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Abstract
The matching hypothesis in social psychology claims that people are more likely to form a

committed relationship with someone equally attractive. Previous works on stochastic mod-

els of human mate choice process indicate that patterns supporting the matching hypothe-

sis could occur even when similarity is not the primary consideration in seeking partners.

Yet, most if not all of these works concentrate on fully-connected systems. Here we extend

the analysis to networks. Our results indicate that the correlation of the couple’s attractive-

ness grows monotonically with the increased average degree and decreased degree diver-

sity of the network. This correlation is lower in sparse networks than in fully-connected

systems, because in the former less attractive individuals who find partners are likely to be

coupled with ones who are more attractive than them. The chance of failing to be matched

decreases exponentially with both the attractiveness and the degree. The matching hypoth-

esis may not hold when the degree-attractiveness correlation is present, which can give rise

to negative attractiveness correlation. Finally, we find that the ratio between the number of

matched couples and the size of the maximum matching varies non-monotonically with the

average degree of the network. Our results reveal the role of network topology in the pro-

cess of human mate choice and bring insights into future investigations of different matching

processes in networks.

Introduction
The process of pairing and matching between members of two disjoint groups is ubiquitous in
our society. The underlying mechanism can be purely random, but in general decisions on se-
lections are guided by rational choices, such as the relationship between advisor and advisee,
the employment between employer and employee and the marriage between heterosexual male
and female individuals. In many of these cases, similarities between the two paired parties are
widely observed, such as similar research interests between the advisor and advisee and
matched market competitiveness between the executives and the company. The principle of
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homophily, the tendency of individuals to associate and bond with others who are similar to
them, can be applied to explain such similarities [1]. Yet, in some cases different mechanisms
may be at work in addition to simply seeking similarities. For example, it has been discovered
that people end up in committed relationship in which partners are likely to be of similar at-
tractiveness, as predicted by the matching hypothesis in the field of social psychology [2, 3].
However, if the closeness in attractiveness is the goal when searching for partners, one needs
an objective self-estimation of it, which is rarely the case [4]. Furthermore, it is found in social
experiments that people tend to pursue or accept highly desirable individuals regardless of
their own attractiveness [3, 4]. These findings suggest that the observed similarities may not be
solely caused by explicitly seeking similarities. In some previous works, stochastic models are
applied to simulate the process of human mate choice [5–10]. By simply assuming that highly
attractive individuals are more likely to be accepted, the system generates patterns supporting
the matching hypothesis even when similarity is not directly considered in the partner selection
process [5]. Nevertheless, most if not all of these works (with a few recent exceptions [11–13])
concentrate on systems without topology, also known as fully-connected systems, in which one
connects to all others in the other party and competes with all others in the same party. In reali-
ty, however, one knows only a limited number of others as characterized by the degree distribu-
tion of the social network. Hence a simple but fundamental question arises: what is the
outcome of the matching process when topology is present?

In this work, we aim to address this question by analyzing the impact of network structure
on the specific example of the process of matching, namely, human mate choice. Our motiva-
tion to address this question is caused not only by the limited knowledge on this matter, but
also by the fact that topology could fundamentally change properties of the system and further
affect its dynamical process. We have witnessed evidence of such impact, accumulated in the
last decades from the advances towards understanding complex networks: a few shortcuts on a
regular lattice can drastically reduce the mean separation between nodes and give rise to the
small-world phenomenon [14, 15], the power-law degree distribution of scale-free networks
can eliminate the epidemic threshold of epidemic spreading [16, 17] and synchronization can
be reached faster in networks than in regular lattices [18–20]. Indeed, numerous discoveries
have been made in different areas when considering topology in the analysis of many classical
problems [21–30]. Hence it is fair to expect that the network topology would also bring new in-
sights on the matching process that we are interested in.

Methods
We start with a bipartite graph with 2N nodes. The bipartite graph consists of two disjoint sets
m and f of equal size, representing two parties, each with Nmembers. While our model can be
more general, for simplicity, we consider the two parties as collections of heterosexual male
and female individuals (Fig 1a). Each node, representing one individual, has k links drawn
from the degree distribution P(k), randomly connecting to k nodes in the other set. On average,
a node has hki = ∑kP(k) links, referred to the average degree of the network. To characterize
the process of human mate choice, each node is assigned a random number a as its attractive-
ness drawn uniformly from the range [0,1). Combining features in some previous works [5, 8]
with the network structure, we consider the process of human mate choice as a two-step sto-
chastic process which generates the numerical model as follows (Fig 1b):

1. At each discrete time step, randomly pick a link. Let’s denote the nodes connected by this
link as node i and node j and their attractiveness as ai and aj, respectively.
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2. Draw two random numbers independently and uniformly from the range [0,1), denoted by
ri and rj. Check the matching condition defined as ai> rj and aj > ri.

3. If the matching condition is satisfied and nodes i and j are not in a relationship with each
other, pair them into intermediate pairing and dissolve them from any previous intermedi-
ate pairing with other nodes, if there are any.

4. If the matching condition is satisfied and nodes i and j are already in the intermediate pair-
ing with each other, join them into the stable couple. Make nodes i and j unavailable to oth-
ers by removing them from the network together with all their links.

5. Repeat from step 1 until there is no link left.

The matching condition in step 2 ensures that individuals mutually accept each other. The
decision making is probabilistic: the probability that node i accepts node j is aj (independent of
its own attractiveness ai). A pairing is successfully established only when both individuals de-
cide to accept each other. The intermediate pairing created in step 3 corresponds to the tenden-
cy of people not to fully commit to a relationship at the beginning and to form a stable couple
only after such unstable intermediate stage. The removal of nodes and links in step 4 merely ac-
celerates the simulation, as these links should not be considered by others and the correspond-
ing nodes in the stable state are not available for matching. Undoubtedly our model only
captures a very small fraction of features in the matching process. The goal of this work is not
to propose a sophisticated model that is able to regenerate all observations in reality. Instead,

Fig 1. (a) An example of a bipartite graph, which is composed of two disjoint sets of nodesm and f. There is no link between nodes in the same set and the
connection between sets is characterized by degree distribution P(k). (b) The action scheme of the mate choosing process. Two nodes i and j have to
undergo an intermediate stage to reach the stable long term relation. During the intermediate stage nodes i and j are also available to build relationship with
other nodes. If this happens they break and their relationship is back to the initial state.

doi:10.1371/journal.pone.0129804.g001
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we focus on attractiveness and popularity (degree) that are essential in this process, hence this
model could be the simplest to study the interplay between these two factors, shedding light on
the effect of topology on this process.

To study the effects of topology, we focus on three most commonly used network structures
with different degree distributions. 1) random k-regular graph (RRG) whose degree distribu-
tion follows a delta function P(k) = δ(k−hki), where hki is the average degree of the network,
corresponding to an extreme case that each person knows exactly the same number of others;
2) Erdős-Rényi network (ER) with a Poisson degree distribution P(k) = e−hkihkik/k!, represent-
ing the situation that most nodes have similar number of neighbors and nodes with very high
or low degrees are rare [31]; 3) scale-free network (SF) generated via static model whose degree
distribution has a fat-tail P(k)* k−γ, featuring a large number of low degree nodes and few
high degree hubs [32, 33]. The constructions of these networks are as follows.

Constructing a random k-regular graph.We start from two sets (setsm and f) of N discon-
nected nodes indexed by integer number i (i = 1,. . .N). For each node i in the setm, connect it
to nodes i, i+1, . . . and i+k−1 in the set f (using periodic boundary condition such that node N
in the setm connects to node N, 1, . . . and k−2 in the set f, and so on). Then randomly pick two
links, assuming that one link connects nodes i in the setm and j in the set f and the other con-
nects nodes i0 in the setm and j0 in the set f. Check if there is a connection between nodes i and
j0 and nodes i0 and j. If not, remove original links and connect nodes i and j0 and nodes i0 and j.
Repeat this process sufficiently large number of times such that connections of the network are
randomized.

Constructing an Erdős-Rényi network.We start from two sets (setsm and f) of N discon-
nected nodes indexed by integer number i (i = 1,. . .N). Randomly select two nodes i and j re-
spectively from setsm and f. Connect nodes i and j if there is no connection between them.
Repeat the procedure until Nhki links are created.

Constructing a scale free network. The scale-free networks analyzed are generated via the
static model. We start from two sets (setsm and f) of N disconnected nodes indexed by integer
number i (i = 1,. . .N). The weight wi = i−α is assigned to each node, where α is a real number in
the range [0,1). Randomly selected two nodes i and j respectively from setsm and f, with proba-
bility proportional to wi and wj. Connect nodes i and j if there is no connection between them.
Repeat the procedure until Nhki links are created. The degree distribution under this construc-

tion is PðkÞ ¼ ½hkið1�aÞ=2�1=a
a

Gðk�1=a;hkið1�aÞ=2Þ
Gðkþ1Þ where Γ(s) the gamma function and Γ(s, x) the upper

incomplete gamma function. In the large k limit, the distribution becomes

PðkÞ � k�ð1þ1
aÞ ¼ k�g.

Introducing correlations between the attractiveness and the degree.We generate 2N ran-
dom numbers drawn between 0 and 1 and sort them in ascending order and index them by in-
teger number i (i = 1, . . . 2N). We sort nodes of networks in ascending order of their degrees
and index them by integer number j (j = 1, . . . 2N). For positive correlation between the degree
and attractiveness, assign ith random number as the attractiveness of node j = i. For negative
correlation between the degree and attractiveness, assign ith random number as the attractive-
ness of node j = 2N−i+1.

Results

Effects of Network Topology on the Correlation in Attractiveness
The matching hypothesis suggests similarities in attractiveness between the two coupled indi-
viduals. To test it, we employ the Pearson coefficient of correlation ρ as a measure of similarity,
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that is defined as

r ¼
Pn

i ðam;i � �amÞðaf ;i � �af ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ðam;i � �amÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ðaf ;i � �af Þ2

q ; ð1Þ

where am, i and af, i are the attractiveness of the individuals in setsm and f of the ith couple, �am

and �af are the average attractiveness of the matched individuals in setsm and f and n is the

number of matched couples in the network. The Pearson coefficient of correlation ρ varies
from -1 to 1, where 1 corresponds to the strongest positive correlation when two quantities are
perfectly linearly increasing with each other, whereas -1 is the strongest negative correlation
when two quantities are perfectly linearly dependent and one decreases when the other
increases.

We first check the scenario studied in most of the previous works, when topology is not con-
sidered and each node is potentially able to match an arbitrary node in the other set. Our
model generates a high correlation of the couple’s attractiveness with the average ρ� 0.56
(Fig 2a). This value is similar to the result generated in the previously proposed model which
accounts also for attractiveness decay [5] even though this feature is not present in ours. It is
noteworthy that similarity is not explicitly considered when establishing a matching in this
model and each individual only seeks attractive partners. However, the mutual agreement be-
tween two individuals effectively depends on the joint attractiveness of both. Hence individuals
with high attractiveness will have the advantage in finding highly attractive partners, causing
them to be removed from the dynamics soon, while less attractive individuals find their
matches later. Therefore, as time goes on, only less and less attractive individuals are available
to form a couple, thus they are more likely to get a partner with similar attractiveness.

The positive correlations in attractiveness are also observed in all three classes of networks
studied. They are lower than the correlation observed in the fully-connected systems but in-
crease monotonically with the average degree hki. Furthermore, as the network degree distribu-
tion varies from a delta function to a Poisson distribution and to a fat-tail distribution, the
variance in the degree distribution increases. Our results indicated that for a given hki, ρ de-
creases with the increased degree diversity (Fig 2a). In other words, the broader the degree dis-
tribution is, the lower the correlation in attractiveness between the two coupled individuals will
be. The reason is that as the degree diversity increases, more and more links are connected to a
few high degree nodes. The majority of nodes have lower degrees compared to the network
with the same degree but smaller degree diversity. Hence the majority of nodes have less oppor-
tunities in selecting partners and therefore smaller chance to find a partner with closely
matched attractiveness. As the result the attractiveness correlation decreases.

While the correlation in attractiveness is strongest when the system is fully-connected, we
find that the difference in the correlations is caused mostly by the matched individuals with
low attractiveness. Indeed, the average attractiveness of those who are coupled with highly de-
sired individuals does not depend much on the presence of the network structure (Fig 2b–2d).
In fully-connected systems, less attractive individuals are bound to be coupled with partners of
low attractiveness, which contributes significantly to the total correlation ρ. In sparse networks,
however, if they successfully find partners, their partners are likely to be more attractive than
them. Therefore, the limited choice in sparse networks reduces competitions among individu-
als, especially for those with low attractiveness, hence giving rise to lower attractiveness correla-
tions between the two coupled individuals.

In fully-connected systems all individuals are able to find their partners. But in networks
one faces a chance of failing to be matched. How often it occurs depends on one’s popularity
(degree) and attractiveness. Here we consider Pnot(a, k) defined as the probability of failing to
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be matched conditioned on degree k and attractiveness within the range [a−0.05, a+0.05). We
find that Pnot(a, k) drops exponentially with both degree k and attractiveness a. This implies
that getting more popular brings the similar benefit as being more attractive in terms of finding
a partner (Fig 3).

So far we have concentrated only on cases where there is no correlation between one’s popu-
larity (degree) and attractiveness. In reality these two features are often correlated. On one
hand, the positive correlation is somewhat expected as a highly attractive person can potential-
ly be also very popular hence having a larger degree. On the other hand, negative correlation
could also occur when those with low attractiveness are more active in making friends to

Fig 2. (a) The Pearson coefficient of correlation ρ of the attractiveness between the two coupled individuals in different systems. ρ is strongest in fully-
connected systems. In sparse networks, ρ increases monotonically with the average degree hki and decreases with the degree diversity. For all cases
investigated, system size is 2N andN = 10,000. (b) The average attractiveness �af of individuals in the set f who are matched with those in a subset ofm with
attractiveness in the range [am−0.05, am+0.05) for a series of points am. In fully-connect systems, the less attractive individuals are bound to be coupled with
ones who are also less attractive. In sparse networks, however, they are coupled with ones who are more attractive. (c) The attractiveness contour figure of
the coupled individuals in Erdős-Rényi networks with average degree hki = 5. A pattern emerges even when similarity is not the motivation in seeking
partners. am and af are the attractiveness of nodes in setsm and f, respectively. (d) The attractiveness contour figure of the coupled individuals in fully-
connected systems. The correlation is strongest towards the less attractive individuals (the circled part).

doi:10.1371/journal.pone.0129804.g002
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balance their disadvantage in attractiveness. We extend our analysis to two extreme cases when
degree and attractiveness are correlated (see Method). For a given network topology, the corre-
lation of attractiveness (ρ) is strongest when the degree and the attractiveness are positively
correlated and weakest when they are negatively correlated. It is noteworthy that with negative
degree-attractiveness correlation, ρ can become negative in networks with low hki, suggesting
that the matching hypothesis may not hold in such networks even though the underlying
mechanism does not change (Fig 4).

Number of Couples Matched
Another quantity affected by topology and typically studied is the number of couples a system
can eventually match n[13, 34]. When the system is fully-connected, everyone can find a part-
ner and the number of couples is n = N. In sparse networks, typically there are fewer matched
couples than N and the highest number of matched couples nmax is given by the maximum
matching which disregards the attractiveness [35, 36]. To measure the performance of the sys-
tem in terms of the matching, we focus on the quantity R = n/nmax defined as the ratio between
the number of couples matched and the size of the maximum matching. While both the num-
ber of the couples matched and the size of the maximum matching increase monotonically as
the network becomes denser (Figs 5a, 5b), their ratio R changes non-monotonically with hki
(Fig 5c). The system’s performance can be relatively good when the network is very sparse or
very dense, but relatively poor for the intermediate range of density. This is mainly because
when more links are added to the system, the number of couples matched increases slower
than the size of the maximum matching; only when this size becomes saturated to N the ratio R
starts to increase with hki.

Correlation between the degree and attractiveness also plays a role in the value of R achieved
by a network. The maximum matching nmax depends only on the topology of the network and
does not depend on the attractiveness. A successful matching between two nodes in our model,

Fig 3. (a, b) The probability of failing to bematched conditioned on attractiveness a and degree k (Pnot(a, k)) decreases exponentially with a and k
in scale-free networks with P(k)* k−γ, γ = 3 and hki = 5.

doi:10.1371/journal.pone.0129804.g003

An Analysis of the Matching Hypothesis in Networks

PLOS ONE | DOI:10.1371/journal.pone.0129804 June 17, 2015 7 / 12



however, depends on both their attractiveness and their degrees. Therefore, R depends on the
degree-attractiveness correlation. In both cases when either positive or negative correlation be-
tween degree and attractiveness is present, R varies non-monotonically with hki just like in the
case when there is no degree-attractiveness correlation (Fig 5d). However, negative correlation
between degree and attractiveness yields more while positive correlation yields fewer matched
couples than that when degree and attractiveness are uncorrelated. Considering the fact that
the similarity between the two coupled individuals (ρ) is largest in networks with positive de-
gree-attractiveness correlation and smallest with negative degree-attractiveness correlation,
such a dependence of R on degree-attractiveness correlation implies that the system’s perfor-
mance in terms of the number of matched couples is better when it is less selective.

Discussion
In summary, we studied the effect of topology on the process of human mate choice. In general,
our findings support the conclusion of the previous works that similarities in attractiveness be-
tween coupled individuals occur even though the similarity is not the primary consideration in
searching for partners and each individual only seeks attractive partners, in agreement with the

Fig 4. The Pearson coefficient of correlation ρ of the attractiveness between the two coupled individuals in Erdős-Rényi networks with size 2N
(N = 10,000) and varying average degree hki. ρ increases monotonically in all three cases analyzed. However, ρ is largest in networks where the degree
and the attractiveness are positively correlated. When they are negatively correlated, ρ is weakest and can even be negative.

doi:10.1371/journal.pone.0129804.g004
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matching hypothesis. When topology is present, the extent of such similarity, measured by
Pearson coefficient of correlation, grows monotonically with the increased average degree and
decreased degree diversity of the network. The correlation is weaker in sparse networks because
in them the less attractive individuals who are successful in finding partners, are likely to be
coupled with more attractive mates. In fully-connected systems, however, they are almost cer-
tain to be coupled with partners also less attractive, contributing significantly to the total attrac-
tiveness correlation.

Another effect of the topology is that one faces a chance of failing to find a partner. Such the
chance decays exponentially with one’s attractiveness and degree, therefore being more popular
can bring benefits in terms of finding a partner similar to being more attractive. The correlation
of couple’s attractiveness is also affected by the degree-attractiveness correlation, which is

Fig 5. (a) The size of the maximummatching nmax increases monotonically with the average degree hki in different networks. (b) The number of matched
couples n increases monotonically with the average degree hki in different networks. (c) The ratio between the number of matched couples and the size of
the maximummatching (R = n/nmax) varies non-monotonically with the average degree hki. (d) Different behaviors of R in Erdős-Rényi networks where the
correlation between degree and the attractiveness varies. Negative correlation between the degree and the attractiveness yields the largest R while positive
correlation between the degree and the attractiveness results in the smallest R. Networks tested in all cases are with size 2N (N = 10,000).

doi:10.1371/journal.pone.0129804.g005
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strongest in networks where attractiveness and popularity are positively correlated and weakest
when they are negatively correlated. In networks with negative degree-attractiveness correla-
tion, the attractiveness correlation between coupled individuals can be negative when the aver-
age degree is low, implying that matching hypothesis may not hold in such systems. Finally,
the number of couples matched also depends on the topology. The ratio between the number
of matched couples and the maximum number of couples that can be matched, denoted as R,
changes non-monotonically with the average degree. R is largest in networks with negative de-
gree-attractiveness correlation and smallest when the attractiveness and the popularity are pos-
itively correlated.

The non-monotonic behavior of the matching ratio R is also interesting from a stochastic
optimization viewpoint: the simple trial-and-error matching process, governed and con-
strained by individuals’ attractiveness, fares reasonably well everywhere (against the maximum
attainable matching on a given bipartite graph), except for a narrow intermediate sparse region
(Fig 5). The “worst-case” average degree depends strongly on network heterogeneity but not on
degree-attractiveness correlations.

Our results revealed the role of topology in the process of human mate choice and can bring
further insights into the investigations of different matching processes in different networks
[13, 34, 37–39]. Indeed, in this work we focused only on the basic model of the mate seeking
process in random networks. However, different variations can be considered. For example,
there is no degree correlation between the two coupled individuals observed in our model, sim-
ply because the networks we studied are random with no assortativity. In reality, the connec-
tion may not be random and then assortativity can be considered. Furthermore, the networks
in our model are static and the degree of a node does not change with time. In reality, a node
may gain or lose friends and consequently its degree may change. Likewise, stable matching be-
tween individuals does not have to last forever, it just needs to be an order of magnitude longer
than unstable matching. It is possible to establish certain rates to stable matching dissolution
and analyze the steady state behavior of so generalized system. Finally, here we considered the
attractiveness as a one dimensional attribute of individuals. In more realistic scenarios, attrac-
tiveness can be a multi-dimensional variable with different merits [9, 40, 41]. Investigations of
such more complicated cases are left to future work.
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