@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Erd6s PL, Kiss SZ, Miklés I, Soukup L
(2015) Approximate Counting of Graphical
Realizations. PLoS ONE 10(7): €0131300.
doi:10.1371/journal.pone.0131300

Editor: Arndt von Haeseler, Max F. Perutz
Laboratories, AUSTRIA

Received: March 1, 2015
Accepted: May 12, 2015
Published: July 10, 2015

Copyright: © 2015 Erdds et al. This is an open
access article distributed under the terms of the
Creative Commons Aftribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: PLE and IM acknowledge financial support
from grant #FA9550-12-1-0405 from the U.S. Air
Force Office of Scientific Research (AFOSR) and the
Defense Advanced Research Projects Agency
(DARPA). PLE was partly supported by the
Alexander von Humboldt-Foundation, when this
author visited Universitat Hamburg in Fall of 2014.
SZK was partly supported by Hungarian NSF, under
contract K77476 and NK105645. IM was partly
supported by Hungarian NSF, under contract
PD84297. LS was partly supported by Hungarian
NSF, under contract NK 83726. The funders had no

RESEARCH ARTICLE

Approximate Counting of Graphical
Realizations

Péter L. Erd6s'*"*, Sandor Z. Kiss?3®, Istvan Miklés'-2®, Lajos Soukup'®

1 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary, 2 Institute for
Computer Science and Control, Hungarian Academy of Sciences, Budapest, Hungary, 3 Department of
Algebra, University of Technology and Economics, Budapest, Hungary

® These authors contributed equally to this work.
r Current address: Realtanoda u 13-5, Budapest, H-1053, Hungary
* erdos.peter@renyi.mta.hu

Abstract

In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all
possible realizations of a given graphical degree sequence and conjectured its rapidly mix-
ing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper,
Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regu-
lar bipartite graphs (by Miklés, Erdés and Soukup, 2013).

Several heuristics on counting the number of possible realizations exist (via sampling
processes), and while they work well in practice, so far no approximation guarantees exist
for such an approach. This paper is the first to develop a method for counting realizations
with provable approximation guarantee. In fact, we solve a slightly more general problem;
besides the graphical degree sequence a small set of forbidden edges is also given. We
show that for the general problem (which contains the Greenhill problem and the Miklds,
Erdés and Soukup problem as special cases) the derived MCMC process is rapidly mixing.
Further, we show that this new problem is self-reducible therefore it provides a fully polyno-
mial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations.

Introduction

In the Age of the Internet, network theory has been undergoing exponential growth. One of its
important problems is to algorithmically construct networks (or graphs) with predefined
parameters, or to uniformly sample networks with these parameters. For general background,
the interested reader can turn to the now-classic book of Newman, Barabdsi and Watts ([1]) or
to the more recent book of Newman ([2]).

One of the earliest and still most important problems in graph theory is uniformly sampling
all possible graph realizations of given degree sequence. (For the definitions see Section
“Degree sequences”.) One possible method for this is a simple MCMC approach (proposed by
Kannan, Tetali and Vempala [3]); take an arbitrary realization of the degree sequence, then
perform a series of randomly chosen local transformations (called swap or switch). They

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015

1/20

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0131300&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0131300&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0131300&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@’PLOS ‘ ONE

Approximate Counting of Graphical Realizations

role in study design, data collection and analysis,

decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

conjectured that the process is rapidly mixing, i.e., a random realization is achieved after poly-
nomial many steps.

The first result with a flawless proof in connection with this conjecture is due to Cooper,
Dyer and Greenhill (2007, [4]) for the special case when the degree sequence is regular. Green-
hill proved in 2011 the analogous result for (in- and out-)regular directed graphs ([5]). In 2013
Miklés, Erdds and Soukup proved the conjecture for half-regular bipartite graphs ([6]). Here
the degree sequence on one class is regular, while there is no constraint on the other class. (A
comprehensive survey on the topic is [5] or is [6].)

In modern network applications sampling the solutions is just one requirement. Sometimes
the actual number of all solutions (or at least a good approximation of it) is also important. It is
well known (Jerrum, Valiant and Vazirani 1986, [7]) that for self-reducible counting problems a
rapidly mixing sampling method also provides a quick estimation of that number (with small
relative error and with very high probability). Unfortunately none of the sampling problems
listed above belongs to this class.

The main purpose of this paper is to remedy this imperfection. For that end we introduce a
slightly more general degree sequence problem, which has all the good characteristics of the
sampling procedures above (including their rapidly mixing nature), furthermore, which
belongs to the class of self-reducible counting problems. This new problem is a common gener-
alization of the regular directed graph and of the half-regular bipartite graph cases. Therefore,
showing the rapidly mixing nature of the corresponding MCMC procedure provides new
proofs for both problems. We prove only the existence of a polynomial upper bound on the
mixing time, but do not prove the tight upper bound in Greenhill’s theorem in [5].

In Section “Degree sequences” we recall the known definitions and facts on degree
sequences problems in simple graphs. Then we introduce and study in full generality our pro-
posed new restricted degree sequence (or ReDeSe for short) problem, where we deal with for-
bidden edges. Next, we study a specific instance of the general ReDeSe problem: bipartite
degree sequences with a forbidden (but not necessarily perfect) 1-factor and a forbidden (but
maybe empty) star.

In Section “Sampling” we first discuss some known results to sample degree sequence reali-
zations. Then, we formulate our main result (Theorem 10): the proposed MCMC process on
half-regular bipartite degree sequences with a well-defined small forbidden edge set is rapidly
mixing. Our proof is based on Sinclair’s multicommodity flow method ([8]), and follows closely
the proof in [6]. We discuss the similarity between the two proofs in this section, while in Sec-
tions “Milestones” and “The analysis” we study the details of our new Markov chain approach
which require different treatment.

In Section “Counting” we show that the studied sampling problem leads to a self-reducible
counting problem. Therefore, our almost uniform sampling method provides a good approxi-
mation on the size of the set of all realizations, strengthening also Greenhill’s result on regular
directed graphs ([5]), and Miklos, Erdés and Soukup’s result on half-regular bipartite

graphs ([6]).

Degree Sequences

In this paper, every graph is assumed to be simple; there are no loops or multiple edges.

Degree sequences and realizations

Let V be a labeled set of n elements. The degree sequence d(G) of a graph G = (V, E) is the
sequence d(G); = d(v;) of its vertex degrees. A non-negative integer sequenced = (dy, . . ., d,,) is
graphical ift d(G) = d for some simple graph G, and then G is a graphical realization of d.

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 2/20

@’PLOS ‘ ONE

Approximate Counting of Graphical Realizations

The first successful approach to decide whether a degree sequence is graphical is due to
Havel ([9]), his simple but surprising observation provides immediately a greedy algorithm to
build such a realization. His work was rediscovered independently later by Hakimi ([10]).
Their method is based on the so-called swap operation. (The expressions switch or rewiring are
also widely used. In this paper the word switch will be used for a similar, but slightly more gen-
eral, operation.) The swap operation is defined as follows:

Let G be a simple graph and assume that g, b, c and d are different vertices. Furthermore,
assume that (g, ¢), (b, d) € E(G) while (b, ¢), (a, d) ¢ E(G). Then

E(G) = E(G) \ {(a,¢), (b,d)} U{(b;¢), (a,d)} (1)

is another realization of the same degree sequence. We denote this operation by ac, bd = bc,
ad. Havel’s nice observation is the following:

Lemma 1 (Havel, [9]). Assume that in graph G vertex v is adjacent to vertex x but not to ver-
tex y. Assume furthermore that d(x) < d(y). Then one can find a swap operation which produces
a new graphical realization G' of the degree sequence d(G) with the property: T'(v) = T'(v) \ {x}
U {y}. (These are the corresponding neighborhoods of vertex v.)

The analogous notions for bipartite graphs are the following: if B is a simple bipartite graph
then its vertex classes will be denoted by U(B) = {u, . . ., ux} and W(B) = {w, ..., we}, and we
keep the notation V(B) = U(B) U W(B). The bipartite degree sequence of B, D(B) is defined as
follows:

D(B) = ((d(w), ..., d(u)), (d(w,),...,d(w,))).

We can define the swap operation for bipartite realizations similarly to Eq (1) but we must take
some care: it is not enough to assume that (b, ¢), (4, d) ¢ E(G) but we have to know that a and b
are in one vertex class, and c and d are in the other.

To make clear whether a vertex pair is not forbidden to be an edge we will call a vertex pair
a chord if it can hold an actual edge in a realization. Those pairs that cannot accommodate an
edge are non-chords. (For example, pairs from the same vertex class of a bipartite graph are
non-chords.) It can also be found in [11, Theorem 6].

Denote G a directed graph (no parallel edges, no loops, but oppositely directed edges
between two vertices are allowed) with vertex set X(G) = {x,,x,,...,x,} and edge set E(G).
For every vertex v we associate two numbers: the in-degree and the out-degree of v.

Instead of introducing the matching definitions, we will apply the following representation

of the directed graph G : let B(G) = (U, W; E) be a bipartite graph where each class consists of

one copy of every vertex of G. The edges adjacent to a vertex u, in class U represent the out-
edges from x, while the edges adjacent to a vertex w, in class W represent the in-edges to x (so
a directed edge xy corresponds the edge u,w,). If a vertex has zero in- (respectively out-) degree

in the directed version, then we delete the corresponding vertex from B(G). (Actually, this
representation is an old trick used already by Gale [12].) There is no loop in our directed
graph, therefore there is no (u,, v,) type edge in its bipartite realization—these vertex pairs are
non-chords.

Consider two different realizations, G and H, of the same degree sequence (either simple or
bipartite one). It is a well-known fact that the first can be transformed to the second one (and
vice versa) with consecutive swap operations. Formally, there exists a series of realizations G =
Gos - - - Gi_1, G; = H, such that for each j =0, . . ., i—1 there exists a swap operation which trans-
forms G; into Gj, ;.

For simple graphs this was proved already in 1891 by Petersen [13]. It can be shown that
lemma 1 also provides a solution via the so-called canonical realizations. The analogous result

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 3/20

@’PLOS ‘ ONE

Approximate Counting of Graphical Realizations

for bipartite graphs (with possible multiple edges but no loops) is due to Ryser ([14]). For sim-
ple bipartite graphs this is common-knowledge.

For directed graphs an analogous result is known. It was discovered by Kleitman and Wang
(see [15]) and later rediscovered in [16]. It is important however to recognize that in case of
directed graphs the “classical” Havel-type swap operation is not always adequate. To see this, it
is enough to consider an example with three vertices: each vertex incident to one in-edge and
one out-edge. There are exactly two possible realizations of this directed degree sequence,
therefore a swap operation with six chords is necessary: we exchange three edges with three
non-edges in one step. In papers [15, 16] it was shown that this extra operation is always
sufficient.

Restricted degree sequences

In this paper we study the following common generalization of all previously mentioned degree
sequence problems:

The restricted degree sequence (i.e. ReDeSe) problem d” consists of a degree sequence d
and aset 7 C () of forbidden edges. The problem is to decide whether there is a simple
graph G on V with the given degree sequence and with E(G) N F = ().

It is clear that this problem is essentially identical with Tutte’s f-factor problem [17]: the f-
factor to be found is our degree sequence while the graph what the f-factor is searched for is the
complement of the forbidden edges. Therefore Tutte’s theorem and the famous blossom algo-
rithm of Edmonds apply nicely for the ReDeSe problem. However the focus of our approach is
quite different from the f-factor problem: at first we are interested several (or all) solutions of
the ReDeSe problem instead of finding one solution, and often enough we want to find “typi-
cal” solutions. At second: this sampling problem seems to be hopeless in general. In our studies
we restrict ourself for carefully chosen small instances.

The bipartite restricted degree sequence problem D” consists of a bipartite degree
sequence D on (U, W), and a set F C [U, W] of forbidden edges. The problem is to decide
whether there is a simple bipartite graph G on V with the given degree sequence and with E(G)
NF=0.

Clearly, a bipartite restricted degree sequence problem D” on (U, W) is the restricted degree
sequence problem d” on UU W, where F = FU [U)* U [W]*

Furthermore, we already studied one instance of the bipartite restricted degree sequence
problem, namely the bipartite representation of directed degree sequences: here F'is one 1-fac-
tor, which corresponds to the forbidden loops.

It is important to add that while the fundamental result of Jerrum, Sinclair and Vigoda on
sampling perfect matchings in graphs ([18]) provides a uniform sampling approach for the
possible realizations, their method is not useful in practice. That is the reason that so much
effort has been made on this topic. We return to this issue at the end of Section “Counting”.

In the remaining of this subsection we study the general ReDeSe problem. The next subsec-
tion will be devoted to a particular bipartite restricted degree sequence problem which will play
a central role later in the paper.

Definition 2. Let d” be a restricted degree sequence problem and let G be a realization of it.
The sequence of vertices C = (x1, X5, . . ., X;) is a chord-circuit if:

(D1) all pairs x,%5, X2X3, . . ., Xpi_1X2j X2:%1 are chords;
(D2) each of these chords is different.

A chord-circuit is elementary if

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 4/20

el e
@ : PLOS ‘ ONE Approximate Counting of Graphical Realizations

(D3) no vertex occurs more than twice;
(D4) when two copies of the same vertex exist, then their distance along the circuit is odd.

Definition 3. The chord-circuit C is said to alternate in G, if the chords along C are in turn
edges and non-edges in G. (For example x,;_,x,; are edges for 1 < j <, while the other chords
are non-edges in G.)

Deleting the actual edges along C from G and adding the other chords as edges constructs a
new graph G’ which is again a realization of d”. This is a C-swap and this operation is known
in general as a circular C,;-swap.

Finally, two different vertices x, y of the alternating chord-circuit C form a PV-pair if the dis-
tance of the vertices along the circuit (the number of chords between them) is odd and greater
than 1. If all PV-pairs are non-chords (so they belong to), then this circular C-swap is called
a F-compatible swap or F-swap for short.

The F-swap is one of the central notions of this paper. When i = 2 then the circular C,-
swap coincides with the classical Havel type swap. When i = 3 then we get back the notion of
the triangular Cg-swap, which occurs in connection with directed degree sequences (see [19]).

We define the weight of the F-compatible circular Cy;-swap as w(Cy;) = i—1. This definition
sets the weight of the classical Havel type swaps to 1 and the weight of a Cs-swap to 2, which
agree with the definitions used in paper [19]. Furthermore it is well known (see for example
again [19]) that (i—1) Havel type swaps are needed to alternate the edges along C,; in case of
simple graphs with no forbidden edges. As we will see next the same applies for any elementary
circular C,;-swap:

Lemma 4. Let G be a realization of d” and let the elementary chord-circuit C of length 2i be
alternating. Then the circular C-swap operation can be carried out by a sequence of F-swaps of
total weight i—1.

In other words there exists a sequence G = Gy, Gy, . . ., G of realizations such that for each
j=0,..., 21 there exists an F-compatible swap operation from G; to G;,. The difference
between G and Gg is exactly the alternating circuit C. Finally, the total weights of those F-swap
operations is i—1. We will say that this swap sequence does process the prescribed circular
swap operation.

Proof. We apply mathematical induction for the length of the chord-circuit: when i = 2 then
the statement is trivial. Assume now that this is true for all circuits of length at most 2i—2. Then
take an alternating elementary chord-circuit C of length 2i in a realization of d”.

If each PV-pair in C is a non-chord, then the circular C,;-swap itself is a F-swap of weight i
—1. So we may assume that there is a PV-pair uv in C which is a chord. This chord together
with the two “half-circuits” of C form chord-circuits C; and C, using the chords of the original
circuit C and twice the chord uv. One of them, say Cy, is alternating. The length of C; is 2j < 2i
therefore there exists a F-compatible swap sequence of total weight j—1 to process it. After the
procedure the status of uv (the property of the chord whether it is an edge or a non-edge) will
alter into the other status. With this new status of the chord the circuit C, becomes an alternat-
ing one with length 2i+2-2j, so it can be processed with 22=% — 1 total weight—and after this
procedure the chord uv is switched back to its original status. We found a swap sequence of
total weight i—1 which finishes the proof.

The space of all realizations of d”: Consider now the set of all possible realizations of a
restricted graphical degree sequence d”. Let G and H be two different realizations. The natural
question, similar to the case of classical degree sequence problems, is whether G can be trans-
formed into H using F-swaps? The answer is affirmative:

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 5/20

@’PLOS ‘ ONE

Approximate Counting of Graphical Realizations

Theorem 5. The space G = (V, E) of all realizations of the restricted degree sequences prob-
lem d” is connected.

Proof. What we have to prove is the following: let G and H be two realizations of d”. Then
we have to find a series of realizations G = Gy, . . ., G;_1, G; = H, such that foreach j=0, .. ., i-1
there exists an F-swap from G; to Gj,1.

Consider the symmetric difference of the edge sets of the two realizations: A = E(G) AE(H).
This set is two-colored by the original hosts of the edges: there are G-edges and H-edges. It is
clear that for each vertex v in the graph G = (V, A) the numbers of G-edges and H-edges inci-
dent to v are the same: dg(v) = dy(v). It is well known that this can be decomposed into alter-
nating circuits Cy, . . ., Cp.

We will use the notions of circuit and cycle in a simple graph G as usual: therefore a circuit
is a chord-circuit where all chords are edges. A cycle is a circuit without repeated vertices. A cir-
cuit is alternating in A if the edges come in turns from E(G) and E(H). When this is the case
then the corresponding chord-circuit in realization G (as well as in H) is also alternating.

We can find a decomposition, such that no circuit contains a vertex v twice and their dis-
tance & (the number of edges between the copies is even. Indeed, if § is even, then § is at least
four, consequently the vertex v splits the original circuit into two smaller, but still alternating
circuits. Furthermore, if a circuit contains a vertex v at least three times, then there are at least
two of them with even distance.

It is clear that any alternating circuit decomposition can be transformed into a decomposi-
tion where each (chord)-circuit is elementary with successive transformations. It is also clear
that if, by chance, we start with a circuit decomposition of maximal number of circuits, then all
circuits in this decomposition are automatically elementary. (Of course, finding such a decom-
position may be very hard.)

The application of Lemma 4 proves that each circuit C can be processed with |C|/2-1 total
weight. This finishes the proof.

It seems to be interesting that using a result from paper [19] one can determine the mini-
mum weight of an F-compatible swap sequence which transforms G into H, however we do
not discuss this question here.

Bipartite 1-Factor + 1 Star Restricted Degree Sequences

In the previous subsection we studied the restricted degree sequence problem in its full general-
ity. However, our real interest lays in a quite simple case: d” is called a 1-Factor + 1 Star
Restricted Degree Sequence problem (or 1F1S problem for short), if

(W) the set § of forbidden edges is a bipartite graph where the edges are the union of an
1-factor and a star with center s.

Similarly, if D is a bipartite degree sequence, and (¥) holds for &, then D is called a Bipartite
1F1S problem.

Everything discussed in this subsection applies to all 1F1S degree sequence problems in sim-
ple graphs. However, we are particularly interested in the bipartite case, therefore we will dis-
cuss these observations for the bipartite case only. We fix the underlying vertex set V = (U, W).
Then D7 is a bipartite 1F1S problem where the center s of the forbidden star belongs to U.

Lemma 6.

(i) The space of all realizations of D is closed under §-compatible swap operations.

(ii) The §-compatible swap operations are circular C4- and Cys-swaps.

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 6/20

@’PLOS ‘ ONE

Approximate Counting of Graphical Realizations

Proof. (i) As we saw already that any bipartite 1F1S can be understood as an 1F1S on simple
graphs, therefore considering 7= § U [U]* U [W]? and applying Theorem 5 for the problem
d” proves (i).

(ii) Let us consider any alternating elementary circuit C in the symmetric difference A of
two different realizations. There is a vertex u € C N U which is # s. There is at most one for-
bidden chord in § which is adjacent to u. If C has more than 6 vertices, then C has at least 4 ver-
tices in W therefore there exists a vertex w € CN W, such that uw is a chord and uw is not in C.
Therefore the corresponding C-swap is not compatible with &.

As we already mentioned, Tutte’s f-factor theorem can always be utilized to find actual
graphical realizations of the bipartite 1F1S problem. However, in this special case we can prove
a Havel type result (similar to Lemma 1) and can construct a greedy algorithm to produce such
realizations.

Consider the bipartite 1F1S degree sequence problem D. If the forbidden star is not empty,
then let u := 5. Otherwise let u € U be any given vertex and denote N(u) C W the set of those
vertices which form chords together with u. (It is clear that if u # s then |[W|-1 < |N(u)|.)

Observation 7. For any y € N(u) there is at most one vertex, denoted by y°, such that yy” is a
non-chord, so it belongs to §. Furthermore if y, z € N(u) and y° = 2° then y = z.

Now a linear order <, on N(u) is called good if it satisfies the following properties: for y, z
€ N(u) and y <, z we have

d(y) > d(z) and in case of d(y) = d(z) we also have d(y*) > d(z”).

It is obvious that there always exists a good order on N(u). Furthermore whenever d(y) = d(z)
and d(yg) = d(z”°), then there are more than one good order.

Lemma 8. Let G be a graphical realization of the 1F1S sequence DY, let u := s if the forbidden
star is not empty and take any u € U otherwise. Let y, z € N(u) where y <, z with uz € E while
uy ¢ E. Then there exists an alternating chord-cycle C of length at most 6 in G with y, u, z € C.
Processing C with §-compatible swap operations, we have Tg/(u) = Tg(u) \ {z} U {y} in the
acquired new realization.

Proof. We have uz € Ebut uy ¢ E. At first assume that there exists a vertex y € U \ {u}, such
that yy € E, and pz ¢ E but u # z°. When such vertex exists then C = (1, z, , y) is a suitable
alternating chord-cycle.

When d(y) > d(z) then there are two vertices y and ¢’ € U such that yu € Eand zu ¢ E, and
yy' € Eand zy' ¢ E. Now either zy or zy/ is a chord.

However, if d(y) = d(z) then it can happen that z° y € E and

for all x € U\ {u,y%,z5} wehave xyceE& xz€E. (2)

It is important to observe that in this case y” z ¢ E, otherwise some x would not satisfy Eq (2)
(in order to keep d(y) = d(2)).

So the only case when we do not find automatically an appropriate circular Cy-swap with u,
yand z is when d(y) = d(z), yz” is an edge and zy” is a chord but not an edge. In this case, we
can finda yu € W\ {y, 2} such that y°u € Ebut z°u ¢ E since d(y”) > d(z"). Observe that z"u is a
chord because y® # z°.

Now C= (y, u, 2, y°, 4, 2°, y) is the required alternating chord circle. When uy is a chord,
then the circular Cg-swap is not F-compatible, but we can process the cycle properly (as it was
shown in the proof of Lemma 4). When it is a non-chord, then the circular Cg is an §-compati-
ble operation.

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 7/20

el e
@ : PLOS ‘ ONE Approximate Counting of Graphical Realizations

Lemma 8 provides the following easy Havel type greedy algorithm to decide whether our
bipartite 1F1S restricted degree sequence is graphical. (The algorithm is essentially the same as
the original Havel procedure.)

A greedy algorithm to decide whether a bipartite 1F1S degree sequence is graphical: the
degree sequence is D while the set of forbidden edges is &.

(H;) Letu:=sifthe forbidden star is not empty, otherwise take an arbitrary u € U. Con-
sider a good order <, on N(u). Connect u the first d(u) vertices from (with respect to
<,) of N(u). If d(u) > |N(u)| then the algorithm FATLS, our sequence DY is not graph-
ical. Delete u from U, and update the degree sequence and the set W accordingly.
Finally delete the edges adjacent to u from §.

(H,) Repeat the previous step while U is not empty.

Theorem 9 (Generalized Havel theorem for the bipartite 1F1S ReDeSe problem). The 1F1S
restricted degree sequence D is graphical if and only if the previous greedy algorithm provides a
realization.

Proof. The proof is exactly the same as in the original case, described by Havel; if the
sequence is graphical, then consider a realization. Fix vertex u € U as described in Lemma 8.
Recursive applications of the lemma provide a realization where u is connected to the first d(u)
vertices in N(u) with respect to <,,. The repeated application of the previous reasoning finishes
the proof.

Sampling Degree Sequence Realizations with Sinclair’s
Multicommodity Flow Method

There are several available methods to sample uniformly the space of all realizations of a given
degree sequence. One of these approaches is a Markov Chain Monte Carlo method, proposed
by Kannan, Tetali and Vempala (1999, [3]). They consider a local transformation (the swap
operation) on the realizations, which in turn defines an irreducible, reversible and aperiodic
finite Markov chain on these realizations; at any given realization they choose two independent
edges from some probability distribution and perform the corresponding swap operation if it is
feasible. They conjecture that the resulted MCMC is rapidly mixing. They were studying the
particular case when the degree sequence is regular bipartite using Sinclair’s multicommodity
flow method.

Their conjecture was proved for regular graphs by Cooper, Dyer and Greenhill (2007, [4]).
(Their result does not apply to bipartite graphs, since their version does not allow forbidden
edges.) An analogous theorem was proved by Greenhill on regular directed graphs ([5]). Here
she proved at first that for regular directed degree sequences circular C4-swaps alone make the
space of the realizations connected, then she gave a strong upper bound on the mixing time.
(However, as we saw it earlier, the space of directed realizations are not always connected when
using only C4-swaps.) Finally, in 2013 Miklds, Erdds and Soukup proved ([6]) that the corre-
sponding Markov process is rapidly mixing on each bipartite half-regular degree sequence,
superseding the original study of Kannan, Tetali and Vempala ([3]).

In this paper we study the realizations of half-regular bipartite 1F1S restricted degree
sequences D?. The vertex set is (U, W) where the center of the forbidden star s is € U and
where all vertex in U (except possible s) have the same degree. The degrees in W are not
constrained.

The state space of our Markov chain is the graph G = (V(G), E(G)) where V(G) consists of
all possible realizations of our problem, while the edges represent the possible swap operations:
two realizations (which will be indicated by upper case letters like X or Y) are connected if

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 8/20

@’PLOS ‘ ONE

Approximate Counting of Graphical Realizations

there is a valid §-swap operation which transforms one realization into the other one (and the
inverse swap transforms the second one into the first one as well). Recall that there are two
kinds of §-compatible swap operations: the circular C,-swaps and certain Cs-swaps (in the lat-
ter case opposite vertex pair in the C4 must be non-chord), Furthermore, these two kinds of
operations make the state space connected (see Theorem 5).

The transition (probability) matrix P of the Markov chain is defined as follows: let the cur-
rent realization be G. Then

(a) with probability 1/2 we stay in the current state (that is, our Markov chain is lazy);

(b) with probability 1/4 we choose uniformly two-two vertices u;, uyvy, v, from classes U
and W respectively and perform the swap if it is possible;

(c) finally with probability 1/4 choose three—three vertices from U and W and check
whether they form three pairs of forbidden chords. If this is the case, then we perform a
circular Cy-swap if it is possible.

The swaps moving from G to its image G’ is unique, therefore the probability of this transfor-
mation (the jumping probability from G to G’ # G) is:

(3)

L
L

Prob(G—,G)=P(G/|G) =

and

Prob(G— G)=P(G|G) = - — - __ (4)

EENCIC0N

(These probabilities reflect the fact, that G’ should be derived from G by a regular swap or by a
Ce-swap.) The probability of transforming G to G’ (or vice versa) is time-independent and
symmetric. Therefore P is a symmetric matrix, where the entries in the main diagonal are non-
zero, but (probably) distinct values. Our Markov chain is irreducible (the state space is con-
nected), and it is clearly aperiodic, since it is lazy. Therefore, as it is well known, the Markov
process is reversible with the uniform distribution as the globally stable stationary distribution.

Our main result is the following:

Theorem 10. The Markov process defined above is rapidly mixing on each bipartite half-reg-
ular 1F1S restricted degree sequence.

Remark 11. When we apply this setup for directed graphs then the out-degrees are regular
(except, perhaps, the out-degree of the vertex s), while we have no constrains on the in-degrees.
However, it is important to see, that while this result provides a rapidly mixing sampling proce-
dure on regular directed graphs as well, the applied Markov chain is not the same as the one in
Greenhill’s model. Hence, this result does not supersede Greenhill’s result.

The proof of Theorem 10 follows closely the proof developed in paper [6]. (More precisely
we need to slightly generalize it. The required minor technical issue will be discussed in the Sec-
tion “Some further technical details of the Sinclair’s method”.) Consider two realizations X €
G and Y € G of the problem D?, and take the symmetric difference A = E(X)AE(Y). As we saw
already in the proof of Theorem 5 for each vertex v in the bipartite graph (U, W; A) the number
of adjacent X-edges (= E(X) \ E(Y)) and the number of the adjacent Y-edges are equal. There-
fore A can be decomposed into alternating circuits and later into alternating cycles. The way
the decomposition is executed is described in details in Section 5 of the paper [6]. Here we just
summarize the high points:

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 9/20

@’PLOS ‘ ONE

Approximate Counting of Graphical Realizations

At first we decompose the symmetric difference A into alternating circuits on all possible
ways. In each cases we get an ordered sequence Wy, W, . . ., W, of circuits. (Usually there are a
huge number of different circuit decompositions.) Each circuit is endorsed with a fixed cyclic
order.

Now we fix one circuit decomposition. Each circuit W; from the ordered decomposition
determines one unique alternating cycles decomposition: W, = C;, C;, ..., C, . (This unique
decomposition is one of the most delicate points of the entire proof in [6]. The main problem
is that a circuit can be “long”—linear in the number of vertices—therefore, it can happen that it
is decomposed into a linear number of cycles. Keeping track of all possible changes along the
circuit is necessary, and without clever data handling it may require an unacceptable big data
set. Section 5.2 in paper [6] found a way around this problem.)

The ordered circuit decomposition of A together with the ordered cycle decompositions of
all circuits provide a well defined ordered cycle decomposition Ci, . . ., Cy of A. This decomposi-
tion does not depend on any §-compatible swap operations (actually no swap operation was
performed yet), only on the symmetric difference of realization X and Y. So this part of the
original proof can be used freely in our current reasoning without any modification.

This ordered cycle decomposition singles out ¢—1 different realizations Hy, . . ., He_; of DY
with the following property: for each j =0, . . ., £~1 we have E(H,)AE(H;,) = Cj,, if we apply
the notations Hy, = X and H, = Y. This mean that

What remains is to design a unique canonical path from X to Y determined by the circuit
decompositions which use the realizations H; as milestones along the path. With other words,
for each pair H;, Hj,; we have to design the actual swap sequences which turn one milestone
into the next one.

So, the canonical path under construction is a sequence X = Gy, .. ., G, .. ., G,, = Y of reali-
zations, where each G; can be derived from G;_, with one feasible circular C,- or Cs-swap oper-
ation, and there exists an increasing subscript subsequence 0 =ny < n; <n, <--- <mp=m
such that we have G,, = H;.

In paper [6] the following result was proved:

Theorem 12 (Section 4 in [6]). If the designed canonical path system satisfies the three
(rather complicated) conditions below, then the MCMC process is rapidly mixing. The conditions
are:

(©) Foreach i < € the constructed path H; = G, G}, ..., G,, = H; 11 satisfies that m" <
¢'|Ciy1| for a suitable constant c.
(Q) VjthereexistsaK; € V(G)s.t. D (MX + My — MGJ(, MKJ) < Q,, where Mg is the bipar-

tite adjacency matrix of G, and 0 stands for the Hamming distance of two matrices,
finally Q, is a small constant.

(E) For each vertex G; in the path under construction the following three objects together

uniquely determine the realizations X, Y and the path itself.
o The value of the auxiliary matrix My + My — MG;;
o the symmetric difference A = E(X) AE(Y);

o finally a polynomial size parameter set B.

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 10/20

@’PLOS ‘ ONE

Approximate Counting of Graphical Realizations

The meaning of condition (Z) is that these structures can be used to control certain features of
the canonical path system: namely their numbers gives a bound on the number of canonical
paths between any realization pairs X, Y which go through any given realization G;. Then con-

dition (Q) ensures, that the overall number of the used auxiliary matrices is small.
So while we determine our canonical paths among any pair X, Y we have take care for these
three conditions. We will describe the construction itself in the following two Sections.

The construction of swap sequences between consecutive
“milestones”

Now we are going to implement our plan described above. At first we introduce some short-
hand. Instead of H;_; and H; we will use the names G and G'. These two graphs have almost the
same edge set. More precisely

(E(G) \ (G;NEX))) U(CNE(Y)) = E(G)
(E(G)\ (GNE(Y))) U(CNEX)) = E(G).

Of course E(G)AE(G') = C,; also holds. We refer to the elements of C; N E(X) as X-edges, while
the others are Y-edges. We denote the cycle itself by C, it has 2€ edges and its vertices are uy, wy,
Uy, Wa, . . ., Up, We. Since C has at least four vertices, therefore we may assume that u; # s (thus
u; is not the center of the forbidden star). Finally, w.l.o.g. we may assume that the chord u;w,
is a Y-edge (and, of course, w, u; is an X-edge).

We are going to construct the realizations G; one by one. We build our canonical path from
G toward G'. At any particular step the last constructed realization is denoted by Z. (At the
beginning of the process we have Z = G.) We are looking for the next realization, denoted by
Z.

Before we continue the discussion of the canonical path system, we introduce our control
mechanism, mentioned in condition (). This auxiliary structure originally was introduced by
Kannan, Tetali and Vempala in [3]:

For any particular realization G from V(G) the matrix M denotes the adjacency matrix of
the bipartite realization G where the columns and rows are indexed by the vertices of Uand W
respectively (Therefore the column sums are the same in each realization, except perhaps at
column s.) Our indexing method is a bit unusual: the columns are numbered from left to right
while the rows are numbered from bottom to the top. (Like in the Cartesian coordinate sys-
tem.) This matrix is not necessarily symmetric, and elements M; ; can be different from 0.

For example, if we consider the submatrix in Mg spanned by u, ..., up and wy, . . ., w, then
we have M(i,i) =0fori=1,...,¢ while Ms(i,i-1) =1 (fori =2, ..., £) and M(1,£) = 1. (So
the first value gives the column, the second one gives the row.) The non-chords between verti-
ces in the same vertex class are not considered at all, while non-chords which are forbidden are
denoted by *. As it is clear from the previous sentence, we will identify each chord or non-
chord with the corresponding position in the matrix.

Our auxiliary structure is the matrix

M(X+Y—Z)=M,+M, — M,

By definition, each entry of a bipartite adjacency matrix is 0 or 1 (or *¥). Therefore only -1, 0, 1,
2 can be the “meaningful” entries of M. An entry is —1 if the edge is missing from both X and Y
but it exists in Z. It is 2 if the edge is missing from Z but exists in both X and Y. It is 1 if the
edge exists in all three graphs (X, Y, Z) or it is there only in one of X and Y but not in Z. Finally
it is 0 if the edge is missing from all three graphs, or the edge exists in exactly one of X and Y

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 11/20

@’PLOS ‘ ONE

Approximate Counting of Graphical Realizations

and in Z. (Therefore if an edge exists in exactly one of X and Y then the corresponding chord in
M is always 0 or 1.) One more important, but easy fact is the following:

Observation 13. The row and column sums of M(X + Y — Z) are the same as row and col-
umn sums in My (or My or My).

Next we will determine the swap sequence between G and G’ through an iterative algorithm.
At the first iteration we check, step by step, the positions (uy, ws), (41, W3), . . ., (U, we) and
take the smallest j for which (u;, w;) is an actual edge in G. Since (u;, wy) is an edge, therefore
such 7 always exists. So we may face to the following configuration:

We call the chord u;w; the start-chord of the current sub-process and u,w; is the end-
chord. We will sweep the alternating chords along the cycle from the start-edge w;u; (non-
edge), u;w;_; (an edge) toward the end-edge w;u; (non-edge)—switching their status in twos
and fours. We check positions u;w;_;, u3w;_, (all are non-edges) and choose the first chord
among them, we call this the current-chord. (Since u; # s therefore we never have to check
more than two edges to find the first chord, and we need to check two edges only once, since
there is at most one non-chord adjacent to u;.)

Case 1: As we just explained, the typical situation is that the current-chord is the “next” one,
so when we start this is typically u;w;_;. Assume that this is a chord. Then we can proceed with
the swap operation w;_ju;, wiu; = uyw;_1, u;w;. We just produced the first “new” realization in
our sequence, this is G/ . For the next swap operation this will be our new current realization.
This operation will be called a single-step.

In a realization Z we call a chord bad, if its current status (being edge or non-edge) is differ-
ent from its status in G (or, what is the same, in G, since they differ only on the chords along
the cycle C). After the previous swap, we have two bad chords in G}, namely u;w;_; and wu;.

Consider now the auxiliary matrix M(X + Y — Z) (here Z = G,). As we saw earlier, for
each position outside the chords in C the status of that particular position in Z is the same as in
X or Y or in both. Accordingly, the corresponding matrix value is 0 or 1. We call a position bad
in M if this value is —1 or 2. (A bad position in M always corresponds to a bad chord.) Since in
Case 1 we switch the start-chord into a non-edge, it may become 2 in M. (In case if in both X
and Y it is an edge. Otherwise it is 0 or 1, so in that case it is not a bad position.) The current-
chord turned into an edge. If it is a non-edge in both X and Y then the value becomes -1, other-
wise it does not become a bad position. After this single-step, we have at most two bad posi-
tions in the matrix, at most one position with 2-value and at most one with —1-value.

Case 2: If the previous case does not apply then the pair u;w;_; is a non-chord, therefore we
cannot produce the previous swap. Then the non-edge u;w;_, is the current-chord. For sake of
simplicity we assume that i—2 = 2, this case is represented in Fig 1. Consider now the alternat-
ing Cy cycle: uy, wy, us, w3, Uy, wy. It has a total of three vertex pairs which may be chords. We
know already that u;wj; is a non-chord. If none of the three positions is a chord, then this is an
§-compatible circular C-swap—and accordingly to the definitions we can swap it in one step.
Again, we found the valid swap w,us, wity, walty = uyw,, usws, ugw,. After that we again have
2 bad chords, namely u;w, and w,u;, and together we have at most two bad positions in the
new M(X + Y — Z) with at most one 2-value and at most one —1-value.

Finally, if one position, say w,uy, is a chord then we can process this Cs with two swap oper-
ations. If this chord is, say, an actual edge, then we swap wyuy, wyu; = u1w,, ugw,. After this
we can take care of the w,, us, w3, uy cycle. Along this sequence we never create more, than 3
bad chords: the first swap makes chords w,u,, wyu; and u;w, bad ones, and the second one
“cures” w,u, but does not touch u;w, and w,u,. So along this swap sequence we have 3 bad
chords, at the end we have only 2. On the other hand, if the chord w,u, is not an edge, then we
can swap w,lis, Wiliy = U3Ws, UgW,, creating one bad edge, then taking care the four-cycle u;,

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 12/20

@’PLOS ‘ ONE

Approximate Counting of Graphical Realizations

edge

non-chord Hr ot unknown
Fig 1. Sweeping a cycle.
doi:10.1371/journal.pone.0131300.g001

Wa, Uy, Wy We “cure” wyuy but we switch 1, w, and wyu, into bad chords. We finished our dou-
ble-step along the cycle.

In a double-step in any moment we have at most three bad chords. When the first swap uses
three chords along the cycle then we may have at most one bad chord (with M-value 0 or —1)
and then the next swap switches back the chord into its original status, and makes two new bad
chords (with at most one 2-value and one —1-value). When the first swap uses only one chord
from the cycle, then it makes three bad chords (changing two chords into non-edge and one
into edge), therefore it may make at most two 2-values and one —1-value. After the second
swap there will be only two bad chords, with at most one 2-value, and at most one —1-value.

When only the third position corresponds to a chord in our C4 then after the first swap we
may have two —1-values and one 2-value. However, again after the next swap we will have at
most one of both types.

Remark 14. When two realizations are one swap apart (so they are adjacent in G) then we
say that their auxiliary matrices are at swap-distance one. Since one swap changes four posi-
tions of the matrix, therefore the Hamming distance of these matrices is 4.

Finishing our single- or double-step, the previous current-chord becomes the new start-
chord. Then we repeat our procedure. There is only one important point to be mentioned:
along the step, the start-chord switches back into its original status, therefore it stops being a
bad chord. Thus, even if we face a double-step the number of bad chords never will be bigger
than three (together with the chord w; u; which is still in the wrong status, so it is bad), and we

have always at most two 2-values and at most one —1-value in M(X + Y — Z).

When w,u, becomes the current-chord the last step will switch the last start-chord back
into its correct status, hence the last current-chord cannot be in bad status. Finally, when the
sweep from w; u; to wyu; is finished we only have one bad chord (with a possible 2-value in

M). This concludes the first iteration of our algorithm.

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 13/20

@’PLOS ‘ ONE

Approximate Counting of Graphical Realizations

For the next iteration we seeks a new start-chord between w;u; and weu,. Chord w;u,
becomes the new end-chord. We will repeat our sweeping process for this setup, until all
chords are processed. If there was a double-step in the first sweep, then it will not occur again,
thus there are never more than three bad chords; at most two 2-values and at most one
—1-value.

However, if the double-step occurs sometime later, for example in the second sweep, then
we face one of the following two cases: the circular Cg-swap under consideration is either §-
compatible or not. If it is §-compatible, we perform the circular Cg-swap. This does not change
the number of bad chords, except if this swap finishes a current sweep. If, however, the circular
Cs-swap is not compatible, then there exists a chord in the chord-cycle which is suitable for a
swap. If this chord is a non-edge, then the swap corresponding to it produces one bad chord,

and at most one bad position in M. If this chord is an edge in the current realization, then after
the first swap there are four bad chords, and there may be at most three 2-values and at most
one —1 value. After the next swap (which finishes the double step) we annihilate one of the
2-values, and after that swap there are at most two 2-values and at most —1-value along the
entire swap sequence. When we finish our second sweep, then chord w;u; will be switched back
into its original status, hence it will not be bad anymore.

We apply the same algorithm iteratively. After at most £ sweep sequences the entire cycle C
will be processed. This finishes the construction of the required swap sequence (and the
required realization sequence).

Meanwhile we also proved the following important observation:

Lemma 15. Along our procedure each occurring auxiliary matrix M(X + Y — Z) is at most
swap-distance one from a matrix with at most three bad positions: with at most two 2-values

and with at most one —1-value in the same column, which does not coincide with the center of
the forbidden star.

The Analysis of the Swap Sequences Between “Milestones”

What remains is to show that the defined swap sequences between H; and H;,, satisfy condi-
tions (0), (Q) and (E) of Theorem 12. The first one is easy to see, since we can process a cycle
of length 2¢ in £-1 swaps. Therefore the derived constant ¢ in (@) is actually 1.

Now we introduce the new switch operation on 0/1 matrices with forbidden positions: we
fix the four corners of a submatrix (none of them is forbidden), and we add 1 to two corners in
a diagonal, and add —1 to the corners on the other diagonal. This operation clearly does not
change the column and row sums of the matrix. For example if we consider the matrix Mg of a
realization of d” and make a valid swap operation, then this is equivalent to a switch in this
matrix. The next statement is trivial but very useful:

Lemma 16. If two matrices have switch-distance 1, then their Hamming distance is 4. Conse-
quently if the switch-distance is c then the Hamming distance is bounded by 4c.

We prove that property (Q2) holds for auxiliary matrices:

Theorem 17. For any realizations X and Y and for any realization Z on a swap sequence
from X to Y there exists a realization K such that

VM(X+Y —2Z),M,) < 16.

Due to Lemmas 15 and 16 it is enough to show that:

Lemma 18. Any matrix M(X + Y — Z) with constant column sums (this does not necessarily
hold for the center of the forbidden star) and with at most three bad positions (where there are at
most two 2-values and at most one —1-value) can be transformed into a valid My adjacency
matrix with at most three switch operations.

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 14/20

@’PLOS ‘ ONE

Approximate Counting of Graphical Realizations

L (R T TR R oo o o o o
oo o oo o Moo o Moo o
o1 o 0 o o = 0 o 1 o o
o -1 ¢ 1 o 1 o 0 o 0 o 1

Fig 2. Case 1 * = forbidden ¢ = 0/1/x.
doi:10.1371/journal.pone.0131300.g002

Proof. Consider now a given M which is not necessarily a valid adjacency matrix of a realiza-
tion. We show in figures the submatrix in this matrix that describes the current alternating
cycle C. If it happens that s € C then we choose a submatrix representation such that the center
s of the forbidden star is in the first column. (We choose this submatrix as an illustration tool,
but we still consider the entire matrix to work with.) We know that this matrix contains at
most two 2-values and at most one 1-value. All three positions are adjacent to the center u; of
the sweeping sequence (see Fig 1), hence they are in the same column.

For simplicity we denote the center of the sweep as well the column with u. The forbidden
positions are denoted with *. Any column (except column 1) may contain at most one of
them, and any row may contain at most two of them. Finally, in the figures the character ¢
stands for a character which we are not interested in. That is, it can be 0 or 1 or .

We distinguish multiple cases, depending on the occurring of values 2 and 1.

Case 1. Column u has one bad position, which can be -1 or 2, or it has two 2-values. Con-

sider at first the case when M[uw] = —1. By definition this means that chord uw is an edge in
Z but non-edge in both X and Y. So vertex w € W has at least one adjacent edge, therefore the
row-sum in its row is at least 1. Therefore there are at least two positions in row w with entries
1. They are in column u,; and u,. At least one of them, say u,, differs from s. Since the column

sums are constant, therefore there exists at least two rows w; such that M[uw,] = 1 while

M[u,w,] = 0 or . However, there can be at most one forbidden position in uy, so at least in
one of the rows the entry is 0. Using these positions for the corresponding switch it eliminates
the bad position without creating a new one. (See Fig 2.)

Before we continue, we prove an important observation:

Observation If w belongs to the alternating cycle Cand M[uw] = 2 then row w contains at
least two 0-values.

Indeed, there are a forbidden chords in row w. Since w is in an alternating cycle, therefore d
(w) < |U|-a-1. Therefore the sum of row win M(X + Y — Z) < |U| — o — 1. But it contains
a2 and it does not contain -1 therefore there are at least two 0’s in it.

When the single bad value in M is 2 then, due to our previous Observation, in its row there
are two 0’s. And with them one can repeat the reasoning which we used about the unique
—1-value.

Finally, when there are two 2-values which raises a very similar situation. Here we can do
the same procedure independently on both rows. In this case, however, we need two switch
operations.

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 15/20

el e
@ : PLOS ‘ ONE Approximate Counting of Graphical Realizations

> I S S R R M o o o o o
Moo o M o o oo o Moo o
>I<0/1<:>2<:><> - >I<1/2<:>1<:><>
o 1 o -1 o o o 0 o 0 o o

Fig 3. Case 2a ¥ = forbidden o = 0/1/%.
doi:10.1371/journal.pone.0131300.g003

Case 2. Here we assume that there is one 2-value and one —1-value in column u. For exam-
ple M[uw,] = 2 and M[uw,] = —1. Again, in row w; there are at least two 1-values.

Case 2a Assume at first that we have u; € Us.t. M[u,w,] = 1 and M[uw,] # *%. Then the
corresponding switch will produce M[u,w,] = 1/2 while the other three positions are 0 or 1.

(See Fig 3.) If now M[u, w,] = 2 then we are back to Case 1, and one more switch eliminates
the last bad position as well. So we needed at most two switches.

Case 2b It can happen, that there are only two 1-values in row w, and both are facing with
forbidden positions in row w;. Then at least one 0 in row w;, faces a chord in row w;. (See
Fig 4) The appropriate switch kills 2 bad chords and can make at most one —1-value. At this
point we are either finished or back to Case 1.

Case 3. Finally suppose that there are three bad positions, two 2-values at positions uw; and
uw, and one —1-value at position uws;. Now both rows w; and w, contain at least two 0’s. If any
of them face a 1 in row w3 then an appropriate switch annihilates one 2 and one —1 and does
not create new bad position. We are back to Case 1. Altogether we need two switches.

If this is not the case then we consider the following: assume that M[u,w,] = 0. Since the
column sums are the same, and we assumed that M [u,w;] = 0 therefore there exists a row wys.

t. M[u,w,] = 1 while M[uw,] = 0. Then we can switch this 2-value without making a new bad
position. After that we are back to Case 2. Altogether this requires at most three switches. The
proof of Lemma 18 is finished.

If this is not the case then we consider the following: assume that M[u, w,] = 0. The column

sums are the same, and we assumed that M [, w,] = 0 or k. Therefore the difference between
column sums in u and u; is 1 due to rows w, and ws, and the difference increase at least 1 for
row w,, where against a 2-value in column u there is either 1 or 0 in column u;. Therefore
there exists at least two further rows, where there is a 1 in column u, against a 0 or * in column
u. Since column u can contain at most one ¥, one of the rows must contain a 0. Let it be

denoted by w4. Hence M[u,w,] = 1 while M[uw,] = 0. Then we can switch this 2-value with-
out making a new bad position. After that we are back to Case 2. Altogether this requires at
most three switches. We finished the proof of Lemma 18.

There was no word yet about condition (E) in Theorem 12. We discuss this in the next Sec-
tion, because the magnitude of parameter B heavily depends on. To finish the Theorem 12, let
us assume for now that we have the proper upper bound on B. Then (£2) in Theorem 12 and
therefore the theorem itself is proved as well. Thus, our Markov chain is rapidly mixing as The-
orem 10 stated.

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 16/20

@’PLOS ‘ ONE

Approximate Counting of Graphical Realizations

Fig 4. Case 2b * = forbidden ¢ = 0/1/x.
doi:10.1371/journal.pone.0131300.g004

Some further technical details of the Sinclair’s method

In the last two sections we proved the rapidly mixing nature of our proposed MCMC method
on the 1F1S restricted degree sequence problems through a special instance of Sinclair’s
method, developed in [6]. However, we need slightly generalize this method in order to finish
the proof.

Let’s recall that the method takes two realizations, X and Y, of the same degree sequence. It
considers all possible ordered circuit decompositions of the symmetric difference of the edge
sets, then it uniquely decomposes each such decomposition into an ordered sequence
C=C,, ..., C, of oriented cycles. Based on this latter decomposition the method determines a
well defined unique path between X and Y in the Markov chain G.

To find this unique path the method first defines a sequence of “milestones”. These are dif-
ferent realizations X = Hy, H;, . . ., H,,,-1, H,,, = Y of the degree sequence where the edge set of
any two consecutive realizations H;_;, H; differ exactly in the edges along the cycle C;. (Until
this point no swap operation happened.)

In the next phase, for any particular i =0, . . ., m—1 the method determines a sequence of
valid swap operations transforming H; ; into H;—describing a unique path Z,, Z,, . . ., Z,
between H;_; and H; in the Markov chain G. This sequence of course depends on the available
swap operations. In [6] these are the usual (bipartite) circular C,-swap operations. In this work
these correspond to the restricted swap operations. These operations, while exchanging chords
in the realizations along the alternating cycle C;, also use some further chords. Therefore the
edge set of any Z; is not completely contained by E(X) U E(Y); there exist a small number of
edges in Z; which are non-edges in X and in Y, or non-edges in Z; but are edges in X and Y. If
Z;is between the milestones H;_;, and H;, then C; for k < i—1 alternates in Z;, and C; alternates
with a “small error”: there is a very small number of vertices where the alternation does not
hold.

Sinclair’s method requires this number to be small. In the original application this number is
actually one (See [6], Section 5, (F)(c).) In the original application this number is actually one.
Here, as we saw in Section “Milestones”, this number is three: that many bad chords may occur
after any particular ReDeSe. As we saw all these chords are adjacent to the same vertex u;.

These numbers are used by our method to determine the size of a parameter set B. This
parameter set must have a polynomial size. When we have one bad chord, then it is determined
by its end points—there are at most n” possibilities for them. This contributes with an #* multi-
plicative factor to the size of B. When we have at most three bad chords, then they can be

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 17/20

@’PLOS ‘ ONE

Approximate Counting of Graphical Realizations

chosen in at most n* ways: vertex u; is fixed (n different choices), while the other three end
points can be chosen at most #” independent ways. Altogether it contributes with an at most r*
multiplicative factor to the size of B. This remark finishes the proof for the case of 1F1S
restricted swap operations.

1F1S Restricted Degree Sequence Problem is a Self-Reduced
Counting Problem

In Computer Science there are two special complexity classes, FPRAS and FPAUS, which are
concerned with the approximability of counting problems. One can find detailed definitions
for these complexity classes, for example, in [7]. Here we only give a sketchy description of the
points that are important to our case.

Roughly speaking a counting problem is in FPRAS (Fully Polynomial Randomized Approx-
imation Scheme) if the number of solutions can be estimated fast with a randomized algorithm,
such that the estimation has a small relative error with high probability.

A counting problem is in FPAUS (Fully Polynomial Almost Uniform Sampler) if the solu-
tion can be sampled fast with a randomized algorithm that generates samples following a distri-
bution being very close to the uniform one.

It is easy to see that a counting problem is in FPAUS if there is a rapidly mixing Markov
chain for which

« astarting state can be generated in polynomial running time;
« one step in the Markov chain can be conducted in polynomial running time; and

o the relaxation time of the Markov chain grows only polynomially with the size of the
problem.

The Markov chain we defined in the 1F1S problem satisfies all these requirements.

Jerrum, Valiant and Vazirani proved that any self-reducible counting problem is in FPRAS
iff it is in FPAUS [7]. A counting problem is self-reducible if the solutions for any problem
instance can be generated recursively such that after each step in the recursion, the remaining
task is another problem instance from the same problem, and the number of possible branches
at each recursion step is polynomially bounded by the size of the problem instance.

Clearly, a graph with prescribed degree sequence can be built recursively by telling the
neighbors of a node at each step, then removing the node in question and reducing the degrees
of the selected neighbors. However, this type of recursion does not satisty all the requirement
for being self-reducible since there might be exponentially many possibilities how to select the
neighbors of a given vertex.

On the other hand, the degree sequence problem with a forbidden one factor and one star is
a self-reducible counting problem. Indeed, consider the center of the (possibly empty) star, s €
U, and the vertex v € V with the smallest index for which (s, v) is a chord. Any solution for the
current problem instance belongs to one of the following two cases:

o The chord (s, v) is not present in the solution. In this case, extend the size of the star by add-
ing chord (s, v) to the forbidden set, and do not change the degrees. This is another problem
instance from the 1F1S problem, whose solutions are the continuations of the original prob-
lem belonging to this case.

o The chord (s, v) is present in the solution. In this case, extend the size of the star by adding
chord (s, v) to the forbidden set, and decrease both d, and d, by one. The new degree
sequence is still a bipartite 1F1S restricted degree sequence which is half-regular in class U

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 18/20

@’PLOS ‘ ONE

Approximate Counting of Graphical Realizations

(except, possibly, at vertex s), and the solutions of this new problem extended with the previ-
ously decided step provide solutions to the original problem.

Since the 1F1S counting problem is a self reducible counting problem, and we proved that it is
in FPAUS therefore it is also in FPRAS: via our sampling process one can solve the approxi-
mate counting problem with high probability.

We finish this paper with a short analysis of the connections between our approach and the
paper [18] of Jerrum, Sinclair and Vigoda. Their seminal result from 2004 solved the uniform
sampling problem of perfect 1-factors of a given graph. As their Corollary 8.1 pointed out this
method can be applied for uniform sampling of the set of all possible realizations of a given f-
factor of a complete graph. It also proves that the problem is in FPAUS therefore in FPRAS as
well.

Since the restricted degree sequence problem in general is equivalent to the f-factor prob-
lem, therefore our 1F1S ReDeSe problem is only a special case of the f-factor problem, so the
JSV result applies to it. This describes the similarity.

The important differences lay in the swap operations applied in the JSV method and in the
Kannan-Tetali-Vempala Markov chain. In the JSV method a special graph & is introduced for
the sampling via Tutte’s gadgets. Then the swap operations are working on the graph & with
the unintended result that for a (sometimes very long) sequence of swaps does not change at all
the generated f-factor. Combining this issue with the known relative slow mixing time of the
Jerrum-Sinclair-Vigoda’s Markov chain, the resulted approach in not suitable for any practical
application.

Our Markov chain operates in the original graph and each jump provides a new realization
of the original degree sequence problem. Therefore our Markov chain is presumably much
faster than the JSV chain, furthermore the JSV theorem does not proves the rapidly mixing
nature of our Markov chain. Similarly it does not prove that this Markov chain is a self reduc-
ible procedure.

Acknowledgments

PLE and IM acknowledge financial support from grant #FA9550-12-1-0405 from the U.S. Air
Force Office of Scientific Research (AFOSR) and the Defense Advanced Research Projects
Agency (DARPA). PLE was partly supported by the Alexander von Humboldt-Foundation,
when this author visited Universitdt Hamburg in Fall of 2014. SZK was partly supported by
Hungarian NSF, under contract K77476 and NK105645. IM was partly supported by Hungar-
ian NSF, under contract PD84297. LS was partly supported by Hungarian NSF, under contract
NK 83726

A preliminary version of this paper can be found as arXiv 1301.7523

Author Contributions
Wrote the paper: PLE SZK IM LS.

References

1. Newman, M.E.J., Barabasi, A.L., Watts, D.J.: The Structure and Dynamics of Networks (Princeton
Studies in Complexity, Princeton UP) (2006), pp 624.

2. Newman M.E.J.: Networks: An Introduction Oxford University Press, March 2010, pp. 784.

Kannan R., Tetali P., Vempala S.: Simple Markov-chain algorithms for generating bipartite graphs and
tournaments, Rand. Struct. Alg. 14 (4) (1999), 293-308. (It's extended abstract was published in the
proceeding of FOCS 1997.) doi: 10.1002/(SICI1)1098-2418(199907)14:4%3C293::AID-RSA1%3E3.0.
CO2-G

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 19/20

http://dx.doi.org/10.1002/(SICI)1098-2418(199907)14:4%3C293::AID-RSA1%3E3.0.CO;2-G
http://dx.doi.org/10.1002/(SICI)1098-2418(199907)14:4%3C293::AID-RSA1%3E3.0.CO;2-G

@’PLOS ‘ ONE

Approximate Counting of Graphical Realizations

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

Cooper C., Dyer M., Greenhill C.: Sampling regular graphs and a peer-to-peer network, Comb. Prob.
Comp. 16 (4) (2007), 557-593. doi: 10.1017/S0963548306007978

Greenhill C.: A polynomial bound on the mixing time of a Markov chain for sampling regular directed
graphs, Elec. J. Combinatorics 18 (2011), #P234.

Miklds I., Erdés P.L., Soukup L.: Towards random uniform sampling of bipartite graphs with given
degree sequence, Electronic J. Combinatorics 20 (1) (2013), #P16, 1-49.

Jerrum M. R,, Valiant L. G., Vazirani V. V.: Random generation of combinatorial structures from a uni-
form distribution, Theoret. Comput. Sci., 43 (2-3) (1986), 169—188. doi: 10.1016/0304-3975(86)
90174-X

Sinclair A.: Improved bounds for mixing rates of Markov chains and multicommodity flow, Combin. Pro-
bab. Comput. 1(1992), 351-370. doi: 10.1017/S0963548300000390

Havel V.: A remark on the existence of finite graphs. (in Czech), Casopis Pést. Mat. 80 (1955), 477—
480.

Hakimi S.L.: On the realizability of a set of integers as degrees of the vertices of a simple graph. J.
SIAM Appl. Math. 10 (1962), 496-506. doi: 10.1137/0110037

Kim Hyunju, Toroczkai Z., Erdés P.L., Mikiés |., Székely L.A.: Degree-based graph construction, J.
Phys. A: Math. Theor. 42 (2009) 392001 (10pp) doi: 10.1088/1751-8113/42/39/392001

Gale D.: A theorem on flows in networks, Pacific J. Math. 7 (2) (1957), 1073—-1082. doi: 10.2140/pjm.
1957.7.1073

Petersen J.: Die Theorie der regularen Graphen, Acta Math. 15 (1891), 193-220. doi: 10.1007/
BF02392606

Ryser H. J.: Combinatorial properties of matrices of zeros and ones, Canad. J. Math. 9 (1957), 371—
377.doi: 10.4153/CJM-1957-044-3

Kleitman D.J., Wang D.L.: Algorithms for constructing graphs and digraphs with given valences and
factors, Discrete Math. 6 (1973), 79-88. doi: 10.1016/0012-365X(73)90037-X

Erdés P.L., Miklos ., Toroczkai Z.: A simple Havel-Hakimi type algorithm to realize graphical degree
sequences of directed graphs, Elec. J. Combinatorics 17 (1) (2010), R66 (10pp)

Tutte W.T.: The factors of graphs, Canad. J. Math. 4 (1952), 314-328. doi: 10.4153/CJM-1952-028-2

Jerrum M.R., Sinclair A., Vigoda E.: A Polynomial-Time Approximation Algorithm for the Permanent of
a Matrix with Nonnegative Entries, Journal of the ACM 51(4) (2004), 671-697. doi: 10.1145/1008731.
1008738

Erd6s P.L., Kiraly Z., Miklos 1.: On graphical degree sequences and realizations, Combinatorics, Prob-
ability and Computing 22 (3) (2013), 366—383. doi: 10.1017/S0963548313000096

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10,2015 20/20

http://dx.doi.org/10.1017/S0963548306007978
http://dx.doi.org/10.1016/0304-3975(86)90174-X
http://dx.doi.org/10.1016/0304-3975(86)90174-X
http://dx.doi.org/10.1017/S0963548300000390
http://dx.doi.org/10.1137/0110037
http://dx.doi.org/10.1088/1751-8113/42/39/392001
http://dx.doi.org/10.2140/pjm.1957.7.1073
http://dx.doi.org/10.2140/pjm.1957.7.1073
http://dx.doi.org/10.1007/BF02392606
http://dx.doi.org/10.1007/BF02392606
http://dx.doi.org/10.4153/CJM-1957-044-3
http://dx.doi.org/10.1016/0012-365X(73)90037-X
http://dx.doi.org/10.4153/CJM-1952-028-2
http://dx.doi.org/10.1145/1008731.1008738
http://dx.doi.org/10.1145/1008731.1008738
http://dx.doi.org/10.1017/S0963548313000096

