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Abstract
Calorie restriction (CR) enhances longevity and mitigates aging phenotypes in numerous

species. Physiological responses to CR are cell-type specific and variable throughout the

lifespan. However, the mosaic of molecular changes responsible for CR benefits remains

unclear, particularly in brain regions susceptible to deterioration during aging. We examined

the influence of long-term CR on the CA1 hippocampal region, a key learning and memory

brain area that is vulnerable to age-related pathologies, such as Alzheimer’s disease (AD).

Through mRNA sequencing and NanoString nCounter analysis, we demonstrate that one

year of CR feeding suppresses age-dependent signatures of 882 genes functionally associ-

ated with synaptic transmission-related pathways, including calcium signaling, long-term

potentiation (LTP), and Creb signaling in wild-type mice. By comparing the influence of CR

on hippocampal CA1 region transcriptional profiles at younger-adult (5 months, 2.5 months

of feeding) and older-adult (15 months, 12.5 months of feeding) timepoints, we identify con-

served upregulation of proteome quality control and calcium buffering genes, including heat

shock 70 kDa protein 1b (Hspa1b) and heat shock 70 kDa protein 5 (Hspa5), protein disul-

fide isomerase family A member 4 (Pdia4) and protein disulfide isomerase family A member

6 (Pdia6), and calreticulin (Calr). Expression levels of putative neuroprotective factors,

klotho (Kl) and transthyretin (Ttr), are also elevated by CR in adulthood, although the global

CR-specific expression profiles at younger and older timepoints are highly divergent. At a

previously unachieved resolution, our results demonstrate conserved activation of neuro-

protective gene signatures and broad CR-suppression of age-dependent hippocampal CA1

region expression changes, indicating that CR functionally maintains a more youthful tran-

scriptional state within the hippocampal CA1 sector.
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Introduction
Dysfunctional synaptic connections and neurodegeneration are posited to be the cellular ori-
gins of age-dependent memory and cognitive impairment [1]. The hippocampal formation,
in particular the CA1 hippocampal sector, is a central learning and memory hub within the
mammalian brain that displays activity-dependent synaptic plasticity in neural network for-
mation [2]. CA1 pyramidal neurons are severely affected in AD, while several other temporal
lobe and hippocampal cell types are relatively spared throughout pathology progression. The
compilation of cellular processes responsible for this selective vulnerability are not fully
understood [3,4].

The hippocampal region is prone to abnormal protein aggregation, suggesting proteome
quality control dysfunction throughout aging [1]. In normal hippocampal aging, characterized
by ad libitum (AL) feeding and no overt pathology, spatial memory deficits coincide with
downregulation of genes involved in the unfolded protein response, including heat shock 70
kDa protein 5 (Hspa5) and calreticulin (Calr) [5], as well as negative regulation of synaptic
plasticity genes [6]. Intrinsic electrical and structural characteristics of CA1 pyramidal neurons
may also contribute to neurodegenerative vulnerability, where susceptibility to excitotoxicity
may originate from diminished calcium buffering capacity in older age, relative to less excitable
cell types [7,8]. Furthermore, CA1 pyramidal neurons are dependent on pro-survival trophic
factor signaling, including brain-derived neurotrophic factor (Bdnf), and reduction in trophic
factor signaling throughout aging, which occurs coincident with neuron loss and memory
impairment, may also contribute to the selective vulnerability phenotype [9,10].

Calorie restriction (CR) is a dietary regimen that involves a sustained, moderate reduction
(typically 20–40%) in calorie intake compared to AL feeding. CR has proven to be a powerful
method in multiple species to reduce the incidence of chronic disease and increases the life-
span. CR feeding dramatically alters many processes associated with dysfunctional brain
aging, and serves as an essential tool for understanding endogenous attenuation of age-related
pathology [11–15]. CR enhances expression of Bdnf and neurotrophin 3 (Ntf3) [11] while
reducing aberrant protein aggregation [12,16], excitability [13], and calcium dysregulation
[14]. Partial suppression of age-dependent gene expression changes have been observed
within the neocortex and cerebellum of aged CR mice compared to AL feeding [17], and addi-
tional investigations identified a unique CR-specific transcriptional profile within the hippo-
campal CA1 region, relative to adjacent less vulnerable hippocampal subregions [18].
Previous investigations of changes underlying normal brain aging and CR-benefits relied on
hybridization methodologies, including microarray analysis [5,17–23], which have limited
profiling capacity and quality relative to total mRNA sequencing [24]. Presently, we test the
hypothesis that long-term CR beneficially modifies age-dependent gene expression using
unbiased total mRNA sequencing and NanoString nCounter profiling in the selectively vul-
nerable hippocampal CA1 region, an area implicated in memory function that is prone to age-
related neurodegenerative pathology [2,25,26].

Materials and Methods

Mouse model and tissue accession
Animal protocols for this study were in agreement with NIH guidelines and approved by the
Institutional Animal Care and Use Committee (IACUC) of the Nathan Kline Institute and
NYU Langone Medical Center. A subset of the mice applied to these experiments were used as
control mice in a recently published study [16]. At approximately 2.5 months of age, female
Swiss Webster x DBA/C57BL6 F1 mice were randomly assigned to AL or 30% CR (reduction

CR Suppresses Hippocampal Aging Transcriptome

PLOSONE | DOI:10.1371/journal.pone.0133923 July 29, 2015 2 / 15



specific to carbohydrates) dietary regimens (AL, #D12450B; 30% CR, #D03020702B; Research
Diets Inc., New Brunswick, NJ). CR mice were fed their daily allotment in the morning, and
CR diets were adjusted weekly, according to the average daily intake of the AL group. Body
weights were measured twice weekly. At approximately 5 or 15 months of age, following 2.5 or
12.5 months of diet administration, respectively, mice were administered a lethal dose of keta-
mine (80 mg/kg) and xylazine (13 mg/kg), perfused transcardially with ice-cold 0.1 M phos-
phate buffer, and brains were rapidly removed. Sacrifices took place in mid-afternoon. The
hippocampal CA1 region was microdissected from tissue slabs using a dissecting microscope,
frozen on dry ice, and stored at -80°C, as described previously [27].

RNA isolation, library preparation, and sequencing
RNA was isolated from frozen hippocampal CA1 microdissections using the miRNAeasy
Micro Kit (Qiagen, Valencia, CA) according to manufacturer specifications. Bioanalysis
(2100, Agilent Biotechnologies, Santa Clara, CA) was employed to determine RNA concentra-
tion and quality. 300 ng of total RNA with an average RNA integrity number (RIN) value of 9
was applied to the TruSeq RNA Sample Preparation Kit v2 (Illumina, San Diego, CA) to con-
struct mRNA sequencing libraries. The quality of the libraries was assessed using Agilent bioa-
nalysis, and quantification was performed by qPCR. Libraries were applied to 8 runs of
paired-end 50-base pair sequencing on a HiSeq 2500 platform (Illumina), using the rapid run
mode. Five and six biological replicates were sequenced per diet condition for 5 and 15 month
groups, respectively.

Statistical analysis and functional annotation of gene expression
Base calling was performed using Illumina bcl2fastq software. The sequencing reads were
aligned to the mouse genome (UCSC build mm10) using the splice-aware TopHat aligner.
Likely PCR duplicates were removed with Picard MarkDuplicates tool. Filtered mapped reads
were analyzed using the Cufflinks package with default parameters and the following additions.
A fragment bias correction was applied to improve the accuracy of transcript abundance esti-
mates, and a multi-read correction was applied to weight reads mapping to multiple locations
in the genome. The dispersion estimation method used was default pooling, in which each rep-
licated condition was modeled and averaged to provide a single global model for all conditions.
Differentially expressed genes were determined based on false discovery rate (FDR)-adjusted
p-value<0.05 (q) as calculated by Cuffdiff. Ingenuity Pathway Analysis (IPA) was used to
functionally annotate datasets of differentially expressed genes (p<0.01, q<0.05).

NanoString nCounter analysis
NanoString nCounter (NanoString Technologies, Seattle, WA) digital mRNA detection was
used to validate mRNA sequencing data. A custom code set was generated to probe transcript
levels of housekeeping genes, the levels of which did not change as a function of diet or age,
and differentially expressed targets. 100 ng of total RNA was hybridized to capture-reporter
probe sets and immobilized on NanoString cartridges, according to manufacturer specifica-
tions. Following excess RNA and probe removal, digital barcodes were counted and processed
with NanoString nCounter analysis software for quality control and normalization. Counts
were normalized to positive controls and the housekeeping genes as recommended by Nano-
String. Two-tailed t-tests were used to determine expression differences amongst conditions.
Log transformed fold change values for mRNA sequencing and NanoString values were com-
pared using Pearson product-moment correlation coefficient.
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Results

Long-term CR stably reduces body weight
Mice subjected to CR feeding typically undergo significant body weight reductions upon initial
diet introduction and then stabilize to relatively constant levels, which are lower than their AL-
fed counterparts [28]. At the onset of our study, body weights were not significantly different
for 2.5 month old wild-type mice either randomized to AL or 30% CR cohorts. The average
body weight of mice fed the continuous 30% CR diet decreased by approximately 12%
(p<0.001) in the first 2 weeks of CR feeding. Thereafter, body weights of CR mice stabilized and
remained constant throughout the remaining 2.5 or 12.5 months of diet administration (Fig 1).

CR-activated gene signatures predict opposition of aging programs
Using RNA isolated from hippocampal CA1 microdissections from younger-adult (5 months,
2.5 months of feeding) and older-adult (15 months, 12.5 months of feeding) wild-type mice
maintained on 30% CR or AL diets, we performed 50 nucleotide paired-end total mRNA
sequencing, yielding an average of 73.6 million paired reads per sample. We observed

Fig 1. Average body weight following sustained 30%CR or AL feeding. Beginning at approximately 2.5
months of age, wild-type female mice were maintained on 30%CR (purple) or AL (blue) diets and were
sacrificed following 2.5 or 12.5 months of diet administration. Body weight was measured approximately twice
weekly. Within the first 2 weeks of AL and CR feeding, mice maintained on the 30% CR diet lost an average
of 12% of their body weight (t-test, p<0.001), which stabilized for the remainder of the study. For study days
1–85, n = 12–18, and for study days 85–365, n = 6–14, reflecting sacrifice of the first group of mice at 5
months of age; mean +/- SEM.

doi:10.1371/journal.pone.0133923.g001
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marginally larger coefficient of variation values within the 15 month condition groups, reflec-
tive of greater variability in aged samples (Fig 2).

Comparison of CA1 expression profiles from 15 month old mice to those of 5 month old
mice maintained on the control AL diet identified 2,610 differentially regulated transcripts
within a log2 fold change range of -4.98 to 6.98 (p<0.01, q<0.05) with 1,454 upregulated and
1,156 downregulated genes (Fig 3 and S1 Table), representing the normal aging transcriptional
signature in middle-aged adulthood. Within 15 month old mice maintained on CR vs. AL
diets, we identified 535 upregulated and 565 downregulated genes for a total of 1,100 differen-
tially regulated transcripts over a log2 fold change range of -3.89 to 3.46 (p<0.01, q<0.05) (Fig
3 and S2 Table).

Fig 2. Biological variance within mRNA sequencing condition groups. The squared coefficient of
variation (CV2) was plotted against Fragments Per Kilobase of exon per Million fragments mapped
(log10FPKM), representing the total distribution of mRNA sequence reads for each condition group, which are
depicted as follows, 5 months AL (coral), 5 months CR (green), 15 months AL (blue), and 15 months CR
(purple).

doi:10.1371/journal.pone.0133923.g002
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Functional annotation comparisons of our total ‘normal aging’ (AL, 15 vs. 5 month; 2,610
genes) and ‘CR in aged CA1’ (15 month, CR vs. AL; 1,100 genes) datasets predicted that growth
functions, including growth of axons and neurites, would be age-related and reduced by CR.
Inactivation of long-term depression (LTD) was predicted in normal aging, which was opposed
by CR. In the 15 month CR vs. AL dataset, CR was expected to enhance synaptic plasticity func-
tions, including synaptic transmission and neurite formation, as well as neuron and monoamine
quantity, and these CR-activation predictions were antithetical in the normal aging dataset (Fig
4A and S3 Table). Within targets significantly altered by CR at the 15 month timepoint, we
observed significant upregulation of neurotrophic factors, Bdnf and Ntf3 (S2 and S3 Tables),
CR-responsive targets [11] implicated in hippocampal synaptic transmission and plasticity [29].

CR suppresses age-dependent expression changes for hundreds of
transcripts
By conducting functional comparisons, we noted that long-term CR significantly reduced the
magnitude of the normal age-dependent change for several genes, so we queried our datasets to
determine the total number of differentially expressed genes in the normal aging dataset (AL,
15 vs. 5 month) that were also differentially expressed in the aged CR dataset (15 month, CR
vs. AL). 887 of the 1,100 genes (81%) that were altered by CR in the 15 month old mice were
also significantly altered by normal aging (Fig 4B). Of these 887 common genes, 99% (882 out
of 887) of the age-dependent changes were reversed by CR (Fig 4B–4D and S4 Table). 558 of
the 882 age-dependent changes reversed by CR were not differentially expressed upon compar-
ison of 15 month CR expression levels to 5 month AL expression levels, indicating that these
558 age-dependent changes were prevented by CR. 15 month CR expression levels for the
remaining 324 of 882 genes were in between and significantly different than both 5 month AL
and 15 month AL expression levels, suggesting that CR was reducing, but not completely
blocking, the age-dependent changes (Fig 4E and S4 Table). Age-dependent changes of only 5
transcripts, alanine-glyoxylate aminotransferase 2-like 1, calbindin 2, collagen type VIII alpha
2, receptor transporter protein 1, and stabilin 2, became more pronounced following CR (S5
Table), signifying minimal CR exacerbation of aging expression signatures within the hippo-
campal CA1 region, relative to the large cohort of aging-altered genes attenuated by CR.

To investigate the biological significance of the CR-suppressed expression profile, we func-
tionally annotated the dataset of 882 age-dependent expression changes. Top canonical path-
ways enriched in the CR-suppression dataset included calcium, axonal guidance,

Fig 3. Differential gene expression via mRNA sequence analysis pairwise comparisons. The total number of differentially expressed transcripts
identified by total mRNA sequencing within each pairwise comparison are indicated, along with the log2 fold change (Log2FC) range and the number of
upregulated (gray) and downregulated (white) targets (p<0.01, q<0.05).

doi:10.1371/journal.pone.0133923.g003
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corticotrophin-releasing hormone (Crh), G-protein coupled receptor, long-term potentiation
(LTP), and Creb signaling (Table 1). We demonstrate CR-dependent blunting of age-depen-
dent downregulation of NMDA receptor subunits NR2A and NR2B (Grin2a, Grin2b) and
AMPA1 receptor subunit (Gria1) mRNA levels (Table 1 and S4 Table), changes potentially

Fig 4. Long-term CR opposes age-dependent cellular functions and reverses age-dependent gene expression in the hippocampal CA1 sector. (A)
Comparative IPA was used to predict opposing functions activated (z-score� 2) or inactivated (z-score� -2) within the AL, 15 vs. 5 month and 15 month, CR
vs. AL datasets. (B) 882 of the 887 gene changes common to the normal aging (AL, 15 vs. 5 month) and CR diet in aged CA1 (15 month CR vs. AL) datasets
occur in the opposite direction. (C) Smoothed density representation of the normal aging changes (AL 15 month/AL 5 month) versus the CR diet in aged CA1
changes (CR 15 month/AL 15 month) for the 887 genes common to both datasets, illustrating CR reversal of age-dependent changes. (D) Heatmap depiction
the 882 age-dependent expression changes suppressed by CR, comparing the mean log2 fold change values for each gene (p<0.01, q<0.05). (E) 558
transcriptional changes identified in the AL, 15 vs. 5 month and 15 month, CR vs. AL datasets were not identified in the CR, 15 month vs. AL, 5 month
dataset, indicating no significant differences in expression levels for these genes. 329 differentially expressed genes were common to all 3 profiles, and 5 of
these age-dependent changes were made more pronounced by CR. For the remaining 324 genes, CR 15 month expression levels were in between AL 5
month and AL 15 month levels (p<0.01, q<0.05). (F) Correlation of log2 fold change levels of 8 genes assessed by mRNA sequencing (p<0.01, q<0.05) and
NanoString nCounter (p<0.05); Pearson correlation value (p<0.0001) is indicated; AL, 15 vs. 5 month (green) and 15 month, CR vs. AL (blue); dopamine
receptor D5 (Drd5), receptor tyrosine kinase-like orphan receptor 1 (Ror1), klotho (Kl), heat shock 70 kDa protein 1B (Hspa1b), calreticulin (Calr), DnaJ
(Hsp40) homolog subfamily A member 4 (Dnaja4), insulin-like growth factor binding protein 6 (Igfbp6), citron (Cit).

doi:10.1371/journal.pone.0133923.g004
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underlying previously observed LTP maintenance throughout aging [30]. In contrast, mRNA
levels corresponding to stress-related Crh and its cognate receptor, corticotrophin-releasing
hormone receptor 1 (Crhr1), were both significantly increased in an age-related manner, and
this effect was suppressed by CR.

To validate the CR-suppressed aging gene expression signature we employed NanoString
nCounter analysis, a methodology that enables multiplex digital counting of individual tran-
scripts [31]. Nanostring nCounter profiling confirmed CR- and age-dependent expression
changes for a subset of differentially expressed targets (Fig 4F). Specifically, we observed CR-
dependent upregulation of dopamine receptor D5 (Drd5), receptor tyrosine kinase-like orphan
receptor 1 (Ror1), klotho (Kl), heat shock 70 kDa protein 1B (Hspa1b), calreticulin (Calr), and
DnaJ (Hsp40) homolog subfamily A member 4 (Dnaja4) in the hippocampal CA1 region of 15
month old mice, compared to AL feeding, and these targets were all significantly downregu-
lated during normal aging in AL-fed mice. Conversely, we observed CR-dependent downregu-
lation of insulin-like growth factor binding protein 6 (Igfbp6) and citron (Cit) in the
hippocampal CA1 region of 15 month old mice, compared to AL feeding, and these targets
were all significantly upregulated in normal aging in AL-fed mice. The log2 fold change values
for mRNA sequencing and NanoString nCounter data were strongly correlated (r = 0.99), sug-
gesting high quantitative precision within the total mRNA sequencing dataset (Fig 4F).

Conserved neuroprotective signatures are activated within dynamically
shifting aging-related CR transcriptional responses
Regarding the total number of transcripts altered within each mRNA sequencing dataset, aging
more strongly influenced gene expression, relative to diet (Fig 3). Hence, we posited that CR
would affect transcriptional profiles differently in younger-aged and older-aged mice, but con-
served CR-signatures would be identifiable. Upon assessment of 5 month old mice maintained
on the CR vs. AL diets, we identified 335 differentially expressed genes, of which, 234 tran-
scripts were upregulated and 101 transcripts were downregulated within a log2 fold change
range of -3.81 to 5.39 (p<0.01, q<0.05) (Fig 3 and S6 Table). We compared these 335

Table 1. Canonical pathways functionally associated with CR-suppressed expression signature in older-adult hippocampal CA1. (p<0.01, q<0.05).

Canonical pathway p-
value

Altered genes /
Known related
genes

Upregulated by CR (Downregulated in normal
aging)

Downregulated by CR (Upregulated in
normal aging)

Calcium signaling 7.35E-
06

22/140 (16%) Atp2b1, Camk2b, Camkk1, Chrna5, Gria1, Grin2a,
Grin2b, Ppp3ca, Ryr3, Trpc4

Atp2b4, Camk1, Camk2d, Camk4, Chrna4,
Chrna6, Chrnb3, Gria4, Itpr3, Mef2c, Slc8a3,
Trpc3

Axonal guidance
signaling

4.93E-
05

38/352 (11%) Actr2, Actr3, Arpc2, Arpc5, Epha4, Epha6, Epha7,
Git1, Gnaq, Gng10, Gng7, Nrp1, Ppp3ca, Prkce,
Prkcg, Sema3e, Sema5a, Slit1, Slit3, Wnt2

Bmp7, Ecel1, Efna5, Epha8, Gnb4, L1cam,
Ngef, Pak7, Plcb4, Plxna3, Plxnd1, Rnd1,
Sema3a, Sema3f, Sema4a, Unc5d, Wnt10a,
Wnt6

Corticotropin
releasing hormone
signaling

2.19E-
04

15/96 (16%) Arpc5, Elk1, Gnaq, Npr1, Prkce, Prkcg Adcy8, Camk4, Crh, Crhr1, Fos, Gucy1a3, Itpr3,
Mapk11, Mef2c

Synaptic long term
potentiation

3.47E-
04

15/100 (15%) Camk2b, Gnaq, Gria1, Grin2a, Grin2b, Grm1,
Ppp3ca, Prkce, Prkcg

Adcy8, Camk2d, Camk4, Gria4, Itpr3, Plcb4

Creb signaling in
neurons

5.12E-
04

19/149 (13%) Camk2b, Elk1, Gnaq, Gng10, Gng7, Gria1,
Grin2a, Grin2b, Grm1, Prkce, Prkcg

Adcy8, Camk2d, Camk4, Gnb4, Gria4, Grik3,
Itpr3, Plcb4

G-protein coupled
receptor signaling

3.23E-
04

26/228 (11%) Drd5, Dusp6, Gnaq, Grm1, Htr1a, Htr4, Mc4r,
Prkce, Prkcg, Ptk2b, Rasgrp1, Rgs14

Adcy8, Adra1b, Adrb3, Camk2d, Camk4, Crhr1,
Dusp1, Hrh1, Htr2c, Htr7, Oprk1, Pde4d, Plcb4,
Ptgdr

doi:10.1371/journal.pone.0133923.t001
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differentially expressed genes to the 1,100 expression changes identified in 15 month old mice
maintained on CR vs. AL diets and identified 102 genes altered at both ages. Only 31% (32/
102) of common genes were altered in the same direction (Fig 5A), suggesting that proteins
encoded by CR-responsive transcripts may serve different functional roles in the hippocampus
of younger-adult and older-adult brains. Within conserved changes, an enrichment of tran-
scripts implicated in proteome quality control and calcium buffering was detected, including
upregulation of Hspa5 and Calr expression (Fig 5B), downregulation of which has been associ-
ated with age-dependent hippocampal dysfunction [5], as well as increased expression of
Hspa1b (Fig 5B) and protein disulfide isomerase family A member 4 (Pdia4) and protein disul-
fide isomerase family A member 6, (Pdia6) (Fig 5C). At both younger-adult and older-adult
timepoints, we identified CR-dependent positive regulation of cell survival and longevity fac-
tors Kl [32] and transthyretin (Ttr) [33] (Fig 3C), previously unknown to be CR-responsive
genes within the hippocampus.

Discussion
Through unbiased mRNA sequence analysis and targeted NanoString nCounter validation of
the CA1 hippocampal region at two distinct timepoints during the adult mouse lifespan, we

Fig 5. CR upregulation of neuroprotective gene signatures is conserved at 5 and 15months, despite divergent transcriptional profiles. (A) 102
genes are common to both the 15 and 5 month CR vs. AL differential expression mRNA sequencing profiles. Of the 102 common genes, 70/102 (69%) of
significant changes occur in the opposite direction. (B) Normalized age- and diet-dependent FPKM levels for select protein folding and calcium buffering
genes (*p<0.01, q<0.05); heat shock 70 kDa protein 5 (Hspa5), heat shock 70 kDa protein 1B (Hspa1b), calreticulin (Calr). (C) Log2 fold change levels for the
32 conserved gene expression changes within 15 (blue) and 5 (red) month CR vs. AL expression profiles that occurred in the same direction are depicted
(p<0.01, q<0.05).

doi:10.1371/journal.pone.0133923.g005
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demonstrate that CR dramatically suppresses age-dependent transcriptional changes. Expres-
sion levels of CR-suppressed genes, which are functionally related to intrinsic signaling proper-
ties of neurons, were often maintained at levels comparable to those identified in younger
mice. In effect, our results show that CR prevents hippocampal CA1 aging at the transcrip-
tional level for hundreds of individual genes. The comparison of CR-dependent transcriptional
responses at younger-adult and older-adult timepoints provides valuable insight into the
impact diet has on a hippocampal sector involved in learning and memory during a critical
duration of adulthood. We posit that CR-mediated repression of age-related transcriptional
changes primes the brain for delayed transition from adulthood into senescence. Since the
average median wild-type mouse lifespan is approximately 20–26 months, comparison of the
described changes in the context of functional assessments at later timepoints would be useful
for confirming the magnitude and directionality of CR-mediated gene expression changes and
their contribution to successful hippocampal aging throughout the lifespan. Analysis of gene
expression changes via RNA-seq, driven by long-term CR in functionally distinct brain areas
or hippocampal subregions, including the dentate gyrus, entorhinal cortex, hippocampal CA3
sector, and the subicular complex, would further enhance our understanding of the capacity of
CR to suppress brain aging, but are beyond the scope of the present study. Researchers have
hypothesized prevention and/or amelioration of hippocampal aging processes and underlying
molecular profiles by CR, but to our knowledge, no transcriptional suppression signature of
this magnitude has been identified previously.

Specific age-dependent gene expression changes suppressed by CR merit further consider-
ation. In terms of activity-dependent glutamatergic neurotransmission, both Grin2a and
Grin2b were downregulated in normal hippocampal CA1 region aging, and these changes were
attenuated by CR. Genetic enhancement of Grin2b expression increases NMDA receptor-
dependent synaptic plasticity and associated learning and memory functions [34], and hippo-
campal reductions in Grin2a and Grin2b have been observed in the AD brain, correlating with
cognitive decline [35]. We also demonstrate that CR reduces age-dependent downregulation
Gria1 mRNA levels, which has been shown to decrease within the hippocampal CA1 region in
both in normal aging and in AD [23,36]. Activity-dependent promotion of synaptic strength
leading to LTP is thought to require additional insertion of Gria1-containing AMPA receptors
in the synaptic membrane, downstream of NMDA receptor activation [37]. Accordingly, we
posit that mitigation of age-dependent reductions in NMDA receptor subunits Grin2a and
Grin2b and Gria1-containing AMPA receptors following CR could underlie previously
observed promotion of LTP throughout aging [30,38]. Furthermore, stress-related Crh and
Crhr1 mRNA levels were upregulated by more than 2-fold by normal aging, and CR sup-
pressed age-dependent expression of both of these transcripts to near 5 month old levels.
Chronic increases in Crh signaling exacerbates pathology in mouse models of AD [39,40].
Accordingly, we speculate that this suppression signature may confer a protective benefit in the
context of blunted stress signaling throughout aging. Our results also support observations
demonstrating CR-dependent upregulation of neurotrophic factors Bdnf and Ntf3 following
CR [11], further endorsing CR promotion of pro-survival signaling within aging-responsive
hippocampal circuits.

Despite observing strikingly different transcriptional responses to CR in 5 and 15 month
expression profiles, we identified conserved upregulation of several genes involved in chaper-
one mediated protein folding and endoplasmic reticulum-mediated calcium buffering,
including Calr, Hspa1b, Hspa5, Pdia4, and Pdia6 [41,42]. While these encoded proteins all
play essential roles in protein folding and calcium sequestration, Hspa5, also known as glu-
cose regulated protein, 78 kDa (GRP78), is of particular interest, as it binds to the amyloid
precursor protein (APP) to subsequently reduce pathological β-amyloid (Aβ) secretion [43]
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and reduces Aβ neurotoxicity in vitro [44]. Our group has also demonstrated that long-term
CR reduces Aβ deposition and components of the gamma-secretase complex within the hip-
pocampus of aged female Tg2576 mice [16]. In CR-fed 5 and 15 month old mice, therefore,
conserved upregulation of genes with dual roles in proteostasis and calcium buffering, pro-
cesses thought to contribute to hippocampal CA1 pathological vulnerability, suggests that
these CR transcriptional changes likely bestow positive benefits, particularly regarding hip-
pocampal AD pathology prevention.

Notably conserved within the subset of 32 CR-dependent transcriptional changes following
CR feeding, we report upregulation of putative anti-aging, neuroprotective genes, Kl and Ttr,
which to our knowledge, have not been shown to be CR-responsive previously within the hip-
pocampus. Kl was originally identified as a mutated loss of function gene that accelerated sys-
temic aging [45], and subsequent Kl overexpression demonstrated lifespan extension and
reduction of age-dependent insulin resistance [46], as well as preservation of cognitive function
and associated synaptic plasticity in an AD mouse model [47]. Brain Kl levels decline with age
[48], and Kl-deficient mice display a hippocampal degenerative phenotype [32], although the
precise neuronal Kl functions remain unclear. We show that CR endogenously increases Kl
mRNA levels in the hippocampal CA1 region in both younger-adult and older-adult mice. We
also report conserved increases in Ttr transcript levels at 5 and 15 months of age. Several stud-
ies of AD mouse models have suggested that the protein encoded by Ttr may promote pathol-
ogy resistance by sequestering Aβ to prevent fibril formation and reduce oligomeric
cytotoxicity [49,50]. Accordingly, upregulation of Ttr by CR may be a mechanism that confers
neuroprotective benefits and AD-like pathology reductions [12,16].

The CR-dependent transcriptional signatures described herein are likely to afford signifi-
cant benefits in models of neurodegenerative disease, especially AD, and further investiga-
tions are planned to probe whether CR activates similar presumed neuroprotective programs
within such models. The majority of the human population with AD, however, do not have
known mutations associated with their disease. Therefore, AD is believed to arise from grad-
ual age-dependent dysfunction in multiple cellular processes in vulnerable brain regions such
as the hippocampal CA1 region. Within this context, studying the influence of CR on brain
aging in wild-type mice is an important comparator to normal human aging, relative to
transgenic models.

By comparing the influence of CR on the hippocampal CA1 transcriptional profiles of
younger-adult and older-adult wild-type mice through total mRNA sequencing and select
NanoString nCounter validation, our results demonstrate broad suppression of age-depen-
dent gene expression changes in numerous gene classes. Functional annotation of our mRNA
sequencing datasets implicates positive regulation of neuronal processes often deregulated in
vulnerable CA1 neurons throughout aging, including activity-dependent synaptic plasticity
and calcium signaling. Comparisons at 5 and 15 months of age indicate that CR-dependent
transcriptional signatures are highly divergent during aging, with only 32 common transcrip-
tional changes observed. Within conserved changes, however, we identify significant upregu-
lation of several pro-survival genes expected to confer neuroprotective utility, including an
enrichment of protein folding and calcium buffering genes. Taken together, these findings
provide novel insight into transcriptional signatures underlying CR intervention in hippo-
campal CA1 aging, while galvanizing the significance of prior investigations on the beneficial
influence of CR on brain aging processes. Our findings strongly support the hypothesis that
CR globally attenuates brain aging through maintenance of youthful expression signatures
and activation of neuroprotective expression changes within the selectively vulnerable hippo-
campal CA1 region.
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