fundamental constraints of decision accuracy that single radiologists face
[20,21]. Our results show that each of the three CI-rules alleviates this constraint. Interestingly,
gains achieved from larger group sizes level off around a group size of nine, after which adding
more radiologists only has a marginal effect (Fig 1A to 1C). We stress that even relatively small
group sizes can achieve substantial performance improvements (Fig 1). As expected, the per-
formance of the highest-performing radiologist (green dots in Fig 1A to 1C) increases with
increasing group size. This is because larger groups have a higher likelihood of harbouring high
performers. Despite this, we find that groups employing any of the CI rules outperform the
best-performing radiologist in that group, achieving more true positives (Fig 1A), fewer false
positives (Fig 1B) and thus higher overall accuracy (Fig 1C).

When comparing the overall decision accuracy of the different rules, we find that the
weighted quorum rule slightly outperforms the quorum rule and that the quorum rule outper-
forms the majority rule (Fig 1C). This was to be expected, as these three rules can be seen as a
series of increasingly complex rules with the feature that the less complex rules are a special
case of the more complex rules: the quorum rule results in the majority rule when the quorum
threshold is set to 0.5, the weighted quorum rule results in the quorum rule when the individual
weights are set to 1. The same performance ranking can be found for the false positives (Fig
1B). The fact that the majority rule achieves a higher true positive rate than either quorum rule
(Fig 1A) can be explained by the particular way we set the quorum in the above analyses (i.e.
halfway between the average true and false positive rate of radiologists), which favours perfor-
mance gains in false positives (see below).

The majority rule is the simplest and most parsimonious of the three rules, as its implemen-
tation does not require any information about the performance of decision makers. In order to
implement the quorum rules, estimates of either the average true and false positive rate of deci-
sion makers (‘quorum’) or the individual performances (‘weighted quorum’) are needed. How-
ever, the quorum rules are more broadly applicable and more flexible than the majority rule.
The majority rule is predicted to promote CI [24,25] only when individual decision makers
have a decision accuracy above 50% (as is the case in the present data set; average true positive
rate = 0.762, average false positive rate = 0.336). The quorum rules are not constrained by this
condition and are predicted to promote CI whenever the quorum is set between the average
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true and false positive rates of the individuals involved in the decision [26,34]. Moreover, in
contrast to the majority rule, the quorum rules can be fine-tuned in order to put more weight
on gains in either true positives, false positives or overall accuracy. This fine-tuning is achieved
by adjusting the quorum threshold: lower thresholds will increase true positive rate at the cost
of lower gains in false positives, as fewer radiologists are required to assess a mammogram as
‘recall’ in order to recall a patient. Analogously, higher thresholds improve (i.e. reduce) the
false positive rate at the cost of lower gains in true positives. This basic dependency of the true
and false positive rates on the quorum threshold is illustrated in Fig 2, which shows the true
and false positive rates of groups of size 15 employing one out of a broad range of fixed quorum

Fig 1. All three CI-rules outperform the best radiologist. All three CI-rules overcome the trade-off between true and false positives that single radiologists
face, and outperform the best radiologist within each group. Shown are mean (± SEM) true positives (A), false positives (B) and accuracy (C) of the three CI-
rules, as a function of group size n. The dashed line corresponds to the average individual performance of radiologists (i.e., group size of 1), the green dots
correspond to the highest-performing radiologist for a given group size n.

doi:10.1371/journal.pone.0134269.g001
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thresholds (range: 0 to 1, with increments of 0.05), illustrating the trade-off between the true
and false positive rate at the collective level.

To further illustrate the flexibility of the quorum rules, we considered three different scenar-
ios where the goal is to: (i) maximize gains in true positives while keeping the false positive rate
close to the average false positive rate of 0.336 in the data set (Fig 3A); (ii) minimize the false
positive rate while keeping the true positive rate close to the average true positive rate of 0.762
in the data set (Fig 3B); and (iii) maximize overall accuracy (Fig 3C). For each scenario, we ran-
domly selected groups of n radiologists (range: 1 to 15, odd numbers only) and used half of the
mammograms as a training set and half as a validation set. In the training set we determined
the quorum thresholds which resulted in (i) a false positive rate of 0.336, (ii) a true positive rate
of 0.762 and (iii) maximum overall accuracy (S1 Text). We then investigated the performance

Fig 2. ROC curve for the quorum rule and the weighted quorum rule. Each dot is obtained by setting a different fixed quorum threshold, starting at 0 with
increments of 0.05 up to 1. Data are based on a group size of 15 and 2,500 simulations (see main text). The majority rule corresponds to a fixed quorum
threshold of 0.5. Note that, while we here consider the consequences of fixed quorum thresholds, the analyses in Fig 1 and Fig 3 are based on flexible
quorum thresholds that are estimated from a training set (see main text).

doi:10.1371/journal.pone.0134269.g002
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of these thresholds in the validation set. Repeating this procedure 2,500 times (for each of the
three scenarios, and each group size n) we find that, on top of the gains achieved by a quorum
threshold set halfway between the average true and false positive rate (as in Fig 1), further
improvements in true positives (Fig 3A), false positives (Fig 3B) or overall accuracy (Fig 3C)
can be achieved by fine-tuning the quorum threshold appropriately. For example, while single
radiologists on average achieve a true positive rate of 0.762, a group of five radiologists can
achieve a true positive rate of 0.861 with a similar false positive rate as single individuals (Fig
3A). Alternatively, while single radiologists on average achieve a false positive rate of 0.336, a

Fig 3. The quorum rule can be fine-tuned to put more weight on improving true positives, false positives or overall accuracy. The three panels
correspond to the three illustrative scenarios where the goal was to: (A) maximize gains in true positives while keeping the false positive rate (FPR) close to
the average false positive rate of 0.336 in the data set; (B) minimize the false positive rate while keeping the true positive rate (TPR) at the average true
positive rate of 0.762 in the data set; and (C) maximize overall accuracy. As can be seen, on top of the gains achieved by a quorum threshold set halfway
between the average true and false positive rate (black dots, corresponding to the values from Fig 1), further improvements in true positives (A), false
positives (B) or overall accuracy (C) can be achieved by fine-tuning the quorum threshold appropriately. Shown are mean (± SEM).

doi:10.1371/journal.pone.0134269.g003
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group of five radiologists can achieve a false positive rate of 0.226 with a similar true positive
rate as single individuals (Fig 3B).

A common practice in the U.S. is to employ single interpretation of mammograms in com-
bination with computer-aided detection (CAD). Compared to single reading without CAD,
this practice generally increases true positives while also increasing false positives [35,36]. In
contrast, our findings suggest that any of the three CI-rules can increase true positives and
decrease false positives simultaneously. A common practice in Europe is independent double
reading of mammograms in combination with consensus discussion in cases of discordant
opinions. Generally, this practice achieves a higher true positive rates than single reading, and
either increases or decreases the false positive rates depending on the recall policy [37–40].
While our data set does not allow us to directly compare the CI-rules to such consensus deci-
sions, we stress that the proposed CI-rules have two key advantages. First, the dynamics of con-
sensus discussions are inherently complex, and prone to well-known performance-reducing
effects like group think [41,42]. In contrast, the above CI-rules provide highly transparent and
algorithmic collective decision rules. Moreover, they exclude direct interactions between radi-
ologists, thereby avoiding the negative consequences of group think and maintaining opinion
diversity, a well-known condition for CI [1–4]. Second, consensus decisions often require that
specialists meet and discuss, whereas the above mechanisms only requires independent assess-
ments, thereby saving valuable time.

Conclusion
Our findings suggest that simple and highly transparent CI-rules can be employed to improve
the accuracy of mammography screening. Most likely, at least two factors contribute to the
observed CI-effect. First, whenever errors (i.e. false positives and false negatives) are relatively
rare and not perfectly correlated between radiologists, the CI-rules can effectively filter out
these errors. Second, radiologists typically differ in their experience or ability with particular
types of cases and the CI-rules can exploit this diversity. Of course, viewing time of specialists
is costly and has to be taken into account. In fact, a substantial proportion of mammograms
may be unambiguous and may thus not require more than two independent assessments. In
such cases, one may envisage a decision tree in which a mammogram first gets assessed inde-
pendently by two radiologists, and only in cases of disagreements is it evaluated by using the
above CI-rules.

While we have focused here on mammography screening, our findings suggest that CI may
have the potential to improve medical decision-making in a much wider range of contexts,
including many areas of diagnostic imaging and, more generally, diagnostic decisions that are
based on the subjective interpretation of evidence. Intriguingly, next to improving accuracy, CI
may also pave the way to shared medical decision-making, thereby alleviating doctors of the
sole responsibility for single cases.

Supporting Information
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(DOCX)
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