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Abstract

Current high-resolution imaging techniques require an intact sample that preserves spatial
relationships. We here present a novel approach, “puzzle imaging,” that allows imaging a
spatially scrambled sample. This technique takes many spatially disordered samples, and
then pieces them back together using local properties embedded within the sample. We
show that puzzle imaging can efficiently produce high-resolution images using dimensional-
ity reduction algorithms. We demonstrate the theoretical capabilities of puzzle imaging in
three biological scenarios, showing that (1) relatively precise 3-dimensional brain imaging is
possible; (2) the physical structure of a neural network can often be recovered based only
on the neural connectivity matrix; and (3) a chemical map could be reproduced using bacte-
ria with chemosensitive DNA and conjugative transfer. The ability to reconstruct scrambled
images promises to enable imaging based on DNA sequencing of homogenized tissue
samples.

Introduction

Many biological assays require the loss/destruction of spatial information of samples, making it
difficult to create a high-resolution image of cellular properties. As a prime example, determin-
ing genetic properties of a biological sample usually requires breaking apart that sample for
DNA sequencing (but see [1]). This limits the resolution of an image of genetic content to the
precision of tissue sectioning prior to sequencing. Along with determining gene expression,
researchers are attempting to use genetic information to determine neural connectivity [2],
neural activity [3], other cellular properties [4], and chemical concentrations [5]. Being able to
image these types of properties at high resolution and large scale could therefore lead to
expanded measurement and recording applications. This would be possible if we could recover
spatial information post hoc.
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In order to recover a sample’s spatial information, information about its relative spatial
location could be embedded and utilized. For example, imagine that each piece of genetic infor-
mation was attached to a puzzle piece (the embedded relative spatial information; Fig 1A).
While the puzzle pieces by themselves don’t provide spatial information, fitting the pieces
together would lead to a spatially correct image of the genetic information. Thus, the use of rel-
ative spatial information (how the puzzle pieces’ locations relate to one another) could allow
for higher-resolution imaging.

Using relative spatial information to reconstruct an image can be thought of as a dimension-
ality reduction problem. If there are N puzzle pieces, one can construct an N x N similarity
matrix S, where S;; determines how close puzzle piece i and j are (higher similarity means
shorter distance; Fig 1B). The goal is to map this high dimensional similarity matrix to accurate
2- or 3-dimensional locations of each piece (Fig 1C). Importantly, there is a whole class of
dimensionality reduction methods that aims to preserve high dimensional distances in the
reduced dimension (e.g. [6-8]). These types of techniques would allow a “piecing of the puzzle
back together.”

Here, we propose “puzzle imaging,” and develop two dimensionality reduction algorithms
that would allow large-scale puzzle imaging. We describe three concrete examples in which
puzzle imaging would be beneficial: (1) “Neural Voxel Puzzling,” in which a relatively high-res-
olution 3-dimensional brain map is reproduced by giving DNA barcodes to neurons; (2) “Neu-
ral Connectomics Puzzling,” in which neural connections are used to recover neural locations;
and (3) “Chemical Puzzling,” in which a chemical map could be reproduced using bacteria
with chemosensitive DNA and conjugative transfer. Each of these examples leverage the faster-
than-Moore’s law advances in both the cost and speed of genetic sequencing [9], and therefore
are likely to become more relevant as this “genetic revolution” proceeds. In each example, we
use our algorithms on simulated data, and provide a preliminary demonstration of the capabili-
ties of puzzle imaging.

Results
Neural Voxel Puzzling

Overview. The purpose of neural voxel puzzling is to create a 3-dimensional image of the brain
at high resolution. This image could provide useful neuroanatomical information by itself, or
could be used in conjunction with other technologies to determine the locations of genetically
encoded neural properties in the brain [10].

The first step in voxel puzzling is to label each neuron in the brain with a unique DNA or
RNA barcode throughout its entire length (Fig 2A). Ongoing research aims to tackle this chal-
lenge [2, 11, 12]. Recently, researchers have succeeded in having bacteria generate a large diver-
sity of barcodes in vivo [11]. Next, the brain is shattered into many voxels (Fig 2B; note that
voxels are only squares for simplification), and the DNA in each voxel is sequenced, yielding a
record of which neurons were in which voxels. This provides us with relative spatial informa-
tion about voxel placement: voxels that share more neurons will likely be closer to each other.
We can use this relative spatial information to puzzle the voxels into their correct locations.

Dimensionality Reduction. More formally, puzzling together the brain is a dimensionality
reduction problem, with each voxel represented by an N-dimensional object, where N is the
number of neurons. Dimension k corresponds to neuron k being in that voxel (Fig 2C). These
N-dimensional voxels must be mapped to their correct 3-dimensional coordinates (or 2 dimen-
sions in Fig 2’s simplified example). This can be done because voxels that are closer in
3-dimensional space will have more neurons in common, and thus will be more similar in N-
dimensional space. With the knowledge of the similarity between all pairs of voxels, we can

PLOS ONE | DOI:10.1371/journal.pone.0131593 July 20, 2015 2/23



@’PLOS ’ ONE

Puzzle Imaging

A

£,/ \&
&
!

B Puzzle Piece
1 2 3 4

5 =z
s Auepuis &

Puzzle Piece

< 2

!
'8

3‘@&%4

Fig 1. Puzzle Imaging. There are many properties, such as genetic information, that are easier to determine
when the original spatial information about the sample is lost. However, it may be possible to still image these
properties using relative spatial information. (A) As an example, let us say that each piece of genetic
information is attached to a puzzle piece. While the puzzle pieces don’t provide absolute spatial information,
they provide relative spatial information: we know that nearby pieces should have similar colors, so we can
use color similarity to determine how close puzzle pieces should be to one another. (B) We can make a
similarity matrix of the puzzle pieces, which states how similar the puzzle pieces’ colors are to each other, and
thus how close the pieces should be to one another. (C) Through dimensionality reduction techniques, this
similarity matrix can be used to map each puzzle piece to its correct relative location.

doi:10.1371/journal.pone.0131593.g001

create a similarity matrix (Fig 2D) and then puzzle the voxels back together (Fig 2E). Without
any additional information, it is impossible to know exact locations; only the relative locations
of voxels can be known. Thus, the output could be a flipped or rotated version of the input (Fig
2E). That being said, additional information could be used to correctly orient the reconstruc-
tion. For example, the overall shape could be matched for a sample that is asymmetric (like the
brain), or a few samples with known locations could act as landmarks.

In order to convert the knowledge of which neurons are in which voxels (Fig 2C) to a recon-
structed puzzle (Fig 2E), a dimensionality reduction algorithm is needed. We demonstrate the
performance of two algorithms that are promising for large-scale problems. The first is a
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Fig 2. Neural Voxel Puzzling Overview. (A) An example of 6 “neurons” (lines) going through 4 voxels. Each neuron has a unique DNA barcode (here color).
(B) These voxels are broken apart. (C) A coincidence matrix, X, is constructed describing which neurons are in which voxels. Gray signifies that a neuron is in
a particular voxel. (D) A similarity matrix is constructed describing how many neurons a pair of voxels has in common. This matrix can be calculated as XX".
(E) The voxels are puzzled back together. The reconstruction may be rotated or flipped, as shown here.

doi:10.1371/journal.pone.0131593.9002

variant of Diffusion Maps [8], which uses a sparse similarity (affinity) matrix instead of the
standard calculation. We will refer to this method as Sparse Diffusion Maps, or SDM. The sec-
ond is a variant of Landmark Isomap [13, 14], which is faster for unweighted graphs (binary
similarity matrices). We will refer to this method as Unweighted Landmark Isomap, or ULL In
the below simulations, we use 10 landmark points. For the full algorithms, see Methods.

Performance. We tested the ability of both dimensionality reduction algorithms to deter-
mine the locations of 8000 simulated voxels of varying dimensions. Voxels were not confined
to be cubes; they could be any shape. In our simplistic simulations, our “neurons” were long
rods with cross-sectional areas of 1 pmz (about the size of an axon [15]) and were assumed to
fully go through each voxel they entered. We set the total number of neurons in our simula-
tions so that they would fill voxels of the chosen size. Neurons were oriented within the volume
at randomly determined angles. See Methods for simulation details.

In our simulations, we used two metrics to determine the quality of the reconstruction. The
first metric was the mean error in distance across all voxels. Because the final reconstruction
will be a scaled, rotated, and reflected (flipped) version of the initial voxel locations, we first
transformed (scaled, rotated, and reflected) the final reconstruction to match the original voxel
locations. We used the transformation that minimized the mean error.

Another metric we used is the correlation coefficient (R value) of the plot of reconstructed
distances between all points against their true distances. This metric determines how well rela-
tive distances between points are preserved, and does not depend on any transformations fol-
lowing the reconstruction. A perfect reconstruction (ignoring differences in scaling, rotation,
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and reflection) would have a linear relationship between the true and reconstructed distances,
and thus an R value of 1.

We first tested both methods on simulations with voxels with average sides of 5 um
(Fig 3A). The SDM method led to a faithful reconstruction, with the exception that the recon-
structed voxels tended to be overrepresented around the outside of the cube and underrepre-
sented in the middle. The ULI method also leads to a faithful reconstruction (Fig 3B).

We next tested both methods of reconstruction while varying the voxel size (Fig 3C, 3D,
3E). While voxels could be any shape, for ease of understanding, we report voxel sizes as the
edge length of the cube corresponding to the average voxel size. For most voxel sizes, ULI leads
to a slightly more accurate reconstruction than SDM. In general, when looking at the error in
terms of absolute distance, using smaller voxels increases possible resolution. As an example of
the excellent resolution that can be achieved, both methods achieve mean errors below 6 um
using an average voxel size of 3 um (Fig 3E).

Finally, we tested the performance of puzzle imaging when removing a fraction of the vox-
els. We did this because in real neurons, there are cell bodies that would fill multiple voxels.
These voxels would not add any information to puzzle reconstruction, so we exclude them to
simulate the existence of cell bodies. Moreover, this generally simulates the robustness of neu-
ral voxel puzzling to missing data. In these simulations, we used a voxel size of 5 um (Fig 3F,
3G). For both methods, when no voxels were removed, the average mean error rate was below
2 voxels. The average mean error rate was still below 2.5 voxels when 60% of the voxels were
removed. This demonstrates that these methods are robust to missing voxels (cell bodies).

Neural Connectomics Puzzling

Overview. The purpose of neural connectomics puzzling is to estimate the locations of neurons
based on their neural connections. There is ongoing work to provide a unique DNA barcode to
every neuron and link those barcodes when neurons are synaptically connected [2]. This DNA
could later be sequenced to determine all neural connections. For this proposed technology, it
would be useful to know the locations of connected neurons, rather than simply knowing that
two neurons are connected.

The first steps in connectomics puzzling are to label each neuron in the brain with a unique
DNA barcode and label neural connections via the pairing of barcodes (Fig 4A). One proposed
method would be to have viruses shuttle the barcodes across synapses, where they can be inte-
grated [2]. Other techniques for creating, pairing, and transporting barcodes have been pro-
posed [10, 16]. Next, the brain is homogenized, and the DNA barcode pairs are sequenced,
yielding a record of which neurons are connected (Fig 4B).

Dimensionality Reduction. Each neuron can be treated as an N-dimensional object, where
N is the number of neurons. Each dimension corresponds to a connection with a given neuron
(Fig 4C). These N-dimensional neurons must be mapped to their correct 3-dimensional coor-
dinates (or 2 dimensions in Fig 4’s simplified example). This can be done because neurons are
more likely to be connected to nearby neurons (e.g. [17, 18]), and thus we can treat the connec-
tivity matrix as a similarity matrix. Using this similarity matrix, we can then puzzle the neurons
back into place (Fig 4D). As with voxel puzzling, it is impossible to know exact locations with-
out any additional information; only the relative locations of neurons can be known (Fig 4D).

In order to convert the knowledge of which neurons are connected (Fig 4C) to a recon-
structed puzzle (Fig 4D), we used SDM, which we previously used for Neural Voxel Puzzling.
See Algorithm Comparison: for an explanation on why ULI will not work for Neural Connec-
tomics Puzzling.
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Fig 3. Neural Voxel Puzzling Performance. (A) On the left, an example reconstruction of voxel locations using the SDM method. Colors are based on initial
locations: those with a larger initial x location are redder, while those with a larger initial y location are bluer. In the middle, a 2-dimensional slice through
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reconstructed volume. The distance errors are calculated following scaling and rotating the reconstructed volume to match the original volume. On the right,
one metric for the accuracy of reconstruction is shown by plotting the reconstructed distances between all points against their true distances for the
reconstruction in this panel. The mean plus/minus the standard deviation (shaded) is shown. A perfect reconstruction would be a straight line, corresponding
to an R value of 1. (B) Same as panel A, except an example reconstruction using the ULI method. (C) R values for simulations using the SDM method (blue)
and ULI method (red), as a function of the voxel size. While voxels were not confined to be cubes, for ease of understanding, we report voxel sizes as the
edge length of the cube corresponding to the average voxel size. Error bars represent the standard deviation across simulations in each panel. (D) Mean
distance errors in voxels for both methods as a function of the voxel size. (E) Mean distance errors in microns for both methods as a function of the voxel size.
(F) Voxels are removed to represent voxels that do not contain location information (such as voxels that contain a single cell body). R values for simulations
using both methods are plotted as a function of the percentage of voxels removed. (G) Mean distance errors are plotted as a function of the percentage of
voxels removed.

doi:10.1371/journal.pone.0131593.9003
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Fig 4. Neural Connectomics Puzzling Overview. (A) An example of 9 connected neurons (circles). Lines
signify connections. (B) After the brain is homogenized, the only remaining information is a record of the
connections. Connections are shown here as adjacent circles. (C) A connectivity matrix is constructed
describing the connections between neurons. Gray signifies a connection. Since connections are correlated
with how close neurons are to one another, this connectivity matrix can be treated as the similarity matrix. (D)
The neurons are puzzled back together. The formation may be rotated or flipped, as shown here.

doi:10.1371/journal.pone.0131593.g004
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Performance. We tested the ability of connectomics puzzling to determine the locations of a
simulated network of neurons. Hellwig [17] described the probability of connections as a func-
tion of distance between pyramidal cells in layers 2 and 3 of the rat visual cortex. We simulated
8000 neurons in a 400 pm edge-length cube (so they were on average spaced ~ 20 pum apart
from each other in a given direction). Connections between neurons were randomly determined
based on their distance using the previously mentioned probability function (Fig 5E).

We first simulated only connections within layer 3. As our example simulation shows (Fig
5A), the locations of neurons were able to be estimated very accurately. As with voxel puzzling,
we use mean error and R values to describe the quality of reconstruction, although now the dis-
tance is between neurons rather than between voxels. Next we simulated connections between
layers 2 and 3; in our simulation, half of the neurons were in layer 2 and half were in layer 3. In
an example simulation (Fig 5B), it’s clear that the locations of neurons could still be estimated
accurately. In fact, the reconstruction clearly separated the neurons from the two layers.

Looking quantitatively at the differences between layer 3 reconstructions and layer 2/3
reconstructions, R values are slightly higher, and mean errors are slightly lower for layer 3
reconstructions. Median R values across simulations are 0.97 vs. 0.91 (layer 3 vs. 2/3), and
median mean errors across simulations are 19 um vs. 42 um (Fig 5C, 5D). This disparity is
largely due to the gap between layers in the reconstructions (Fig 5B); reconstructions within
each layer are as accurate (in terms of R values) as the layer 3 reconstruction.

Next, in order to test when connectomics puzzling would be useful, we tested how recon-
struction is dependent on the parameters of the connection probability distribution. For these
simulations, we assumed the layer 3 connection probability distribution, and then changed
either the baseline connection probability (the connection probability at a distance of 0) or the
standard deviation of the connection probability distribution. There was a great improvement
in reconstruction accuracy when the baseline probability increased from 0.10 to 0.15, and accu-
racy continued to increase until a baseline probability of 0.35, where it plateaued (Fig 5F). In
general, there are high accuracy reconstructions for a wide range of baseline probabilities, with
the exception of low probabilities.

When looking at the effect of the standard deviation of the probability distribution, there
was a general trend that reconstruction accuracy decreased as the standard deviation increased
(Fig 5G). This is because connections become less closely related to distances when the stan-
dard deviation increases. For example, if the standard deviation was infinite so that the proba-
bility of connection was the same for all distances, then knowing the connections would no
longer allow us to infer the distances between neurons.

One notable exception from the above trend is that there is a low reconstruction accuracy
for the smallest standard deviations considered (50-100 pm). We have found that the algo-
rithm does not work well in connectomics puzzling when the connection matrix is far too
sparse. When we use a cube with 200 um edges and 1000 neurons instead of 400 um edges and
8000 neurons (the same neuronal density), simulations with a 50 um standard deviation per-
form very well. Thus, it’s important to note that the quality of reconstruction will depend on
the size of the cube being used.

Chemical Puzzling

Overview. Puzzle imaging has a number of potential applications besides neuroscience, includ-
ing some that are potentially more tractable and therefore may have a higher probability of
being implemented in the near future. One example we develop here is that of reconstructing
spatial chemical environments from populations of recording cells that have been mixed, a pro-
cess we call “chemical puzzling.”
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Fig 5. Neural Connectomics Puzzling Performance. (A) On the left, an example reconstruction of neural locations based on a simulation of connections of
pyramidal cells in layer 3 of cortex. Colors are based on initial locations: those with a larger initial x location are more red, while those with a larger initial y
location are more blue. The distance errors are calculated following scaling and rotating the reconstructed volume to match the original volume. In the
middle, a 2-dimensional slice through reconstructed volume. On the right, one metric for the accuracy of reconstruction is shown by plotting the
reconstructed distances between all points against their true distances for the reconstruction in this panel. The mean plus/minus the standard deviation
(shaded) is shown. A perfect reconstruction would be a straight line, corresponding to an R value of 1. (B) Same as panel A, except based on an example
simulation of pyramidal cells in both layers 2 and 3 of cortex. (C) Boxplots of R values for layer 3 simulations, and layer 2/3 simulations. The 5 lines (from
bottom to top) correspond to 5%, 25%, 50%, 75%, and 95% quantiles of R values across simulations. (D) Boxplots (as in panel C) of mean errors across
simulations. (E) The probability of connection as a function of distance between pyramidal cells, which is used in the simulations of the other panels [17]. (F)
Using the parameters of the connectivity probability distribution of layer 3, the baseline connection probability (the probability of connection at a distance of 0)
of the connectivity distribution is changed. R values and mean errors are shown as a function of this baseline probability. Error bars represent the standard
deviation across simulations in this and the next panel. (G) Using the parameters of the connectivity probability distribution of layer 3, the standard deviation
of the connectivity distribution is changed. R values and mean errors are shown as a function of the standard deviation.

doi:10.1371/journal.pone.0131593.9005

One example of a chemical puzzling assay would consist of the initial spreading of many
“pioneer” cells across an environment containing a heterogeneous distribution of a particular
chemical (Fig 6A, 6B). These pioneer cells would be endowed with the ability to detect the pres-
ence of that chemical and to record its concentration into a nucleotide sequence. This could be
done through molecular ticker-tape methods using DNA polymerases [3, 19, 20], similar strat-
egies using RNA polymerases, or other mechanisms [4, 5, 21, 22], for example involving chemi-
cally-induced methylation or recombination.

Some pioneer cells would also be given the ability to share genetic information with other
cells—in the case of prokaryotes, this could be by the introduction of barcoded F-like plasmids
encoding the components essential to conjugative transfer of the plasmid [23]. The pioneer
cells would be placed at random places within the chemical environment (Fig 6B), and would
then begin to grow outwards (Fig 6C). When the colonies become large enough to contact
neighboring colonies, those that contain the F-plasmid (or equivalent), denoted F*, will copy it
and transfer it to those without it (F~) (Fig 6D). We can think about the F-plasmid transfer
between the colonies descended from two pioneer cells as these two pioneer cells becoming
“connected” (just like a neural connection in the previous section). This sharing of genetic
information provides information about which pioneer cells are close to each other, which can
then be used to reconstruct where each cell was spatially.

Again, note that a benefit resulting from this strategy is that the spatial information can be
destroyed and reconstructed post hoc. In terms of this example, this would be equivalent to wip-
ing the surface that the bacteria are growing on and reconstructing its chemical spatial informa-
tion after sequencing, in “one pot.” Preparation of the DNA for sequencing could also be done in
one pot, i.e. all of the cells could be lysed and the DNA extracted at one time, if the genetic mate-
rial carrying the connection information and the chemical information were physically linked
(e.g. if a barcode on the F-plasmid were inserted into the chemical record region of the recipient
cell’s genetic information). Otherwise, amplification of the connection information and the
chemical record could be done on each cell using emulsion-based methods [24].

Dimensionality Reduction. Each pioneer cell can be thought of as an N-dimensional
object, where N is the number of pioneer cells. Each dimension corresponds to a connection
with another pioneer cell (whether the pioneer cell’s descendants are involved in a conjugative
transfer with another pioneer cell’s descendants) (Fig 6E). These N-dimensional cells must be
mapped to their correct 2-dimensional coordinates. This can be done because pioneer cells will
be more likely to be connected to nearby pioneer cells. We construct a similarity matrix by
determining all cells two connections away. This is because the matrix of connections doesn’t
directly provide accurate information about how close the pioneer cells are to each other, as
F’s can’t be connected to F’s (and same for F™’s). The matrix of mutual connections allows

PLOS ONE | DOI:10.1371/journal.pone.0131593 July 20, 2015 10/283
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Fig 6. Chemical Puzzling Overview. (A) An example area contains a chemical whose concentration is
represented by a grayscale value. (B) Pioneer cells (X’s and O’s, each with a different color) are put on the
plate. X’s represent F* cells that can transfer an F-plasmid into an F~ cell (O’s). (C) The pioneer cells replicate
and spread. Descendants of a pioneer are shown in the same color. (D) When the cell colonies become large
enough to contact neighboring colonies, the F* cells (X’s) will copy the F-plasmid and transfer it to the F~ cells
(O’s). This is shown as the X’s color filling in the center of the O’s. In the inset (below), the F-plasmid transfer
(conjugation) is shown. (E) The DNA is sequenced to determine which pioneer cells are “connected” (which
had a conjugative transfer occur between their colonies). A connectivity matrix is made from this data. (F) The
matrix of connections doesn’t directly provide accurate information about how close the original cells are to
each other because O’s can’t be connected to O’s (and same for X’s). As our similarity matrix, we thus use
the matrix of mutual connections, which allows O’s to be connected to O’s. (G) The location of the original
cells is estimated from the matrix in panel F. (H) The chemical concentrations at each of the original cells
locations is known as the cells’ DNA acts as a chemical sensor. (I) The chemical concentration everywhere is
extrapolated based on the chemical concentrations at the known pioneer cells.

doi:10.1371/journal.pone.0131593.g006

F7’s to be connected to F~’s. With the knowledge of the similarity between all pairs of pioneer
cells, we can puzzle the pioneers back into place (Fig 6G). The chemical recording functionality
of the cells then allows the chemical environment to be determined at the locations of the pio-
neer cells (Fig 6H), and extrapolated beyond (Fig 6I).

In order to convert the knowledge of the similarity between cells (Fig 6F) to a reconstructed
puzzle (Fig 6G), a dimensionality reduction algorithm is needed. Here we use Unweighted
Landmark Isomap, as we used in Neural Voxel Puzzling, with only 5 landmark points. See
Algorithm Comparison: for an explanation on why SDM will not work well for Chemical
Puzzling.
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Performance. To further demonstrate the potential for chemical puzzling, we performed a
simulation of the chemical puzzling problem. We used a complex chemical concentration
described by the letter “P” (for Puzzle Imaging), with the concentration also decreasing when
moving outwards from the center, and a constant background concentration (Fig 7A). The
image size is 1000 x 1000 pixels, and each pixel is 1 pmz (about the size of a cell [25]). The cor-
responding size of the letter, then, is about 600 um x 800 pm. Each pioneer cell is randomly
placed on a single pixel.

We simulated the placement and growth of thousands of pioneer cells in that environment
(Fig 7B, 7C). Each cell synthesized a DNA element in which the percentage GC composition of
the synthesized DNA was proportional to the chemical concentration at that spot. We were
able to successfully reconstruct the letter “P” in the image (Fig 7B, 7C), though this was depen-
dent on the number of pioneer cells used and the length of the incorporated DNA element.
Fewer pioneer cells resulted in a decrease in the spatial resolution, whereas the dynamic range
greatly increased with longer DNA incorporations (Fig 7B, 7C). When only two base pairs are
used, the background concentration and the concentration decrease away from the center were
unable to be accurately detected. With 50 base pairs, the chemical concentrations were recon-
structed very accurately.

Lastly, the above simulations assumed that when a F* and F~ cell are in contact, transfer of
genetic information occurs 100% of the time, which would likely not occur [26]. Still, relatively
faithful chemical reconstruction was accomplished with conjugation efficiencies as low as 30%
(see S1 Fig and S1 Text). Overall, this technique holds the potential to determine chemical con-
centrations at very high resolution.

Discussion

Here we proposed the concept of puzzle imaging. We developed two possible large-scale non-
linear dimensionality reduction algorithms for use in puzzle imaging, and demonstrated some
of puzzle imaging’s abilities and weaknesses in three possible applications. Using simplistic
simulations, we showed that voxel puzzling may allow locating neural structures within about
10 pm. In regards to connectomics puzzling, knowing only the connections between neurons
within a layer of cortex could be sufficient to localize neurons within about 20 pm. We also
showed that chemical puzzling could be used to accurately determine chemical concentrations
at a resolution well below 1 mm. Lastly, we describe how Sparse Diffusion Maps is faster than
Diffusion Maps, and Unweighted Landmark Isomap is faster than Isomap (see Methods).

Potential Uses of Puzzle Imaging

For neuroscience, puzzle imaging could be a scalable way to localize important molecular infor-
mation within the brain. Neuronal RNA/DNA barcodes could be annotated with additional
molecular information [10, 16]. For example, molecular ticker tapes have been proposed that
would record the activity of a neuron into DNA [3, 19, 20]. It would be very valuable to know
the location of the neurons that are being recorded from. Additionally, RNA that is being
expressed could be annotated to the barcodes. This could provide information about what
genes are being expressed in different locations of the brain, or about the distribution of cell
types throughout the brain. If engineered cells capable of recording and/or stimulating adjacent
neurons can circulate in and out of the brain, the concepts outlined here might help achieve
input/output to many/all neurons without surgery.

The applications of chemical puzzling go beyond that of determining the chemical composi-
tion of bacterial cells growing on a surface. Indeed, biology often has the ability to survive and
thrive in the harshest of environments, including spaces too small or desolate for even robotic
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A Initial Chemical
Concentration

B Initial Cell C Initial Cell
Density=1% Density=0.1%
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Fig 7. Chemical Puzzling Performance. (A) The chemical concentration across the plate. It is described by

the letter “P,” with the concentration decreasing moving outwards from the center, and a constant background
concentration. (B) A simulation is done with an initial cell density of 1%. (C) A simulation is done with an initial

cell density of 0.1%. For panels B and C, the top row shows the initial locations of the pioneer cells. They are

color-coded by location. The second row shows example reconstructed locations of the pioneer cells. The
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third row shows the reconstructed chemical concentrations when 50 base pairs are used to detect the
concentration. The bottom row shows the reconstructed chemical concentrations when 2 base pairs are
used to detect the concentration. Note that the black border represents regions of unknown concentration.

doi:10.1371/journal.pone.0131593.g007

access. Biological sensing and recording can open these areas to characterization and perhaps
utilization. Applications could include those in the fields of geology (in which the composition
of fractured geologic strata, which contain millions of microscopic cracks and pores, can be
assayed) and medicine (in which the composition of the complex biological environments of,
for example, the gastrointestinal tract, can be assayed).

Simulation Limitations

In all our simulations, we made simplifications in order to provide a preliminary demonstra-
tion of the feasibility of puzzle imaging. In neural voxel puzzling, our simulations assumed that
there were equal neuronal densities across the volume and that neurons were oriented at ran-
dom angles. In neural connectomics puzzling, our simulations used a maximum of two neuro-
nal layers, and assumed that connection probability distributions did not differ within a layer
(although in reality there are different cell types [27]). For both of these neuroscience examples,
reconstruction errors due to these simplifying assumptions could likely be remedied by using
previously known neuroanatomical information (e.g. the orientation of axons in a brain
region) or molecular annotations (e.g. about whether a barcode is in an axon or dendrite, or
about cell type [28]). In chemical puzzling, our simulations assumed that cells were stationary,
and we used a simple model of outward cellular growth. For locations with viscous flow or rap-
idly moving cells, complex cell growth and movement models would be necessary to achieve
accurate reconstructions.

For a more in-depth discussion of limitations for all simulations, see S2 Text.

Algorithms

In this paper, we demonstrated two algorithms that could be used for puzzle imaging. Refine-
ments of the presented algorithms would be beneficial for puzzle imaging (to overcome the
limitations in Results). For instance, a different metric could be used to create the similarity
matrix in both methods. In addition, the number of landmark points in Unweighted Landmark
Isomap can be optimally tuned for the specific use. Moreover, novel algorithms for large-scale
nonlinear dimensionality reduction would be beneficial for more accurate puzzle imaging
reconstruction.

While the algorithms presented here were designed for puzzle imaging, they could be gener-
ally used as faster versions of Diffusion Maps and Landmark Isomap for large problems. Both
methods can preserve relative locations when reconstructing a swiss roll or helix, classical tests
of nonlinear dimensionality reduction techniques. Further research needs to be done to see
how these methods compare to traditional methods for other applications.

Conclusion

Here we have provided a preliminary demonstration that puzzle imaging may be possible. In
order to make puzzle imaging a reality, significant biological work still needs to be done. For
example, having location or neuron specific barcodes would be needed to make the
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Table 1. Sparse Diffusion Maps Algorithm.
Sparse Diffusion Maps Algorithm

Step Efficiently create a sparse, symmetric, nonnegative, similarity matrix, S that is a connected graph.
1 Methods used to create S in our applications follow.

Step Create matrix M by normalizing S so that each row sums to 1. Thatis, M= D" S, where D is a
2 diagonal matrix with D;; = >°S;;
j
Step Find the k+1 largest eigenvalues e, . . ., ex.1 of M and their corresponding eigenvectors vy, .. ., Vi
3 +1- Each eigenvector is N-dimensional.
Step The final k-dimensional positions of the N points are the N rows in [ex Vo, . . ., €41 Viki1]-
4

doi:10.1371/journal.pone.0131593.t001

neuroscience puzzle imaging approaches possible. We hope that this paper will inspire experi-
mentalists and theoreticians to collaborate to help make puzzle imaging a reality.

Methods
Sparse Diffusion Maps Algorithm

Sparse Diffusion Maps is the same as the standard Diffusion maps algorithm [8] when using 1
timestep, except we here use a sparse similarity matrix. Thus, in the below algorithm, only step
1 differs from standard Diffusion maps. The algorithms take N high-dimensional points, and
reduce each point to k dimensions (where k is 2 or 3 in our applications). The algorithm follows
in Table 1.

Unweighted Landmark Isomap Algorithm

Unweighted Landmark Isomap is based on Landmark Isomap [13, 14]. The most important
change is that we compute geodesic distances more efficiently due to our graph being
unweighted (Step 3). Additionally, we create the similarity matrices uniquely for each applica-
tion (Step 1). All other steps are identical to Landmark Isomap. The algorithm follows in
Table 2.

Note that the method of constructing the similarity matrix (Step 1) and the number of land-
mark points (Step 2) are user options within this algorithm. We discuss our choices for these
steps for our applications below.

Neural Voxel Puzzling

Similarity Matrix. Let X be an n x p (voxels x neurons) coincidence matrix that states which
neurons are in which voxel. To construct the similarity matrix, we first compute A = X X’, an
n x n matrix that gives the similarity between voxels. We then threshold this matrix (an
approximate nearest neighbors calculation). Thresholding makes the matrix more sparse (ben-
eficial for SDM), and makes points not connected to far-away points (important for increasing
resolution in ULI). We use different thresholding methods prior to ULI and SDM. The specific
thresholding methods below are what we used for our simulations; the method of thresholding
is a tunable parameter.

For ULI, we threshold each row independently. The threshold for a row is the maximum of
that row divided by 2. That is, for row i, T, = ; max A, where A;; is the element of A in row i

J
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Table 2. Unweighted Landmark Isomap Algorithm.

Unweighted Landmark Isomap Algorithm

Step 1 Efficiently create a sparse, binary, symmetric, similarity matrix, S that is a connected graph.
Methods used to create S in our applications follow.

Steps These steps select a landmark point (Step 2) and then calculate the distance from all points to

2&3 that landmark point (Step 3). In total, we will select ¢ landmark points, so these steps will be

repeated in alternation £ times.

Step 2 Select a landmark point. We do this in the following way (MaxMin algorithm from [13]):The first
landmark point is selected randomly. Each additional landmark point is chosen in succession
in order to maximize the minimum distance to the previously selected landmark points. In other
words, for every point i, we calculate the minimum distance m; to all the previously selected
landmark points (indexed by j): m; = min y,;, where y;; is the calculated geodesic distance

/

between the points in Step 3. We then choose the point that has the largest minimum distance:
landmark = max m;.

Step 3 Calculate the geodesic distance from all N points to the previously selected landmark point.
The geodesic distance y;; from point j to landmark point j is the number of steps it would to get
from point i to landmark point j in the graph of S. This can be calculated efficiently using a
breadth first search (as opposed to using Dijkstra’s algorithm) because S is an unweighted
graph.

Step 4 Use classical multidimensional scaling (MDS) [6] to place the landmark points. This means that
the points are placed in order to minimize the sum squared error between the Euclidean
distances of the placed landmark points and their known geodesic distances. This is done in
the following way [13, 14]:Let A’ be the matrix of squared geodesic distances between all the
landmark points. Let y; be the mean of row i of A? and i be the mean of all entries of A”. Create
the matrix B with entries B; = (AT, - Uj — Mk + u. Find the first (largest) k eigenvalues and
eigenvectors of B. Let V;; be the /" component of the / eigenvector. Let A, be the /"
eigenvalue. The matrix L has the coordinates of the landmark points in its columns. L has the
entries L; =V, - \/4,.

Step 5 For each point, triangulate its location using the known geodesic distances to each of the
landmark points. This is done in the following way [13, 14]:Let L#,._l. = V"{v, and let A be the
matrix of squared geodesic distances between the landmark points and all points. The position
of point a, x,, is calculated by x, = —1L"(( A, — A %)), where A, is row a of the matrix A (the
squared geodesic distances from point a to all the landmark points), and A’ is the column
mean of the matrix A,

doi:10.1371/journal.pone.0131593.t002

and column j. After thresholding, the entries of the non-symmetric similarity matrix are N;; =
Aj; > T;. We create a symmetric unweighted similarity matrix: § = (N + N') > 0.
For SDM, the entire matrix is thresholded by the same value. We first create a vector w that

contains the maximum of each row of A. Its entries are w; = max A . The threshold is the
i

minimum of w. That is, T'= min w. Thresholding all entries, we get S=A > T.

Simulations. For our simulations, we initially chose the average voxel size. If the average
voxel had a volume of x* um”, we reported the voxel size as x i (the length of an edge of a cube
of comparable size). We next created a cube with edges of length 20x pm (so it had a volume of
8000x” um?). We then randomly placed 8000 voxel centers in the cube. We next added in long
rectangular prisms (neurons) so that the entire volume would be filled. We assumed the neu-
rons fully went through each voxel they entered. As the cross-sectional area of a voxel was on
average x~ um’, and we assumed neurons with cross-sectional areas of 1 um” (about the size of
an axon), we added enough neurons so that each voxel would contain x* neurons. Neurons
were oriented within the volume at randomly determined angles.

When doing simulations with removed voxels, we placed voxels and neurons in the regular
way. Then, we discarded voxels and aimed to reconstruct the locations of the other voxels. The
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R values and mean errors listed are for the voxels that were reconstructed (removed voxels
were not included in the analysis).

Additionally, in our simulations, voxels that did not contain any neurons, or that did not
share any neurons with another voxel, were excluded from analysis. When voxels were 2 pm,
3 um, 4 pm, and 5 pm, 2.8%, 0.14%, 0.0046%, and 0.0003% of voxels were respectively
excluded. Also, when removing voxels (Fig 2F, 2G), we excluded the remaining voxels that did
not make up the main connected component of the similarity graph. When using ULI, when
80%, 85%, and 90% of voxels were removed, 0.36%, 1.7%, and 34.7% of remaining voxels were
excluded from analysis. When using SDM, when 80%, 85%, and 90% of voxels were removed,
0.05%, 0.09%, and 0.37% of remaining voxels were excluded from analysis.

In our simulations, when using ULI, we used 10 landmark points (see Unweighted Land-
mark Isomap Algorithm above).

Neural Connectomics Puzzling

Similarity Matrix. Let C be an # X #n (neurons x neurons) connectivity matrix that states
which neurons are connected to each other. As mentioned in Results, this connectivity matrix
can be directly used as the similarity matrix.

Simulations. We randomly placed 8000 points (neurons) in a 400 um edge-length cube.
Thus, the neurons were on average ~ 20 um apart from each other in a single direction. We
initially assumed all neurons were pyramidal cells in layer 3 of rat visual cortex and simulated
connections according to the known connection probability distribution as a function of dis-
tance (Fig 5E) [17]. Every pair of neurons was randomly assigned a connection (or not) based
on this probability distribution. Next, we simulated neurons in layers 2 and 3. The top half of
the cube was assumed to be layer 2, and the bottom half was assumed to be layer 3. Again,
every pair of neurons was randomly assigned a connection (or not) based on the relevant prob-
ability distribution (either between layer 2 and 2, layer 2 and 3, or layer 3 and 3; Fig 5E) [17].

Chemical Puzzling

Similarity Matrix. Let C be an #n x n (pioneer cells x pioneer cells) connectivity matrix that
states which pioneer cells are “connected” to each other. The similarity matrix is calculated as
c'c.

Simulations. We randomly placed pioneer cells on a pixel in the 1000 x 1000 pixel image.
The number of pioneer cells was 1 million (the number of pixels) times the initial density, so
10000 in Fig 3B, and 1000 in Fig 3C. Each cell was randomly assigned to be F" or F". We
assumed the cells grew out circularly over time with approximately the same rate of growth.
For every pixel, we determined which colony (progeny from which pioneer cell) would reach
the pixel first. This produced a final map of all pixels assigned to different pioneer cells. On the
borders of colonies, cells could conjugate with one another if one colony was F' and the other
was F~. For each pixel on the border, a conjugation occurred according to the probability of
conjugation (100% probability for Fig 7; varying for S1 Fig). More specifically, any time differ-
ent colonies occupied pixels horizontal or vertical of each other, a conjugation could occur for
the cells in the bordering pixels.

We reconstructed the pioneer cells’ locations using ULI with 5 landmark points (see
Unweighted Landmark Isomap Algorithm above). We assumed that 3 cells were placed on the
plate so that their locations were known. We scaled, rotated, and reflected the reconstructed
locations of the pioneer cells so that the locations of the 3 known cells were matched (the aver-
age distance error was minimized).

PLOS ONE | DOI:10.1371/journal.pone.0131593 July 20, 2015 17/28



@.PLOS ‘ ONE Puzzle Imaging

The chemical concentration on the plate was between 0 and 1. If a pioneer cell was at a loca-
tion with a chemical concentration of p, each base pair has a probability of being a G or C with
probability p. The reconstructed chemical concentration was the total number of G’s and C’s
divided by the number of base pairs. Thus, if there were 2 base pairs, the reconstructed chemi-
cal concentration could be 0, 0.5, or 1. We used linear interpolation to determine the chemical
concentration of areas on the plate that did not have a reconstructed concentration.

We also note that along with our approximate simulation method of outward circular
growth, we also ran a smaller, more realistic, simulation. In this stochastic growth simulation,
during each round, cells randomly divided into any single adjacent unoccupied pixel. When an
F" colony grew next to an F~ colony, or vice versa, cells could conjugate (according to the con-
jugation probability). F~ cells turned F" upon receipt of the F-plasmid from an F* cell. This
growth simulation continued until the plate was full. On smaller plates (when it was less time
consuming to run the realistic simulation), both simulation types produced nearly equivalent
results.

Computational Complexity

Sparse Diffusion Maps. We list the complexity of Step 1 for the individual methods below.
The run-time of this algorithm is dominated by Step 3. For the below complexity explanation,
S is an n x n sparse matrix with m non-zero elements. The complexity of this algorithm is listed
in Table 3.

Unweighted Landmark Isomap. We list the complexity of Step 1 for the individual meth-
ods below. The complexity of this algorithm is listed in Table 4.

Neural Voxel Puzzling. To compute the similarity matrix, we can take a shortcut instead of
performing the sparse matrix multiplication X X" (which will be O(#?) in the best case scenario
[31]). The entries of X X tell us how many neurons are shared between particular voxels. This
can also be calculated by drawing the bipartite graph that X describes, with voxels on one side
and neurons on the other (and edges when a neuron goes through a voxel). For a given voxel,
to determine which voxels it shares a neuron with, we only need to trace all the paths to its con-
nected neurons, and then the paths from those neurons back to voxels. This has a complexity
of O(aiy, - pyr), where o, is the largest number of neurons in a voxel, and a,,,, is the largest
number of voxels a neuron goes through. Thus, for all voxels, the complexity is O(n - ;, -
0Ooy). Determining the similarity matrix can take a comparable amount of time to the steps in
ULI or SDM.

Table 3. Sparse Diffusion Maps Computational Complexity.

Sparse Diffusion Maps Computational Complexity

Step Worst-case Further Explanation

complexity
Step3(and  O(m) This is the complexity for the power iteration algorithm [29], which is
Total) very efficient for solving for a small number of eigenvalues/

eigenvectors. In the power iteration method, the matrix is continually
multiplied by a vector, which has complexity O(m), until convergence.
The number of steps to calculate eigenvalue e; depends on |e/e;.+|: a
larger ratio means quicker convergence. If this was not a sparse
matrix, as is the case for standard Diffusion Maps, then this step
would be O(n?).

doi:10.1371/journal.pone.0131593.t003
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Table 4. Unweighted Landmark Isomap Computational Complexity.

Unweighted Landmark Isomap Computational Complexity

Step  Worst-case Further Explanation
complexity
Step  O(n) [13]
2
Step O(¢-m) A breadth first search has a complexity of O(m). This is done for each of ¢
3 landmark points. If the graph had been weighted (as assumed in standard

Landmark Isomap), then we would need to use Dijkstra’s algorithm. The
fastest general implementation is O(m + n-log n) [30] for each landmark
point, yielding O(f-m + ¢£:n-log n).

Step O [13]
4
Step  O(k-n) [13]
5

Total ~ O@m + k-t:n + £5)
doi:10.1371/journal.pone.0131593.t004

Note that this step is faster than the standard method of computing a similarity matrix in

Diffusion Maps: S,;; = exp(

2
—llxi—x;ll

-3 ), where x; and x; are columns within X. For our sparse
matrices, this would take O(q - n), where ¢ is the number of nonzero entries in X, due to the
pairwise vector subtraction. The Landmark Isomap algorithm does not give a method for com-
puting the similarity matrix.

Neural Connectomics Puzzling. As no computation is required to construct the similarity
matrix, the overall complexity of Neural Connectomics Puzzling is the complexity of the SDM
algorithm.

Chemical Puzzling. As in neural voxel puzzling, we can take a shortcut to calculate the sim-
ilarity matrix instead of performing the sparse matrix multiplication C* C (which would take
O(n?) at best for very sparse matrices [32]). Again, we can construct a bipartite graph repre-
senting C, where the pioneer cells are now on both sides of the graph (and there’s an edge
between connected cells). We can determine if a pioneer cell is connected within 2 steps of
another pioneer cell by counting all the ways to get to the other side of the graph (via connec-
tions) and back to cells on the same side. For a given cell, this has the complexity O(8°), where
B is the largest number of connections a pioneer cell has (how many different cell colonies that
pioneer cell’s colony has conjugated with). Thus, the total complexity of determining the simi-
larity matrix is O(n - ). Determining the similarity matrix can take a comparable amount of
time to the steps in ULL

Additionally, chemical puzzling has the extra step of reconstructing the image of chemical
concentrations. The chemical concentrations are known at the reconstructed locations of the
pioneer cells, but interpolation needs to be used to estimate the concentrations at other loca-
tions. This interpolation step can dominate the total time, depending on the desired resolution
and interpolation method.

Algorithm Comparison: ULl vs SDM

There are pros and cons of both Sparse Diffusion Maps (SDM) and Unweighted Landmark Iso-
map (ULI), which make them suitable for different applications (Table 5).
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Table 5. Algorithm Comparison Summary: ULI vs. SDM.

Pros/Cons Summary

Sparse Diffusion Maps Unweighted Landmark Isomap

Con: Only accurately reconstructs cubes Pro: Can accurately reconstruct non-cubes

Con: Biased towards exterior points Pro: Not biased towards exterior points

Pro: Is robust to problems that have high Con: Is generally not robust to problems that have high
similarity between some far-away points. similarity between some far-away points.

doi:10.1371/journal.pone.0131593.t005

Domain. To run ULL the graph entered into the algorithm must contain only short-range
connections. Practically, ULI will not work when there is high similarity (a large value in the
similarity matrix) between points that are far away from one another. This is because having
high similarity between far away points would make those far away points near each other in
the reconstruction, a problem known as “short circuiting” [33]. This limitation means that neu-
ral connectomics puzzling, which contains long-range connections that are indistinguishable
for short-range connections, is not compatible with ULIL. SDM, on the other hand, is robust to
high similarity values between far-away points, as long as similarity values are generally higher
between nearby points. Thus, SDM does work for neural connectomics puzzling.

Reconstruction Accuracy. Reconstructions using SDM are generally biased towards having
points around the perimeter, and therefore don’t faithfully reconstruct the center of the vol-
ume. This perimeter bias makes the SDM method unsuitable for use in Chemical puzzling.
When used with Chemical puzzling, SDM leads to faulty chemical reconstructions near the
center of the image. For neural voxel puzzling, as seen in our simulations (Fig 3), ULI was
slightly more accurate than SDM, except for when at least 85% of the voxels had been
removed.

Another important note is that the SDM method will only accurately reconstruct the vol-
ume when the volume is a cube (S2 Fig). Thus, for the SDM method to be used in practice with
neural voxel or connectomics puzzling, the brain would need to first be sectioned into cubes,
and then the cubes would need to be pieced together. The ULI method, on the other hand has
the benefit of accurately reconstructing volumes that are not cubes (S2 Fig).

Speed. Both SDM and ULI are designed to be fast dimensionality reduction methods for use
with large datasets. In practice, when directly comparing their speed in the neural voxel puz-
zling simulations using 8000 5 um voxels, SDM took about 1.5 seconds, while ULI (with 10
landmark points) took about 0.9 seconds on a 2.3 GHz processor running Matlab. The previous
times did not include constructing the similarity matrix. See Computational Complexity above,
and Algorithm Time Improvements below, for the computational complexity of larger
problems.

Algorithm Time Improvements

Our algorithms took previous algorithms and adapted them to be faster for large-scale puzzle
imaging.

Sparse Diffusion Maps vs. Diffusion Maps. The difference between Sparse Diffusion Maps
and Diffusion Maps is that we construct a sparse similarity matrix. The most time consuming
step in these algorithms (besides constructing the similarity matrix) is finding the largest k
eigenvalues and eigenvectors, where k is the dimension size you’re projecting into (2 or 3 for
puzzle imaging). This computation will be significantly faster when the similarity matrix is
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sparse. For instance, one fast algorithm, “power iteration,” [29] has a complexity of O(m),
where m is the number of non-zero elements in the similarity matrix S (see Computational
Complexity).

Computing the similarity matrix is the other time consuming step in Diffusion Maps. Let’s
say X is an n x p matrix, and we want to compute the 7 x n similarity matrix S that gives the

similarity between the columns of X. This is generally calculated as S,; = exp (%), where

x; and x; are columns within X. Computing S would have a complexity of O(q - n), where g is
the number of nonzero entries in X (see Computational Complexity).

In our scenarios where we use SDM, we compute a sparse similarity matrix more efficiently.
For neural connectomics puzzling, computing the similarity matrix takes no time, as it simply
describes the connections. For neural voxel puzzling, X X" (the main step of computing the
similarity matrix) can be calculated with a complexity of O(n - @, - &), where @, is the larg-
est number of neurons in a voxel, and a,,, is the largest number of voxels a neuron goes
through (see Computational Complexity). This approach is thus significantly faster than Diffu-
sion Maps for our problem.

Unweighted Landmark Isomap vs. Landmark Isomap. The main difference between ULI
and Landmark Isomap is that ULI uses an unweighted similarity matrix. One of the time-con-
suming steps in Landmark Isomap is computing the geodesic distance between all points and
each of the £ landmark points. For weighted graphs, this can be solved fastest with Dijkstra’s
algorithm in O( - m + € - n - log n) [30]. For unweighted graphs, we can simply use a breadth
first search for each landmark point, which has a complexity of O(€ - m). When we include the
other steps of the algorithm (other than constructing the similarity matrix), Landmark Isomap
has a complexity of O(¢ - m + ¢ - n-logn + k - £ - n + £°), while ULI is faster, with a complexity
of OW-m+k-2-n+10> (see Computational Complexity).

It is important to note that computing the similarity matrices in neural voxel puzzling and
chemical puzzling may take a comparable amount of time as ULI or Landmark Isomap. As
mentioned above, computing the similarity matrix for neural voxel puzzling has a complexity
of O(n - a, - Ayyy). For chemical puzzling, computing the similarity matrix has a complexity of
O(n - %), where B is the largest number of connections a pioneer cell has (how many different
cell colonies that pioneer cell’s colony has conjugated with). Additionally, for chemical puz-
zling, using interpolation to estimate the chemical concentration can be a very time-intensive
step depending on the resolution desired.

Supporting Information

S1 Fig. Chemical Puzzling with Low Conjugation Efficiency. We do a simulation of chemical
puzzling, as in Fig 7B, except now with varying conjugation efficiencies. (A) The original cell
locations (left), and initial chemical concentration (right). (B-E) On the left, the reconstructed
cells, and on the right, the reconstructed chemical concentration, using (B) 100% conjugation
probability, (C) 40% conjugation probability, (D), 30% conjugation probability, and (E) 20%
conjugation probability. The reconstructed chemical concentrations assumed the pioneer cells
had 50 base pairs to encode the concentration. The black area on the outside is a border, not a
chemical concentration.

(TTF)

$2 Fig. Reconstruction of Non-cubes. We do voxel puzzling as in Fig 3A, 3B, with 8000 5 pm
voxels. However, now the overall shape is a rectangular prism (height is half of the length and
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width) rather than a cube. (A) The original voxel locations. (B) Reconstruction using SDM. (C)
Reconstruction using ULL
(EPS)

$1 Text. Chemical Puzzling Conjugation Efficiency. A discussion about our assumptions
regarding conjugation efficiency in our Chemical Puzzling simulations, and results about what
happens when those assumptions are relaxed.

(PDF)

S2 Text. Simulation Limitations. Further discussion on the limitations of our simulations.
(PDF)
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