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Abstract

Background

Surveillance for gonorrhoea antimicrobial resistance (AMR) is compromised by a move

away from culture-based testing in favour of more convenient nucleic acid amplification test

(NAAT) tests. We assessed the potential benefit of a molecular resistance test in terms of

the timeliness of detection of gonorrhoea AMR.

Methods and Findings

An individual-based mathematical model was developed to describe the transmission of

gonorrhoea in a remote Indigenous population in Australia. We estimated the impact of the

molecular test on the time delay between first importation and the first confirmation that the

prevalence of gonorrhoea AMR (resistance proportion) has breached the WHO-recom-

mended 5% threshold (when a change in antibiotic should occur). In the remote setting eval-

uated in this study, the model predicts that when culture is the only available means of

testing for AMR, the breach will only be detected when the actual prevalence of AMR in the

population has already reached 8 – 18%, with an associated delay of ~43 – 69 months

between first importation and detection. With the addition of a molecular resistance test, the

number of samples for which AMR can be determined increases facilitating earlier detection

at a lower resistance proportion. For the best case scenario, where AMR can be determined

for all diagnostic samples, the alert would be triggered at least 8 months earlier than using
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culture alone and the resistance proportion will have only slightly exceeded the 5% notifica-

tion threshold.

Conclusions

Molecular tests have the potential to provide more timely warning of the emergence of

gonorrhoea AMR. This in turn will facilitate earlier treatment switching and more targeted

treatment, which has the potential to reduce the population impact of gonorrhoea AMR.

Introduction
The gonorrhoea rate is disproportionately high in some Indigenous populations in remote
Australia compared with urban areas, with rates reported to be up to 35 times higher [1, 2].
Prevalence of 7–8% has been reported for 16–34 years old and even higher for 16–19 year olds
at more than 10% [3]. Currently, most gonorrhoea infections diagnosed in remote Indigenous
communities are sensitive to and treated with penicillin, whereas the predominant gonorrhoea
strains circulating in urban Australia and neighbouring countries are resistant to penicillin [4].
It is therefore likely that penicillin-resistant gonorrhoea will eventually be introduced and take
hold within remote communities and will compromise the effectiveness of existing control
strategies.

Strengthening surveillance for antimicrobial resistance (AMR) in settings where gonorrhoea
prevalence is high is a key strategy of the World Health Organisation (WHO) [5] and this is
necessarily a bacterial culture-based activity. However 50–90% of the gonorrhoea infections
from remote regions are diagnosed using nucleic acid amplification tests (NAAT) [6–9] pri-
marily because of distance and transport considerations as well as the convenience and sensi-
tivity of NAAT-based diagnosis. With the increasing trend toward use of NAAT for diagnosis,
the number of samples available for culture is expected to reduce even further, possibly to a
level that will not be adequate or sufficiently representative for AMR surveillance [10].

Molecular tests specifically designed to identify genetic mutations that confer resistance
have the potential to enhance AMR surveillance by improving coverage and representativeness
[11]. For example, a molecular test to detect penicillinase-producing Neisseria gonorrhoeae
(PPNG) has been recently described [12] and is now in use to enhance the surveillance of peni-
cillin resistance in remote Western Australia where a penicillin-based treatment strategy is in
use. Data from the PPNG NAAT-based surveillance is used to inform clinical guidelines for
this region [9]. The widespread use of such tests on diagnostic samples could enhance AMR
surveillance and enable a more timely response to the emergence of treatment-resistant gonor-
rhoea. The WHO guidelines for STI management state that a treatment should have a 95%
cure rate to be considered effective. [5]. By implication, when the treatment failure rate exceeds
5% with the current treatment, there should be a switch to a new effective treatment. We refer
to this henceforth as the 5% threshold.

In this study we describe results from a mathematical model of genital gonorrhoea transmis-
sion in a remote community setting that we developed to assess the potential impact of a
molecular test on the timeliness of detection of gonorrhoea AMR.

Methods
An individual-based mathematical model was developed to describe the transmission of gonor-
rhoea in a remote Indigenous population in Australia. The model is an extension of a
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previously published model that we used to evaluate the importance of population mobility for
gonorrhoea transmission in remote Indigenous communities of Australia [13]. While the
model is parameterised using demographic, sexual behaviour and mobility data for this setting,
our approach can be applied to other settings.

The modelled population represents sexually active individuals aged 15–35 years residing in
one larger centre (comprising 4000 individuals) and four small communities (comprising 250
individuals each) that are “satellites” of the larger centre from a population mobility perspec-
tive [13]. Gender- and age-specific mortality rates were adjusted to maintain the gender-age
distribution as described in census data [14].The model tracks age, gender, location, gonor-
rhoea infection status and sexual behaviour on a daily basis, while population mobility is cap-
tured based on census data using modelling techniques as previously described [13]. Table 1
lists the demographic and behavioural parameters used in the model. A more detailed descrip-
tion of the model is provided in the S1 Technical Appendix.

We assume that initially all gonorrhoea infections in the population are sensitive to treat-
ment but that treatment failure may occur, on rare occasions, for reasons not related to AMR
(e.g. adherence failure). Treatment-resistant gonorrhoea is then introduced into the population
through periodic importation. We use the model to estimate the impact of the molecular test
on the time delay between first importation and the first confirmation that the prevalence of
gonorrhoea AMR has breached the 5% threshold. For simplicity, we consider a single generic
treatment-sensitive strain and single treatment-resistant strain, for each of which a generic
effective treatment exists. We do not consider specific gonorrhoea strains or antibiotics.

We assume that some asymptomatic individuals infected with gonorrhoea in remote Indige-
nous populations will be tested and treated through general health check-ups and screening,
while a proportion of those with symptoms will actively seek treatment. Of those testing posi-
tive to gonorrhoea, 85% will receive treatment within 21 days [15] but some will remain
infected post-treatment due to treatment failure as a result of AMR or other factors such as
non-adherence. We assume that 44% of the population will be tested for STI annually through
general health check-ups and screening [15], using a diagnostic test of 100% sensitivity [16].

In contrast to urban Australia, it is thought that a substantial proportion of symptomatically
infected individuals in remote Indigenous communities do not seek treatment for a combina-
tion of reasons including lack of knowledge about sexually transmissible infections (STIs) and
the availability of treatment, anxiety and stigma associated with STIs, and accessibility to
appropriate health services. [17, 18]. While evidence for this is anecdotal we assume that only
40% of individuals with symptoms seek and receive treatment, a proportion arrived at through
calibration to notification data. Combined with treatment through general check-ups and
screening, this rate of symptomatic treatment results in ~2700 treatments per 100 000 popula-
tion per year, corresponding roughly to the reported gonorrhoea notification rate among 16–
30 year-old residents of remote Indigenous communities [1].

Properties of treatment sensitive and treatment-resistant gonorrhoea
We assume that an endemic prevalence of treatment-sensitive gonorrhoea is already estab-
lished before the importation of treatment-resistant gonorrhoea. Prior to the first importation,
the model is calibrated to yield a constant gonorrhoea prevalence of 7–8% [3].

To date, the identification of treatment-resistant gonorrhoea has been a rare occurrence in
remote Australia [4]. In this study, therefore, our assumptions regarding the natural history of
treatment-resistant gonorrhoea and responses from health care service providers are necessar-
ily hypothetical. Furthermore, there is no substantive evidence suggesting that the natural his-
tory of treatment-resistant strains is different from that of treatment-sensitive strains. We
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therefore assume that treatment-sensitive and treatment-resistant gonorrhoea strains differ
only in their respective treatment failure rates. We assume a failure rate of 100% for treatment-
resistant infections. For treatment-sensitive infections, we assume there is a failure rate of 5%
for reasons not related to AMR. We make this assumption as a worst-case scenario because
reliable data on treatment failure in the remote Indigenous setting are not available but a 95%
effective treatment would be considered effective under WHO guidelines [5]. Values assigned
to gonorrhoea natural history parameters used in the model apply to both treatment-sensitive
and treatment-resistant gonorrhoea and are listed in Table 2.

In any population in which treatment-sensitive and treatment-resistant strains are circulat-
ing, there is a finite probability (the value of which will depend on the prevalence of each
strain) that an individual infected with treatment-sensitive gonorrhoea will engage in sexual
contact with an individual infected with treatment-resistant gonorrhoea. In our model we
assume that in this circumstance, transmission can occur such that one or both individuals can
become co-infected with both strains [19]. While hypothetical, it is also plausible that the pres-
ence of treatment-sensitive gonorrhoea within an individual can affect the transmissibility and/
or susceptibility of treatment-resistant gonorrhoea and vice-versa. To accommodate the range
of possibilities, we assume that every individual can be infected with treatment-sensitive and
treatment-resistant infection concurrently, and the interactions between infections are repre-
sented in the model through adjustments to transmission probabilities. This is achieved
through the parameters αs,ϖs,ϕs which are scalar multipliers applied to the transmission proba-
bility of treatment-sensitive gonorrhoea should one or both individuals in a sexual partnership
already be infected with treatment-resistant gonorrhoea. Likewise, the parameters αr,ϖr,ϕr are
the scalar multipliers applied to the transmission probability of treatment-resistant gonorrhoea
should one or both partners already be infected with treatment-sensitive gonorrhoea. Fig 1
illustrates this concept and the mechanism by which transmission occurs in the model.

With the appropriate choice of values for the parameters αs,ϖs,ϕs,αr,ϖr,ϕr, the following sce-
narios are possible when sexual contact occurs between an individual infected with a treat-
ment-resistant gonorrhoea strain and an individual infected with a treatment-sensitive strain:

1. An individual can be co-infected with both strains but there will be no interaction between
them, i.e., they will be transmitted independently (αs,ϖs,ϕs and αr,ϖr,ϕr all equal to one)

11. Co-infection is not possible:

a. An individual infected with treatment-sensitive gonorrhoea is immune to infection with
treatment-resistant gonorrhoea (αr,ϖr,ϕr all equal to zero)

b. An individual infected with treatment-resistant gonorrhoea is immune to infection with
treatment-sensitive gonorrhoea (αs,ϖs,ϕs all equal to zero)

Table 2. Infection parameters for treatment-sensitive and treatment-resistant gonorrhoea.

Infection parameters Value Reference

Probability of infection being recognised as symptomatic Male 0.45 [34]

Female 0.14 [34]

Average duration of latent period 4 days Assumption

Average duration of infectious period 185 days [35–37]

Average duration of immunity following resolution of infection 7 days Assumption

Transmission probability per unprotected sex act Male to female 0.50 [38–40]

Female to male 0.22 [38–40]

doi:10.1371/journal.pone.0133202.t002
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111. Co-infection is possible but treatment-sensitive gonorrhoea will be converted into treat-
ment-resistant gonorrhoea such that the co-infected individual can only transmit treat-
ment-resistant gonorrhoea (αs,ϖs,ϕs all equal to zero and αr,ϖr,ϕr all equal to one)

1V. Co-infection is possible but treatment-resistant gonorrhoea will be converted into treat-
ment-sensitive gonorrhoea such that the co-infected individual can only transmit treat-
ment-sensitive gonorrhoea (αs,ϖs,ϕs all equal to one, and αr,ϖr,ϕr all equal to zero)

Note that the product of each parameter and the transmission probability (e.g. αrβ) must be
less than or equal to one

Fig 1. Transmissionmechanism for treatment-sensitive and treatment-resistant gonorrhoea as implemented in the model. Xs, Xr denote the
infection status of person X: Xs = S if X is susceptible to treatment-sensitive gonorrhoea; Xs = I if X is infected with treatment-sensitive gonorrhoea. Similarly,
Xr = S or Xr = I if X is susceptible or infected with treatment-resistant gonorrhoea, respectively. The diagram represents transmission from person X to person
Y through unprotected sex act (transmission from Y to X is omitted in this diagram). The parameter β is the transmission probability per unprotected sex act.
The parameters As and Ar are scalar adjustment to the transmission probability for treatment-sensitive and treatment-resistant gonorrhoea, respectively, and
their value will be based on the infection status of person X and person Y as defined in the figure. As and Ar are equal to zero for all combinations not listed.

doi:10.1371/journal.pone.0133202.g001
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In the above scenarios, the values for αs,ϖs,ϕs are all either zero or one and similarly for αr,
ϖr,ϕr. Alternatively the values for these parameters can be varied individually and can take val-
ues other than zero or one leading to the following additional scenarios:

V. Infection with treatment-sensitive gonorrhoea enhances (αr > 1, 0� αrβ� 1) or reduces
(αr < 1, 0� αrβ� 1) susceptibility to, or provides immunity against (αr = 0) infection
with treatment-resistant gonorrhoea, or vice versa (with αe in place of αr).

VI. Infection with treatment-sensitive gonorrhoea enhances (ϖr > 1, 0�ϖrβ� 1), reduces
(ϖr < 1, 0�ϖrβ� 1) or prevents (ϖr = 0) the transmission of treatment-resistant gonor-
rhoea, or vice versa (withϖs in place ofϖr)

VII. A combination of scenarios V and VI above, governed by parameters ϕs and ϕr for treat-
ment-resistant and treatment-sensitive strains, respectively.

Diagnosis and importation treatment-resistant gonorrhoea
We assume that gonorrhoea diagnostic tests have sensitivity of 100% based on the fact that
diagnosis in remote settings is predominantly by NAAT [10]. All individuals with a positive
diagnosis receive the same standard treatment (i.e. with 5% treatment failure rate for treat-
ment-sensitive gonorrhoea and 100% treatment failure rate for treatment-resistant gonor-
rhoea) when AMR status is unknown. An alternative effective treatment is administered for
infection identified as treatment-resistant, with the failure rate reduced from 100% to the base-
line failure rate of 5%.

We also assume that a percentage of samples provided for diagnosis will be suitable for cul-
ture-based AMR testing. We investigate three levels: 1) 17% as reported for Western Australia
[9]; 2) 22% as reported for the Northern Territory [6]; and 3) 30% of samples from males and
50% of samples from females as reported for Far North Queensland [8]. We assume that the
molecular test is able to determine AMR status for all diagnostic samples (whether suitable for
culture or not).

At the present time, treatment-resistant gonorrhoea is rarely encountered in remote com-
munities in Australia [20]. Therefore, the emergence of resistance, as implemented in this
model, is necessarily hypothetical. We assume treatment-resistant gonorrhoea is introduced
into the modelled population periodically in the same way that repeated importation from
overseas rather than de novo emergence (through genetic mutation/adaptation) is thought to
be the main source of AMR in Australia generally [21]. In order to capture a realistic rise in the
prevalence of the hypothetical treatment-resistant gonorrhoea strain, the model is fitted to data
on the rise in prevalence of ciprofloxacin resistance in Australia between 2002 and 2008 [22] as
this has been well documented. This is achieved through the resistance proportion, which we
define as the percentage of infection in the population that is attributable to treatment-resistant
gonorrhoea. Calibration is performed by adjusting the six transmission probability adjustment
parameters described previously and in Fig 1, using the Nelder-Mead simplex optimisation
algorithm [23], such that the sum of the differences between the resistance proportion in the
model and the observed data at each time point is minimised.

Determining the impact of molecular test on AMR surveillance
We assume that gonorrhoea AMR can be determined from gonorrhoea-positive diagnostic
samples, either by culture, if the sample is suitable, or by molecular test if not. AMR surveil-
lance is implemented in the model using a simple monitoring scheme whereby an “alert” is
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triggered when more than 10 of the last 200 (5%) positive diagnoses (for which AMR is deter-
mined) are resistant to treatment. The benefit of molecular resistance testing on the timeliness
of the alert is assessed using three measures: 1) the resistance proportion when the alert is trig-
gered; 2) the delay between first importation of treatment-resistant gonorrhoea into the popu-
lation and the triggering of the alert; and 3) the delay between the time when the resistance
proportion breaches the 5% threshold and the triggering of the alert.

Results
Each result consists of the compilation of 1000 simulation runs. Here we divide the findings
from the model into 2 sections: 1) the result of model calibration, and 2) the potential impact
of molecular test surveillance for gonorrhoea AMR on the timeliness of detection and
response.

Calibration
Assuming that on average a single treatment-resistant gonorrhoea infection is imported into
the population per year, the modelled resistance proportion increases at a rate similar to the
emergence of ciprofloxacin resistance in Australia between 2002 and 2008 if the transmission
of treatment-sensitive and treatment-resistant gonorrhoea are independent of each other (with
ϖs andϖr close to 1), and if the susceptibility to treatment-resistant gonorrhoea is lower when
the susceptible individual is already infected with treatment-sensitive gonorrhoea and vice
versa (αs and ϕs are close to 0.08, and αr and ϕr are close to 0.15). Table 3 summarises the
parameter values obtained from calibration and Fig 2 shows the correspondence between the
modelled resistance proportion and ciprofloxacin resistance in Australia between 2002 and
2008.

Impact of molecular test on AMR surveillance
The resistance proportion at the time the 5% alert is triggered, the delay between first importa-
tion and the time of the alert, and the delay between the resistance proportion reaching 5% and
the time of the alert are given in Table 4. We compare scenarios where culture alone is available
for AMR testing and where both culture and a molecular test are available. When culture alone
is available for resistance testing, (upper panel of Table 4), the resistance proportion will
already have reached between ~8% and ~18% by the time the alert is triggered, with a delay of
~43–69 months between first importation and the alert being triggered, depending on the per-
centage of diagnostic samples available for culture. At the highest rate investigated in this study
(30% and 50% of diagnostic samples from males and females, respectively suitable for culture-
based AMR testing), there is still a 12-month gap between the time the resistance proportion
exceeds the 5% threshold and the triggering of the alert.

The use of molecular testing increases the number of samples for which AMR can be deter-
mined and allows the alert to be triggered earlier and at a lower resistance proportion (lower
panel of Table 4). For the best-case scenario, where AMR can be determined for all samples,

Table 3. Scalar adjustment of transmission probability. Scalar adjustment of transmission probability as
derived through the calibration process for the result shown in Fig 2. Explanation of these parameters is given
in the Methods and Fig 1.

αs 0.089 αr 0.147

ϖs 0.999 ϖr 0.994

ϕs 0.073 ϕr 0.149

doi:10.1371/journal.pone.0133202.t003
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the alert will be triggered at least 8 months earlier than using culture alone and the resistance
proportion will have only slightly exceeded the 5% notification threshold. Under this scenario,
an alert will be triggered within 3–6 months of the resistance proportion exceeding the 5%
threshold, although the negative values in some results suggested that in sometimes the alert is
triggered before the threshold is reached under our simplified trigger criterion (10 of the last
200 samples are identified as treatment resistant).

Discussion
To our knowledge this is the first study to use mathematical modelling to evaluate the potential
benefit of a molecular test for gonorrhoea AMR surveillance. We have based the modelled pop-
ulation on remote Australian Indigenous communities because in this setting NAAT is replac-
ing culture for diagnosis and AMR surveillance is thereby being undermined by limited
availability of samples for conventional AMR testing. We have implemented a simple monitor-
ing scheme in our model whereby an alert is triggered when 10 of the last 200 samples are iden-
tified as treatment resistant. Our findings indicate that if a molecular test for AMR is available,
this alert is triggered at least 8 months earlier than when AMR surveillance relies on culture
alone. Furthermore, the actual prevalence of treatment-resistant gonorrhoea in the population
at the time the alert is triggered is up to 12% lower when a molecular test is available than when
culture is the only means of testing for AMR.

Our simple monitoring scheme counts AMR-positive samples from last 200 AMR-identifi-
able samples used for gonorrhoea diagnosis to determine the timing of the alert. Since the

Fig 2. Resistance proportion obtained in the model through calibration to data on ciprofloxacin
resistance in Australia.Resistance proportion obtained in the model (solid line with diamondmarkers)
through calibration to data on ciprofloxacin resistance in Australia between 2002 and 2008 (dotted line with
square markers, from [22]).

doi:10.1371/journal.pone.0133202.g002
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availability of a molecular test will increase the number of samples available for AMR surveil-
lance, those 200 samples will likely be obtained over a shorter period of time. While this
reduces the delay in the triggering of the alert, in some cases it the alert may be triggered pre-
maturely (e.g., due to a transient sharp increase in resistance proportion in a small isolated sex-
ual network). In practise, the AMR monitoring scheme is likely to be more complex and will
necessarily involve checks and balances designed to minimise premature triggering. Our results
highlight the need for these checks and balances to be put in place.

A number of studies employing a range of model structures have investigated the dynamics
of emergence and spread of AMR [24], some of which specifically focused on gonorrhoea [25,
26]. However these studies generally assumed de novo development of resistance (e.g. as a
result of selective pressure due to antibiotics), while the interactions between strains in co-
infected individuals were often simplified or ignored. Such models are not suitable in the con-
text of remote Indigenous communities of Australia as addressed in this study. This is because
there is little opportunity for AMR to develop de novo in this population as evidenced by the
fact that penicillin is still widely effective. While the prevalence of gonorrhoea in many remote
communities is very high, the number of individuals infected is relatively small due to the
small population size and unlikely to support the de novo development of antibiotic resistance.
For this reason the focus of our study was on importation alone. The model could, however, be
extended to also accommodate de novo development of resistance for other settings where this
is more likely to occur.

The high prevalence of gonorrhoea infection in this population, however, means that co-
infection is likely to occur if there are multiple circulating strains. The model developed for this
study allows us to explore a range of scenarios where treatment-resistant gonorrhoea is intro-
duced into the population and co-infection is allowed to occur.

Table 4. Impact of molecular test on AMR surveillance over 1000 simulation runs.

Culture only

Percentage of diagnoses where AMR can be detected 17%* 22%** 30% in male, 50% in
female***

Median (IQR) resistance proportion at the time alert is triggered 17.8% (7.9%-
31.3%)

12.5% (5.9%-
23.1%)

8.2% (4.5%- 14.5%)

Median (IQR) time between first importation of treatment-resistant gonorrhoea and
time of alert (months)

68.8 (56.7–86.0) 58.9 (47.9–73.0) 43.1 (33.9–56.8)

Median (IQR) time between first instance of resistance proportion exceeding 5%
and time of alert (months)

36.5 (19.8–49.2) 26.2 (9.1–39.0) 11.7 (2.6–24.0)

Culture and molecular test

Percentage of diagnoses where AMR can be detected from culture or
molecular test

50% 75% 100%

Median (IQR) resistance proportion at the time of alert 6.8% (4.1%
-10.8%)

6.2% (4.1%-
8.9%)

5.8% (4.0%- 7.9%)

Median (IQR) time between first importation of treatment-resistant gonorrhoea and
time of alert (months)

34.3 (25.2–54.9) 30.4 (19.9–58.3) 34.4 (18.1–61.0)

Median (IQR) time between first instance of resistance proportion exceeding 5%
and time of alert (months)

6.0 (-1.0–13.2) 4.2 (-0.9–9.1) 3.4 (-1.2–7.4)

IQR = interquartile range. The upper pane represents the situation where a molecular test is not available and AMR can only be detected from culture.

The bottom panel represents the situation where AMR can be detected either by culture or molecular test.

*Based on the percentage of isolates available for culture in Western Australia [9]

**Based on the percentage of isolates available for culture in Northern Territory [6]

***Based on the percentage of isolates available for culture in Far North Queensland [8]

doi:10.1371/journal.pone.0133202.t004
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While our results are derived for a remote Indigenous setting in Australia, and may be dif-
ferent for other settings (according to differences in importation rate, sexual behaviour, demo-
graphics and health service provision), we believe that the key finding that a molecular test for
AMR surveillance will enable more timely detection is robust. The degree to which surveillance
will be enhanced by the availability of a molecular test for AMR will be proportional to the
extent to which NAAT-based diagnostic testing has replaced culture-based testing. For the set-
ting examined here, we found that the true population resistance proportion at the triggering
of the alert is close to the threshold level of 5% if the AMR of all available (gonorrhoea-positive)
samples is known. This is an encouraging result as it means that in theory a switch to an alter-
native effective treatment can be initiated before the number of treatment failures escalates.

Gonorrhoea infections are usually anatomically localised (e.g., urethra, rectum, pharynx)
and treatment efficacy may vary by site. For example, cases of ceftriaxone treatment failure for
pharyngeal infections have been reported in Australia [27–29] but not for rectal or urethral
infection. We have only considered genital infection in the current study as most infections in
remote communities are through heterosexual contact [1]. The model can, however, be
extended to accommodate transmission involving non-genital sites should the appropriate
data become available. We also assume, as explained above, that the emergence of treatment-
resistant gonorrhoea in remote Australia is likely to occur through importation rather than in a
de novo fashion through selective pressure. While we consider this to be a reasonable assump-
tion [21], the importation frequency required for emergence and persistence in remote com-
munities is unknown. We have assumed an importation rate of one case per year into the
modelled population on average for calibration as this generates a reasonable fit to the histori-
cal emergence of ciprofloxacin resistance in Australia. A more complete analysis would include
the importation frequency as part of the calibration process. However, preliminary simulations
have suggested that the importation frequency only affects the rate of emergence at an early
stage when the resistance proportion is relatively low (i.e.< 30%). An accurate calibration to
importation frequency is not feasible for this model unless more data points are available for
the period when the resistance proportion is low.

We assumed a treatment failure rate of 100% for treatment-resistant infections. While in
the laboratory environment the treatment failure rate for a specific strain is likely to be less
than 100%, the observed treatment failure rate in the population is often unknown at diagnosis
(and often remains unknown after treatment due to factors such as non-compliance to treat-
ment, loss to follow-up or reinfection). AMR is identified in the model through strain type
rather than treatment failure rate, therefore a lower treatment failure rate will not influence the
rate at which treatment-resistant infections are detected. A lower treatment failure rate would
reduce the average duration of treatment-resistant infections in the population, but its effect
would be compensated for by changes to other factors (e.g. higher transmissibility) through the
calibration process.

Our model considers only two generic strains of gonorrhoea–a treatment-sensitive strain
and a treatment-resistant strain. In reality a large number of gonococcal strains (each with dif-
ferent sensitivity to particular antibiotic treatment) could be circulating in the population. This
model can be expanded to include multiple strains along with strain specific interactions,
although the number of parameters required, and the uncertainty associated with each, would
lead to much greater overall uncertainty in the predicted outcomes.

Although our results clearly demonstrate the potential benefit of molecular tests for gonor-
rhoea AMR, we note that such tests should not be considered as a replacement for culture
which is required to identify strains of gonorrhoea containing genetic markers that are not rec-
ognised by the panel of available molecular tests. Rather, molecular tests for gonorrhoea AMR
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should be considered as a tool to enhance surveillance in settings where obtaining and main-
taining culture is difficult.

In this study, we developed a model to investigate the potential impact of a molecular test
on the efficiency of AMR surveillance in remote Indigenous communities with high endemic
gonorrhoea prevalence and where the availability of culture is declining. As treatment-resistant
gonorrhoea is uncommon in these communities, many aspects of this study are necessarily
hypothetical. However, our results indicate that AMR surveillance would be enhanced by the
use of a molecular resistance test at diagnosis by enabling more timely detection of resistance
and more targeted treatment. Additional AMR surveillance data gained from the use of a
molecular test would also enhance our understanding of the dynamics of emergence and
spread of treatment-resistant gonorrhoea, facilitate additional refinement of this and other
models of AMR, and inform the design of preparedness and prevention strategies for this
imminent threat.
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