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Abstract

Short peptides can be designed in silico and synthesized through automated techniques,
making them advantageous and versatile protein binders. A number of docking-based
algorithms allow for a computational screening of peptides as binders. Here we developed
ex-novo peptides targeting the maltose site of the Maltose Binding Protein, the prototypical
system for the study of protein ligand recognition. We used a Monte Carlo based protocol,
to computationally evolve a set of octapeptides starting from a polialanine sequence. We
screened in silico the candidate peptides and characterized their binding abilities by surface
plasmon resonance, fluorescence and electrospray ionization mass spectrometry assays.
These experiments showed the designed binders to recognize their target with micromolar
affinity. We finally discuss the obtained results in the light of further improvement in the ex-
novo optimization of peptide based binders.

Introduction

The design of new ligands and receptors for protein recognition is a key step towards the devel-
opment of new diagnostic tools and selective drugs. So far antibodies represent the biomole-
cules with the highest affinity and selectivity toward proteins [1,2,3]. Notably, they are usually
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employed in a number of diagnostic applications such as ELISA and immunohistochemical
assays. However both their production and optimization are expensive and time consuming
requiring either in vitro (cell line culture and monoclonal screening) or in vivo procedures
(animal immunization) [4]. Peptides are an emerging alternative to antibodies as drug candi-
dates [5], anti-aggregation agents [6], and probes for molecular recognition [7]. They can be
automatically synthesized offering a wide variety of chemical targeted modifications, such as
fluorescent or affinity tags. They are highly versatile while composed by a limited number of
building blocks and their sequences are typically extracted from protein-binding peptides or
protein domains [8,9] or optimized by phage-display libraries [10,11,12] sometimes reaching
picomolar affinity towards their targets [12].

Given a particular peptide sequence targeting a protein, and when its binding site is known,
a number of docking algorithms can provide an accurate structural model of the complex[13]:
FlexPepDock [14,15], PepCrawler [16], HADDOCK [17], AutoDock Vina [18], or GAsDock
[19]. These are generally capable of suggesting possible binders out of a number of possibilities.
However, while performing accurately in their structural determination task, these algorithms
are generally not capable of accurately estimating the dissociation constants between peptides
and proteins. While successful attempts in this direction have been made [20,21,22], plain
docking disregarding this issue has been successfully embedded into a number of algorithms
for the ex-novo optimization of short peptides allowing random sequences to evolve towards a
high affinity to their target.

Typical molecular optimization algorithms embedded in evolutionary codes are found in the
form of genetic algorithms [23,24] (allowing a population of molecules to be scored, selected,
mixed, and mutated with the goal of maximizing their score), or Monte Carlo (MC) based algo-
rithms such as simulated annealing [25,26,27]], and replica exchange Monte Carlo (REMC)
where the system is allowed to explore high temperature unfavorable configurations to escape
local minima [28], or agent-based algorithms where molecules can follow arbitrary sets of rules
to reach a low score [29,30]. These algorithms have been successfully used to optimize clusters
[23,27,30], molecular conformations [24,25], protein conformations [28], supramolecular struc-
tures [29]. In all cases the protocols are designed to minimize the system “score” generally corre-
sponding to the system or the interaction energy between its components.

When optimizing peptides as binders the score is generally the output of an existing docking
code [31] and these have been embedded in protocols capable of evolving random sequences.
For instance MOE Dock, a docking algorithm based on Monte Carlo (MC) simulated anneal-
ing, has been incorporated in a genetic algorithm to generate tetrapeptides with dissociation
constant Kp = 60uM with quino-protein glucose dehydrogenase [32] and also to generate
o-synuclein aggregation modulators with Kp = 19uM [33]. AutoDock Vina has been imple-
mented in ENDPA, another genetic-algorithm-based code, and used for generating propyl
oligopeptidase, p53 and DNA gyrase ligands[34]. The Leap-Frog genetic algorithm based
search engine together with the commercial FlexiDock has been used to generate octamers and
13-mers with micromolar affinity for Ochratoxin A[35]. Higher affinity has been reached by
an algorithm based on a combination of molecular dynamics, semiflexible docking using Auto-
dock Vina, and replica exchange Monte Carlo (REMC[36]). Using this protocol a deca-alanine
was shown to evolve to a final sequence showing nanomolar affinity towards the antiretroviral
drug efavirenz[37].

Here we aim to evolve in silico protein-binding octapeptides starting from a random
sequence. We use the Vina-based approach of Ref.[37] (descibed in Fig 1A), that successfully
generated drug recognizing peptides of nanomolar affinity, to generate a number of protein
binding peptides. We chose the maltose binding protein (MBP, Fig 1B) as a test case and a set
of peptides computationally designed to bind to its maltose binding site. MBP is the
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Fig 1. (a) Flowchart of the peptide-optimization algorithm. (b) Structure of MBP in open (white, PBD
code 10MP) and closed (grey, PBD code 3MBP) configurations in which the coordinated maltotriose
(red) and the Met330 (yellow) are highlighted.

doi:10.1371/journal.pone.0133571.g001

prototypical member [38] of the periplasmic binding proteins also called “gold mine for the
study of protein-ligand recognition” [39]. MBP, with a molecular mass of 42 kDa, is an ellipsoi-
dal monomeric protein consisting of two globular domains linked by a flexible multistranded
region. The MBP is known to exist in two conformations: a populated open state (95%) and a
closed state with the two globular domains approaching each other [40]. The flexible region
defines a binding pocket for maltose, maltotriose, and other maltodextrins [41,42]. Upon bind-
ing to its native ligands, the MBP conformational equilibrium shifts towards the closed form, a
behavior shared by all periplasmic binding proteins [43].

The paper is organized as follows: (i) in Sec.2.1 the peptide:MBP complexes are computa-
tionally generated following the protocol schematized in Fig 1A and screened by means of an
empirical docking-based method to identify the binder with higher affinity towards a defined
protein binding site; (ii) the peptide:MBP complex stoichiometry is then determined in Sec.2.2
through Electrospray Ionization Mass Spectrometry (ESI-MS) and in Sec.2.3 the binding affin-
ity is experimentally determined by means of Surface Plasmon Resonance (SPR) and Fluores-
cence Spectroscopy; (iii) in Sec.2.4, by comparison of experimental affinities and theoretical
predictions, we demonstrate the computationally generated peptides to converge towards a
consensus sequence; in Sec.3, we discuss the results with the goal of pinpointing possible strate-
gies for the development of accurate computational protocols for peptide design.

Results
2.1 Computational generation and characterization of peptide ligands

The algorithm, schematized in Fig 1 A, was designed to optimize sequence (SEQ) and confor-
mation (R) of a random starting peptide of fixed length. Its kernel iteratively (i) mutates the
primary structure of the peptide, (ii) relaxes the newly mutated structure, and (iii) docks the
new structure to the target assigning it a docking score. All the procedure is carried out in vac-
uum. In the last step (iv) the mutation is accepted or rejected following a MC acceptance
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Fig 2. Computational generation of peptides. Autodock Vina binding energy evolution as a function of the
optimization steps for the generation of MBP-9. Arrows indicate the energy associated with the starting poly-
alanine, MBP-9, and two peptides along the minimization path: MBP-10 and MBP-11.

doi:10.1371/journal.pone.0133571.9002
probability:

PMC = min[l, exp(snew - Sold)/kBT}

where S,4 is the docking score of the starting peptide, S, is the docking score of the mutated
peptide, kpT a tunable parameter which defines the acceptance probability of unfavorable
mutations. The algorithm runs in parallel at three different kgT. At every step a REMC swap is
attempted between two configurations belonging to two randomly selected kpT. The three dif-
ferent temperatures guaranteed appropriate mixing of the system allowing the exploration of
high energy configurations while pushing the system towards lower energy configurations.

We performed the molecular design on the crystal structure of the MBP in its open configu-
ration (in white in Fig 1B) and we selected the region surrounding Met330 (in yellow in Fig
1B) as the binding site. We optimized a set of octapeptides by running the optimization algo-
rithm for 100 steps at kgT = 0.2, 0.4, 0.6 using in all cases a linear octa-alanine as the starting
sequence, following the protocol of Ref. [37]. We ran the optimization code 9 times, selecting
the lowest scoring end-simulation peptide of each run for further analysis. Scores are Autodock
Vina estimated binding affinities in kcal/mol. The binding affinity evolution observed in a typi-
cal run is shown in Fig 2. From the run of Fig 2, we further selected two peptides along the min-
imization path and the starting poly-alanine. Moreover, due to the low aqueous solubility of
the poly-alanine, we also considered the sequence AAARRAAA as a negative control. Overall,
for further screening, we chose the 13 peptides reported in Table 1.

To characterize the chosen peptides we performed multiple dockings by switching off the
mutation step of the optimization code (highlighted in grey in Fig 1A) and redocked all the 13
peptides at kT = 0.6 (MC+Vina scores in Table 1). For comparison, we docked the same pep-
tides also with the original Autodock (Vina scores in Table 1). Due to the stochastic character
of the methods the end configurations widely varied but all were correctly located inside the
pocket (as shown in Fig 3A and Figure A in S1 File). Accordingly the standard deviation on
their docking scores was of 5% for MBP-9 and up to the 15% for MBP-11. In general, the inclu-
sion of MC steps in Vina greatly improved the chances of finding a low energy configuration:
the Vina scores were between -7.5 and -10.2kcal/mol, while MC+Vina found configurations
with binding affinities between -12.3 and -20.2 kcal/mol, almost twice the binding affinities of
the configurations found by the original Vina. By redocking the peptides both with Vina and
MC+Vina we did not obtain the same binding energies we obtained for their generation
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Table 1. Average docking scores. Docking scores are calculated with Autodock Vina over 10 runs each generating 9 configurations, and with MC+Vina
over the last 10 configurations of 10 runs. Errors are standard deviations over all the samples. In parentheses the protein configuration used for the docking.

All the values are in kcal/mol.
Peptide
MBP-1
MBP-2
MBP-3
MBP-4
MBP-5
MBP-6
MBP-7
MBP-8
MBP-9
MBP-10
MBP-11
poliALA
NEG

sequence

SPAGGQDF
WGTNGGTR
APRGGNTS
PQYPPHDN
GLPKPGGN
PQKGGMWD
WSPNFWWR
WHPRPVWE
YHFPYFRF
YGDGYFRF
YHDGYFRF
AAAAAAAA
AAARRAAA

doi:10.1371/journal.pone.0133571.t1001

Vina (10MP) MC+Vina (10MP) MC+Vina (3MBP)
-7.8+0.6 -14.7+1.6 -11.8+0.9
-7.7¢0.5 141414 -12.1+1.3
-7.0£0.6 -13.8+1.2 -11.5+0.6
-8.0£0.6 -15.1+1.0 -11.1+1.3
-6.640.3 12,5405 -10.3+0.7
7.10.4 -14.9+1.3 -10.7+0.9
-8.3+0.6 -16.8+1.5 -11.9+1.5
-8.30.3 -14.8+1.1 -10.1¢1.7
-8.9+0.7 -18.7+1.1 -10.5¢2.5
-8.1404 -15.1%14 -12.6+2.0
-8.140.5 -16.2424 -11.8+1.7
-7.140.3 -11.0+1.0 -9.3+0.5
-6.90.4 -13.3%1.1 -11.5+1.6

(indicated by arrows Fig 2). Further, MC+Vina identified the poly-ALA as the peptide with the
least favorable binding energy. Similar results were obtained by docking all the peptide with
the same REMC protocol used for their generation. We further validated our results by refining
the MC+Vina lowest energy configurations with FlexPepDock (see Table A and Figure A in S1
File).

The preliminary experimental results for the first eight peptides of Table 1 pointed toward a
high micromolar affinity (3.28-5.11 kcal/mol at room temperature according to the relation
AG = RTIn(kp) where AG is the binding affinity R the ideal gas constant, T the system tempera-
ture, and the kp measures are those collected in Table 2 and discussed in Sec.2.4). Since the
result is well below the theoretically estimated binding affinity, we assumed that the abnormally
high affinity values were due to the docking algorithm missing a number of sequence depen-
dent entropic contributions. In order to correct these errors, we observed that the calculated
energy was nonzero when docking a peptide to a non-binding site (as in the fifth column of
Table 1). Thus we assumed this latter energy should be balanced by missing sequence depen-
dent terms and applied a correction to the binding energy, defining the corrected binding
energy as:

BE = <E >—<E >

binding site no binding site

where <Epinding site> 18 the average interaction energy of a peptide docked to its binding site,
while <Ej, binding site>> 18 the average interaction energy of the same peptide docked to a non-
binding site. We employed the MC+Vina scoring protocol able to find the lowest energy
configurations for the peptides of Table 1. We ran multiple dockings generating a number of
possible MBP:peptide complexes targeting the maltose binding site in the open protein config-
uration (Fig 3A) and in closed maltose containing configuration (Fig 3B) at kgT = 0.6. While it
is not possible to exclude a priori the aspecific binding of the peptides to either of the globular
domains, we assumed no binding was possible in the maltose containing closed configuration,
an assumption confirmed by ESI-MS experiments (see Sec.2.2 and Sec.2.4). We averaged the
energies over the last 10 configurations of 10 runs of the docking protocols (last two columns
of Table 1). The difference between the two energies for each peptide is plotted in Fig 3C
showing that negative controls have the lowest BE among the peptides, and the other binding
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Fig 3. (a-b) Overlap of the 10 peptides final configurations obtained by redocking 10 times MBP-9 with

the Vina+MC code for 100 steps at kBT = 0.6 on the Met330 site of the MBP (yellow) in open
conformation (a) and in its maltotriose (red) containing closed conformation (b). (c) The MC+Vina

calculated BE where the errorbars are the sums of the standard errors of the means calculated over

the last 10 configurations of 10 runs of the docking protocols.

doi:10.1371/journal.pone.0133571.g003

energies are in the micromolar range. Now MBP-9 emerges as a clear outlier and the best can-
didate for binding to the MBP.

Table 2. kp (SPR determined) and pl values for the MBP peptides. CBE (Cannot be Estimated) is related
to experiments in which signal variations were observed but Kp estimation cannot be reached neither through

kinetic nor saturation analysis.

Peptide Sequence Kp (pM) pl
MBP-1 SPAGGQDF 4200 1400 3.80
MBP-2 WGTNGGTR CBE 9.75
MBP-3 APRGGNTS 1500 200 9.79
MBP-4 PQYPPHDN CBE 5.08
MBP-5 GLPKPGGN CBE 8.75
MBP-6 PQKGGMWD 1300 * 500 6.26
MBP-7 WSPNFWWR CBE 9.75
MBP-8 WHPRPVWE 200%5 6.75
MBP-9 YHFPYFRF 723 8.60
MBP-10 YGDGYFRF No binding 5.83
MBP-11 YHDGYFRF No binding 6.74

doi:10.1371/journal.pone.0133571.t002
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Fig 4. ESI-MS analysis of Protein-Peptide complexes. Spectra of 20 yM MBP in 50 mM ammonium acetate pH7. (A) DP60 V, (B) DP 60 V in the presence
of 20 uM MBP-9, (C) DP 180 V in the presence of 20 yM MBP-9, (D) DP 60 V in the presence of 20 yM MBP-9 and 20 uM maltose. In panel A the peaks are
labeled by the charge acquired during the electrospray. In panels B-D the peaks corresponding to apoMBP (o), MBP:MBP-9 1:1 complex (¢), MBP:MBP-9 1:2
complex (e*), MBP:maltose 1:1 complex (gray solid circle) and MBP:MBP-9:maltose: 1:1:1 complex (black/gray solid circles) are labeled.

doi:10.1371/journal.pone.0133571.9004

2.2 Stoichiometry of peptide:protein complex through ESI-MS

The binding between the sequence endowed with the highest putative affinity toward MBP,
namely MBP-9, was analyzed using the ESI-MS technique (Fig 4). The protein alone gave a
narrow charge-states distribution centered on the peaks corresponding to the 14+/15+ charge
states (Fig 4A), suggesting a compact and structured conformation of the protein.

In the presence of an equimolar amount of MBP-9 new peaks arose in the spectrum (Fig
4B), corresponding to the MBP:MBP-9 complexes with a 1:1 and 1:2 protein:peptide stoichi-
ometries. The protein in the 1:1 and 1:2 bound states were ~33% and ~5% of the total amount,
respectively. Protein:peptide complexes can be almost completely dissociated in the gas-phase
by increasing the declustering potential (DP) of the spectrometer from 60 to 180 V (Fig 4C).
As a negative control, we choose two standard proteins with a molecular mass similar to MBP:
Ovalbumin (42.7 kDa) and Neuroserpin (46.3 kDa). The mass spectra of these proteins in the
presence of MBP-9 were acquired under the same experimental conditions, and no peaks cor-
responding to protein:peptide complexes were detected (data not shown), indicating a specific
recognition of MBP-9 toward the MBP.

PLOS ONE | DOI:10.1371/journal.pone.0133571
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Competitive experiments between MBP-9 and maltose were also performed through
ESI-MS analyses, employing an equimolar mixture of MBP, MBP-9, and maltose (Fig 4D).
Under these conditions, the great majority of the protein was bound exclusively to maltose, in
agreement with its higher affinity (~ 1uM)[44]. Only a small amount (less than 5%) can be
referred to MBP bound to both ligands (MBP-9 and maltose) (Fig 4B). Therefore, the occupa-
tion of MBP pocket by maltose almost completely inhibits the binding of MBP-9, confirming
that confirming that designed peptide binds in the same site of the sugar.

2.3 Estimation of dissociation constants of the peptide:protein
complexes

SPR was employed to evaluate the affinities of designed peptides towards the MBP protein.
SPR experiments were carried out by immobilizing MBP on a CM5 chip with an immobiliza-
tion level of 4900 RU, while peptides were employed as analytes. The analysis of MBP-9 experi-
ments provided dissociation constants in the micromolar range Kp, = 7243 uM, by applying a
1:1 Langmuir model (Fig 5A).

To assess the specificity of the recognition mechanism of the designed peptides we carried
out competitive binding experiments through co-injection of peptides and maltose. MBP-9
at 200uM was co-injected with maltose in a 1:100 ratio. The recorded sensogram (Fig 5B)
showed a dramatically decrease of the RU signal upon the presence of maltose. In this experi-
ment the peptide concentration was twofold greater than Kp, thus MBP protein was nearly sat-
urated and consequently the signal decrease resulted from peptide displacement. Further, to
corroborate the affinity values evaluated through SPR using an in-solution binding assay, we
performed fluorescence experiments on the MBP-9:protein complex. Tryptophan fluorescence
emission at 333 nm showed a dose-response quenching upon MBP-9 addition and -A fluores-
cence intensity was plotted against the concentration values of MPB-9 (Fig 6). Data were fitted
with a 1:1 model of interaction, providing a Kp = 65 £10uM, in agreement with the SPR
measurement.

2.4 Comparison between theoretical and experimental binding affinities

The SPR technique was employed to evaluate the affinity of remaining peptides towards the
MBP, and the results are collected in Table 2. Dose response assays clearly revealed the recogni-
tion of 9 out of 11 designed peptides towards the protein. Exceptions are MBP-10 and MBP-11

2 &
A B 0? 2
500 e - l
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s 2.200
& 200 4
& «

100 100 »

0 - = 0 — J I i ) -
0 100 200 400 500 600 0 100 300 400

300 200
Time (s) Time (s)

Fig 5. Overlay of SPR sensorgrams for the interaction between the immobilized MBP protein and MBP-9 (A). The experimental curves
corresponding to different concentrations of peptides (0—-800uM) were fitted according to a single binding model with 1:1 stoichiometry.
Competitive assay between peptides and maltose for immobilized MBP: Sensorgram of the co-injection of MBP-9 peptide at 200uM and maltose at
20mM (B).

doi:10.1371/journal.pone.0133571.9005
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doi:10.1371/journal.pone.0133571.g006

that did not give valuable signal variations in the explored concentration range (Figure CD
and Figure CE in S1 File). MBP-8 provided a dissociation constant in the micromolar range:
Kp = 200+£5 pM, estimated by applying a 1:1 Langmuir model for the interaction in the evalua-
tion of kinetic parameters. MBP-1, MBP-3 and MBP-6 gave saturated signals and for them

the fitting of RU ., values vs peptides concentrations provided Kp, values in the millimolar
range (4.2+1.4, 1.5£0.2, 1.3+0.5 mM, Figure DA-C in S1 File). The other peptides showed
dose-response signal variations without reaching saturation (Figure C in S1 File), due to their
tendency to aggregate. Further, MBP-8 at 200uM was also co-injected with maltose in a 1:100
dramatically decrease of the RU signal upon the presence of maltose, as formerly observed for
MBP-9, while MBP-1 and MBP-6 were tested for their specificity by MS-ESI with Ovalbumin
and Neuroserpin: also in these cases quite small amounts of the complexes were detected at
10-fold molar excess of the ligand confirming a strong specificity in the sequence able to recog-
nize MBP (data not shown).

By converting the binding affinities in units of energy, using AG = RTIn(kp) with RT =
0.593kcal/mol with error defined as o, = 0.434(0\p/kp) where o is the experimental, it is
possible to compare the measured binding affinities with the BE calculated in Sec.2.2 (Fig 7). In
the limit of a very small dataset, the comparison shows a good correlation.

The inspection of the protein maltose binding site revealed the presence of several aromatic
and hydrogen bonding residues besides of Met 330 (see the insets of Fig 7). The formers allow
for multiple nt-mt interactions between the protein and the peptides aromatic rings. This is par-
ticularly evident for MBP-9 which is endowed with a pronounced aromatic character. But the
aromaticity itself is not sufficient to guarantee binding, since it is pronounced for binding as
well as for “non-binding” sequences. Indeed the comparison between the amino acidic compo-
sition of the most potent binders (MBP-8, -9) and the non-binding sequences (MBP-10, -11),
showed that even if they share common chemical features only the binding peptides bear Pro-
line residues. This iminoacid, in the middle of the sequences, seems to ensure a conformational
turn that could better accommodate peptides in the maltose site, probably aiding n-stacking
interactions among protein and aromatic side-chains of peptide sequences.
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Fig 7. Comparison between the experimental binding and the MC+Vina calculated BE. The BE errorbars are standard errors of the means over 10
samples, while the experimental errobars are calculated as og = 0.434(0kp/kp),. Docking into maltose site of peptides: (a) MBP-6, (b) MBP-1, (c) MBP-8, (d)
MBP-3, (e) MBP-9. Highlighted with their Van der Waals spheres the MBP aromatic side chains involved in the binding (Tyr 155 219 34, Phe 337, Trp 62 340
230) and in black those capable of hydrogen bonding (Ser 337, Asp 14, Arg 66 344, Lys 297, Glu 153 44 45).

doi:10.1371/journal.pone.0133571.9007

Discussion and Conclusions

We have computationally generated a set of octa-peptides targeting the maltose site of MBP
with an algorithm previously employed successfully in the framework of drug recognition. Pep-
tides were screened with a docking based algorithm, allowing the selection of the best candidate
binder out of a number of possibilities. SPR, ESI-MS and fluorescence based assays confirmed
its 1:1 stochiometry, its selectivity towards the binding site they have been designed for and
leading to a binding affinity in the micromolar range.
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However, current docking algorithms while pinpointing possible binders and predicting
their bound conformation turn out to be unable to rank and estimate the binding energy
between the peptides and the MBP and to discern between binders and non-binders. For
instance, the original Vina binding energy is reasonably accurate for small molecules: the
maltotriose with MBP open configuration scores -7.1kcal/mol and -8.0kcal/mol for the closed
configuration to be compared to the experimental values of -8.4kcal/mol[45] and -9.3kcal/mol
[46]. Vina+MC is accurate for very short peptides, for instance KAK+OPPA with the MC
+Vina code scores -9.5+0.6 kcal/mol (the experimentally determined value is -9.8kcal/mol
[47]). It is also possible to reproduce the measured binding affinity of -9.7kcal/mol obtained
for the octapeptide of Ref.[37] with calculated average value of 7.1+1.1kcal/mol (with a mini-
mum at -10.2 kcal/mol). However Vina, as well as the others Vina-based protocols, is orders of
magnitude far from the experimentally evaluated binding energies for longer peptides.

While this is an important obstacle for the progress of the in silico optimization of peptide-
based binders, we have delineated a new route. In order to match the experimental binding
affinities and computational values, we have demonstrated that it is crucial to consider a nega-
tive control in the estimation of the entropic contribution of the global binding energy. Indeed
we have redefined this contribution as the “binding” energy of the peptide towards an experi-
mentally determined non-binding configuration. ESI-MS and SPR experiments, showed that
the peptides do not form a 1:1 complex with MBP when an excess of maltose is present, indi-
cating that they are specific for MBP in its maltose-free conformation and that they are unable
to bind to the MBP maltose-containing-closed conformation, making the maltose-containing-
closed conformation a reliable negative control. Further, since the structure of the two MBP
globular domains is unaffected by the presence of maltose, we chose the multistranded region
connecting them as control for peptide aspecific binding even if we did not exclude a priori
that aspecific interactions could occur in the globular lobes.

While in the proposed work we assess the limitations of the docking based automated evolu-
tion of protein binding peptides, the redefinition of the ligand binding energy provides an
intriguing direction for the computational evolution and screening of peptides with reliable
predicted binding affinities for proteins.

Methods
Computational

For molecular modelling and docking we used the ProteinDataBank structures 1OMP[48] and
3MBP[46]. The docking protocol, implemented in a bash script, is based on a combination of
Modeler 9.11[49], AutoDock Tools 1.5.4, and AutoDock Vina 1.1.0 [18]. All dockings were
performed in a box of size 25x25x25A, to constrain the peptides in the MBP binding pocket,
with exhaustiveness 10, and energy_range 4. The other parameters have been set to their
default values. For MBP the box was centered on the sulfur atom of Met330. The starting con-
figuration for all the Vina-based docking runs was a linear poly-alanine. AutoDock Vina was
run 10 times obtaining 90 configurations, MC+Vina 10 times for 100 steps obtaining 100 end-
simulation configurations. All the figures throughout the text were generated with VMD.

Protein Preparation and characterization of His MBP

This protein was expressed, purified, and characterized as reported in Figure B in S1 File [50]
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Peptide Synthesis

Reagents (Fmoc-protected amino acids and resins, activation and deprotection reagents) from
Novabiochem (Laufelfingen, Switzerland) and InBios (Napoli, Italy); Solvents and HPLC anal-
yses from Romil (Dublin, Ireland); reversed phase columns for peptide analysis and LC-MS
system from ThermoFisher (Milan, Italy). Solid phase peptide syntheses were performed on a
fully automated multichannel peptide synthesizer Syro I (Multisynthech, Germany). Prepara-
tive RP-HPLC was carried out on a Shimadzu LC-8A, equipped with a SPD-M10 AV detector
and with a Phenomenex C18 Jupiter column (50x22 mm ID; 10 um). LC-MS analyses were
carried out on a LCQ DECA XP Ion Trap mass spectrometer equipped with a OPTON ESI
source, operating at 4.2 kV needle voltage and 320°C with a complete Surveyor HPLC system,
comprised of MS pump, an autosampler and a photo diode array (PDA), and Narrow bore
50x2 mm C18 BioBasic LC-MS columns. Peptides were synthesized employing the solid

phase method on a 50 umol scale following standard Fmoc strategies[51] with Rink-amide
resin (substitution 0.5 mmol/g) solid support. The amino acids were activated with HBTU/
Oxyme /DIEA (1:1:2), and the Fmoc deprotection was achieved by using a 20% (v/v) piperidine
solution in DMF. All couplings were performed for 15 min and deprotections for 10 min.
Finally the peptides were removed from the resin by treatment with a TFA:TIS:H20 (90:5:5,
v/v/v) mixture for 90 min at room temperature. Crude peptides were then precipitated in cold
ether, dissolved in a water/acetonitrile (1:1, v/v) and lyophilized. Products were purified by
RP-HPLC applying a linear gradient of 0.1% TFA CH3CN in 0.1% TFA water from 1% to 30%
or 5% to 70% depending on the hydrophobicity over 13 min using a semi-preparative 2.2x5 cm
C18 column at a flow rate of 15 mL/min. Peptides purity and identity were confirmed by LC-
MS. Purified peptides were lyophilized and stored at -20°C until use.

ESI-MS analysis of protein-peptides complexes

ESI-MS analysis were carried out on a hybrid quadrupole time-of-flight mass spectrometer
(QSTAR Elite, AB-Sciex, ForsterCity, CA, USA), which is equipped with nano-ESI source [52].
The samples were infused by metal-coated borosilicate capillaries, with emitter tips of 1um
internal diameter (Proxeon, Odense, Denmark), and the instrumental setting was: declustering
potential (DP) +60 V, ion spray voltage +1.1/+1.2 kV and curtain-gas pressure 20psi. Both the
sample source and the instrument interface were kept at room temperature. The spectra were
recorded under nondenaturing conditions (50 mM ammonium acetate pH 7). The protein
complexes with peptides were prepared by mixing 20uM protein solution with an equimolar
amount of ligand.

Surface Plasmon Resonance

The interactions between the protein and computationally optimized peptides were measured
using the BIAcore 3000 (GE Healthcare Milano, Italy). MBP was immobilized at a concentra-
tion of 100 ug/mL in 10 mM acetate buffer pH 5 (flow rate 5 uL/min, time injection 7 min) on
a CM5 Biacore sensor chip, using EDC/NHS chemistry following the manufacturer’s instruc-
tions. Residual reactive groups were deactivated by treatment with 1 M ethanolamine hydro-
chloride, pH 8.5. The reference channel was activated with EDC/NHS and deactivated with
ethanolamine. The binding assays were carried out at 20 puL /min at 25°C, with 4.5 min con-
tact-time. Peptides were diluted in the HBS running buffer (10 mM Hepes, 150 mM NaCl,

3 mM EDTA, pH 7.4). Analyte injections were performed at the indicated concentrations. The
sensor surface was regenerated by using 1-3 washes of 10mM NaOH for 1 minute. The associa-
tion phase (kon) was followed for 250s, whereas the dissociation phase (koff) was followed for
300 s. The instrument BIAevaluation analysis package (version 4.1, GE Healthcare, Milano,
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Italy) was used to subtract the signal of the reference channel. Conversely, an affinity steady
state model was applied to fit the RU,,,,, data versus peptides concentrations and fitting was
performed with GraphPad Prism v4.00 using the one-site binding equation [53,54].

Fluorescence binding analysis

The data were acquired at 25.0°C, using an excitation wavelength of 298.0 nm and a fluores-
cence emission wavelength ranging from 300 to 400 nm. The acquisition parameters were set
as follows: excitation and emission slits at 5 nm; 120 nm/min scan rate; 1.00 nm data interval
averaging time at 0.500 s, PMT voltage at “high”. The fluorescence values recorded at 333 nm
were extracted, and transformed to -Afluorescence which was obtained by subtracting them to
the emission fluorescence intensity of the ligand-free protein, and, then, plotted against the
peptide concentration [55]. MBP was used at the concentration of 14 uM and incubated in the
presence of increasing concentrations of MBP-8 ranging from 0 to 350 uM. Experiments were
carried out in duplicates. A control assay was carried out employing as titrant the buffer to
assess that the dilution effect was under 3%, not affecting the results.

Supporting Information

S1 File. Docking, Protein Preparation and characterization of His-tagged MBP (Expression
and Purification, CD Measurements, ESI-MS), Supporting binding data.
(DOCX)
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