
RESEARCH ARTICLE

Weighted Statistical Binning: Enabling
Statistically Consistent Genome-Scale
Phylogenetic Analyses
Md Shamsuzzoha Bayzid1, Siavash Mirarab1, Bastien Boussau2, TandyWarnow3*

1Department of Computer Science, University of Texas at Austin, Austin, Texas, USA, 2 Laboratoire de
Biométrie et Biologie Évolutive, Université de Lyons, France, 3 Department of Computer Science, University
of Illinois at Urbana-Champaign, Urbana, IL, USA

* warnow@illinois.edu

Abstract
Because biological processes can result in different loci having different evolutionary histo-

ries, species tree estimation requires multiple loci from across multiple genomes. While

many processes can result in discord between gene trees and species trees, incomplete

lineage sorting (ILS), modeled by the multi-species coalescent, is considered to be a domi-

nant cause for gene tree heterogeneity. Coalescent-based methods have been developed

to estimate species trees, many of which operate by combining estimated gene trees, and

so are called "summary methods". Because summary methods are generally fast (and

much faster than more complicated coalescent-based methods that co-estimate gene trees

and species trees), they have become very popular techniques for estimating species trees

from multiple loci. However, recent studies have established that summary methods can

have reduced accuracy in the presence of gene tree estimation error, and also that many bi-

ological datasets have substantial gene tree estimation error, so that summary methods

may not be highly accurate in biologically realistic conditions. Mirarab et al. (Science 2014)

presented the "statistical binning" technique to improve gene tree estimation in multi-locus

analyses, and showed that it improved the accuracy of MP-EST, one of the most popular co-

alescent-based summary methods. Statistical binning, which uses a simple heuristic to

evaluate "combinability" and then uses the larger sets of genes to re-calculate gene trees,

has good empirical performance, but using statistical binning within a phylogenomic pipe-

line does not have the desirable property of being statistically consistent. We show that

weighting the re-calculated gene trees by the bin sizes makes statistical binning statistically

consistent under the multispecies coalescent, and maintains the good empirical perfor-

mance. Thus, "weighted statistical binning" enables highly accurate genome-scale species

tree estimation, and is also statistically consistent under the multi-species coalescent

model. New data used in this study are available at DOI: http://dx.doi.org/10.6084/m9.

figshare.1411146, and the software is available at https://github.com/smirarab/binning.
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Introduction
The estimation of phylogenetic trees, whether of individual loci (so called “gene trees”) or at
the genome-level (species trees), is a basic step in many biological analyses [1]. However, esti-
mating gene trees and species trees with high accuracy is difficult for many reasons, including
computational issues (nearly all problems are NP-hard) and dataset issues. For example, while
highly accurate gene trees can be computed for some loci, when a locus has limited phylogenetic
signal (e.g., its sequences are too short, or it evolves too slowly), its gene tree may only be esti-
mated with partial accuracy. Species tree estimation is also difficult, because different loci can
have different phylogenetic trees, a phenomenon that occurs due to several different biological
processes. In particular, many groups of species evolve with rapid speciation events, a process
that is likely to produce conflict between gene trees and species trees due to incomplete lineage
sorting (ILS) [2–5]. Furthermore, when ILS occurs, standard methods for estimating species
trees, such as concatenation (which combines sequence alignments from different loci into a
single “supermatrix”, and then computes a tree on the supermatrix) and consensus methods,
can be statistically inconsistent [6, 7], and produce highly supported but incorrect trees [8].
Because these standard methods for estimating species trees from multiple loci can be positive-
ly misleading in the presence of gene tree heterogeneity due to ILS, statistical methods (e.g.,
[9–13]) have been developed to estimate the species tree assuming all gene tree heterogeneity is
due to ILS and, in particular, not to poor phylogenetic signal.

Here we describe one of the recent approaches for estimating the species tree from a set of
multiple sequence alignments, one for each of p different loci on a set S of n species. We will as-
sume that the input sequence data are generated under a multi-step process, which we now
define:

Definition 1: Under the GTR+MSCmodel, gene trees evolve within a species tree under the
multi-species coalescent (MSC) model, and then sequences evolve down each gene tree under
the General Time Reversible (GTR) model [14]. The different gene trees are equipped with
their own GTR model parameters, and so the tree topologies, 4 × 4 substitution matrices, and
gene tree branch lengths can differ between the different genes.

Thus, under the GTR+MSC model, a method for estimating the species tree will begin with
the sets of sequences for the different loci, and then infer the species tree. There are many dif-
ferent types of methods to estimate species trees from sets of sequence alignments for multiple
loci, and we will refer to all of these methods as “phylogenomic pipelines”.

Definition 2: We will say that a phylogenomic pipeline is statistically consistent under the
GTR+MSC model if, as the number p of loci and the number k of sites in the sequence align-
ment for each locus both increase to infinity, then the estimated species tree converges in prob-
ability to the true species tree.

There are many phylogenomic pipelines that are statistically consistent under the GTR
+MSC model, but in this study we focus on pipelines that operate by first estimating gene trees
and then combining these estimated gene trees using a summary method. More specifically, we
will restrict the discussion to pipelines that use “coalescent-based” summary methods, as
follows:

Definition 3: A coalescent-based summary method is a method that estimates the species
tree by combining gene trees, and which converges in probability to the true species tree as the
number of true gene trees sampled from the distribution defined by the species tree increases.

Examples of coalescent-based summary methods include MP-EST [15], ASTRAL [16, 17],
STAR [13] and NJst [18]. Coalescent-based analyses of biological datasets typically use this
kind of pipeline, since they can be computationally more efficient than other types of
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coalescent-based analyses (for example, methods like �BEAST [19] that co-estimate the gene
trees and species tree).

Thus, we focus the discussion in this study on phylogenomic pipelines that have the follow-
ing basic structure:

• Step 1: a gene tree is estimated for each locus

• Step 2: the gene trees are combined into a species tree using a coalescent-based summary
method.

While many studies have explored the statistical properties of coalescent-based summary
methods given true gene trees, here we focus on their use when the input is a set of sequence
alignments for multiple loci. In this context, proofs of statistical consistency for GTR+MSC
phylogenomic pipelines have taken the following form [20]. First, gene trees are estimated
using a statistically consistent method, such as GTR maximum likelihood, and we assume that
the sequences for each locus are long enough that the true gene tree is computed with high
probability. Then, the species tree is estimated using a coalescent-based summary method.
Thus, the proofs of statistical consistency under the GTR+MSC model for common coalescent-
based summary methods (e.g., ASTRAL, MP-EST, NJst, etc.) have explicitly or implicitly as-
sumed that true gene trees are given as input to the summary method.

Little mathematical theory has been proven about the impact of gene tree estimation error
on coalescent-based summary methods; for example, it is not known whether standard sum-
mary methods will converge to the true species tree given a large enough number of gene trees,
if each gene tree is estimated from bounded length sequences [20]. Furthermore, empirical
studies suggest that summary methods are impacted by gene tree estimation error, and can
produce less accurate estimated species trees than concatenation when gene tree estimation
error is high enough (see [20–24] for examples of these studies on summary methods and fur-
ther discussion). In a genome-scale analysis, it is unlikely that all the loci will have substantial
phylogenetic signal, and so this vulnerability to gene tree estimation error means that coales-
cent-based summary methods may not be highly accurate techniques for estimating species
trees from genome-scale data. This is particularly problematic when the sequences for each
locus are kept short to diminish the probability of intra-locus recombination (which violates
the assumptions of the multi-species model), since short sequences will tend to have insuffi-
cient phylogenetic signal to provide full resolution of the gene trees; see [22, 24, 25] for discus-
sion about this important issue.

In [23], we developed a technique we called “Statistical Binning” to improve species tree es-
timation using phylogenomic pipelines based on coalescent-based summary methods. Statisti-
cal binning partitions the genes into sets based on a heuristic to evaluate “combinability”,
concatenates the gene sequence alignments within each set into a “supergene alignment”, and
then estimates a “supergene tree” on the supergene alignment using a fully partitioned maxi-
mum likelihood analysis. The newly estimated supergene trees are then used by the preferred
coalescent-based summary method to compute a species tree on the dataset. As shown in [23],
statistical binning improved the estimation of gene trees and gene tree distributions, and this
resulted in improved estimates of the species tree topology and branch lengths when species
trees were computed using MP-EST with multi-locus bootstrapping (MLBS). Furthermore,
when used with statistical binning, MP-EST was almost always at least as accurate as concate-
nation (more accurate than concatenation when the ILS level is high, and only less accurate
than concatenation for very low levels of ILS). Finally, MP-EST used with statistical binning
was used to compute a species tree on the avian phylogenomic dataset, and this “MP-EST�”
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tree was nearly identical to the concatenation analysis we obtained; the MP-EST� and concate-
nation trees were presented in [26] as the two major hypotheses for the avian phylogeny.

Thus, Mirarab et al. proposed a new type of phylogenomic species tree estimation pipeline
that has four steps instead of two (where the extra two steps are partitioning the genes into bins
based on perceived “incompatibility”, and computing supergene trees for each bin using a fully
partitioned maximum likelihood analysis). This pipeline, which we referred to as “statistical
binning”, showed very promising results when used with MP-EST. However, we did not ad-
dress the theoretical properties of these pipelines, we only examined model trees with 37 or
more species, and we only analyzed one coalescent-based summary method, MP-EST.

In this paper, we report on an extended evaluation of statistical binning. Specifically,

• We provide a proof of statistical inconsistency under GTR+MSC for pipelines based on the
original protocol for statistical binning presented in [23].

• We describe a variant of statistical binning that we call “weighted statistical binning”, and
provide a proof of statistical consistency under GTR+MSC for pipelines based on weighted
statistical binning.

• We evaluate the impact of statistical binning (both weighted statistical binning and the origi-
nal unweighted statistical binning technique) on biological and simulated datasets under the
GTR+MSC model. We examine pipelines using two coalescent-based summary methods,
ASTRAL and MP-EST. We include results on simulated and biological datasets studied in
[23], and also on additional simulated datasets with 10 and 15 taxa.

The study shows that weighted and unweighted statistical binning have very similar results
across most datasets, and also that both ASTRAL and MP-EST tend to improve in accuracy
when used with binning. However, there was one condition (characterized by a very high level
of ILS, low average bootstrap support for the gene trees, and only ten species) in which statisti-
cal binning reduced accuracy for both MP-EST and ASTRAL. Thus, this study shows that bin-
ning is often beneficial, but also that there are some conditions under which binning can
increase rather than decrease species tree error. Finally, we conclude with suggestions for fur-
ther research.

Weighted Statistical Binning
The statistical binning technique presented in [23] operates as follows. The input is a multiple
sequence alignment on each of p given genes, and a user-specified “threshold support” value
B< 1. The role of the threshold B is to specify which branches in the gene trees are considered
reliable, and which ones have support that is so low that the branches may be due to estimation
error. Therefore, if the trees on two genes differ only in their low support edges, the differences
are considered potentially consistent with estimation error, and the two genes are considered
“combinable” or “compatible”.

Statistical binning computes maximum likelihood (ML) gene trees and bootstrap support
on the branches for each gene, and then uses a simple heuristic based on bootstrap support val-
ues so that two genes can only be in the same bin if their ML gene trees do not have conflicting
branches, each with bootstrap support of at least B. This is the combinability test, so that two
genes are not considered combinable if they have highly supported conflicting branches, and
otherwise are considered combinable. (Equivalently, two genes are combinable if their ML
gene trees, after collapsing all branches with support less than B, share a common refinement.)
Finally, because pairwise compatibility ensures setwise compatibility [27], if a set of gene trees

Weighted Statistical Binning

PLOS ONE | DOI:10.1371/journal.pone.0129183 June 18, 2015 4 / 40



can be all put in the same bin, then there is a tree that combines all the highly supported
branches in any of the trees in the set.

Computing and using the incompatibility graph to bin the genes. The first step in statis-
tical binning creates a graph based on the input, and uses a graph-theoretic optimization to bin
the genes into subsets. Each gene is represented by a single vertex in the graph, and an edge is
placed between two genes if their gene trees are not combinable, based on the heuristic de-
scribed above. Determining if two genes are combinable can be computed in linear time [28],
and so this graph, which we call the incompatibility graph, can be computed in time linear in
the number of taxa and quadratic in the number of genes.

Since longer sequences tend to produce more accurate gene trees, having the bins be as large
as possible is desirable; this is accomplished indirectly by seeking a coloring with as few colors
as possible (i.e., a minimum vertex coloring), which is an NP-hard problem [29]. However,
summary methods, such as MP-EST, use the distribution of the gene trees to estimate the spe-
cies tree. Assuming gene tree reconstruction error only results in low-support branches, bin-
ning the genes so that the bins have nearly the same size means that the supergene tree
frequency will be close to the true gene tree distribution (assuming that binning combines
genes with the same tree, and that we can compute correct supergene trees). Note also that
with such a constraint, frequent true gene tree topologies will be represented in several bins,
while each of the rarest gene trees will be represented in a smaller number of bins (and perhaps
in only one bin). Therefore, the objective is a coloring of the vertices, using a small number of
colors, so that every color class contains about the same number of colors. To achieve such a
coloring, [23] modified the Brélaz heuristic [30] for minimum vertex coloring, so that during
the greedy coloring, a node is added to the smallest bin for which it has no conflicts. This color-
ing produces a partitioning of the vertices of the graph into subsets based on the color classes;
thus, all vertices with the same color are in the same bin.

Computing a supergene tree for each bin. Once the vertex coloring is computed, the
genes in a given color class form a bin, and their alignments are concatenated into a supergene
alignment. Then, a maximum likelihood tree is computed (perhaps with bootstrapping) on
each supergene alignment. For estimating supergenes, we use a fully partitioned analysis where
each gene is assigned a separate partition, and all numeric model parameters are allowed to dif-
fer between partitions. We call the trees that are computed on the supergene alignments “su-
pergene trees”. Because using a fully partitioned analysis is key to the theoretical guarantees of
statistical binning, we specifically discuss this step in the pipeline.

Concatenated ML analyses of alignments from different loci can be performed in many
ways, but their theoretical properties depend on the details of how they are performed, and in
particular whether they are performed using an unpartitioned analysis, or a partitioned analy-
sis. In an unpartitioned analysis, all the sites in the concatenated alignment are assumed to
evolve down a single model tree (i.e., topology and numeric parameters), and the model tree
maximizing the likelihood is sought for the matrix. In contrast, fully partitioned analyses of
concatenated alignments assume that the different loci all evolve down the same tree topology,
but allow the different parts within the concatenated alignment to have different values for all
of the numeric parameters of the model. In the context of the GTR model, a fully partitioned
maximum likelihood analysis would allow each locus to have its own 4 × 4 substitution matrix
and gene tree branch lengths. Thus, if there are 10 loci within the concatenated alignment, a
single tree topology is returned, but also ten different lengths for each branch, and ten different
4 × 4 substitution matrices. Fully partitioned and unpartitioned maximum likelihood analyses
can result in different trees, and these analyses have very different theoretical properties; see
the example provided in the Methods section, below.
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Applying summary methods to the supergene trees. The supergene trees are used by a
coalescent-based summary method (e.g., MP-EST) to estimate the species tree. In other words,
by recalculating the gene trees, statistical binning changes the input to the coalescent-based
summary method. Hence, statistical binning is a technique to re-estimate gene trees used with-
in the coalescent-based pipeline for species tree estimation, as shown in Fig 1.

Theoretical properties of pipelines based on statistical binning. Theorem 3 shows that
the use of statistical binning within a phylogenomic pipeline is not statistically consistent
under the GTR+MSC model. The failure to be statistically consistent occurs because we do not
require that the bins be equally sized; hence, the distribution on supergene trees can be different
from the true gene tree distribution.

However, a simple variation of the technique, which was suggested in [23], corrects this
problem. We keep the first step of statistical binning the same (i.e., we compute the same
incompatibility graph and then use the same heuristic for balanced minimum vertex coloring),
and we compute the same set of supergene trees. However, at this point we replicate every

Fig 1. Pipeline for unbinned analyses, unweighted statistical binning, and weighted statistical binning. The input to the pipeline is a set of sequences
for different loci across different species. In the traditional pipeline, a multiple sequence alignment and gene tree is computed for each locus, and then these
are given to the preferred coalescent-based summary method, and a species tree is returned. In the statistical binning pipeline, the estimated gene trees are
used to compute an incompatibility graph, where each vertex represents a gene, and an edge between two genes indicates that the differences between the
trees for these genes is considered significant (based on the bootstrap support of the conflicting edges between the trees). The vertices of the graph are then
assigned colors, based on a heuristic for balanced minimum vertex coloring, so that no edge connects two vertices of the same color. The vertices with a
given color are put into a bin, and the sequence alignments for the genes in a bin are combined into a supergene alignment. A (supergene) tree is then
computed for each supergene alignment using a fully partitioned analysis. In the unweighted binning approach (presented in [23]), these supergene trees are
then given to the preferred summary method, and a species tree is returned. In the weighted binning approach presented here, each supergene tree is
repeated as many times as the number of genes in its bin, and this larger set is then given to the preferred summary method.

doi:10.1371/journal.pone.0129183.g001
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supergene tree so that it appears as many times as the number of genes in its bin. For example,
if we begin with 100 genes, and obtain 20 bins, then the original statistical binning technique
would produce 20 supergene trees that would be given to MP-EST to analyze. In this modified
technique, if we begin with 100 genes, we end up with 100 supergene trees (although some su-
pergene trees will be identical). We call this technique “weighted statistical binning”, and refer
to the original technique proposed in [23] as “unweighted statistical binning”. We prove that
the use of weighted statistical binning is statistically consistent in Theorem 2.

Fig 1 describes the three possible pipelines (unbinned, unweighted binned, and weighted
binned) for use with a summary method. In the unbinned analysis, each gene is analyzed inde-
pendently, a gene tree is estimated for each gene, and then a summary method, such as
MP-EST, uses the gene trees to estimate the species tree. In both the weighted and unweighted
binned analyses, the gene trees are computed independently, and then the incompatibility
graph is formed with one vertex for each gene. In the shown example, there are 12 genes, and
so the graph has 12 vertices. The 12 vertices of the incompatibility graph are then assigned col-
ors, with two vertices colored purple, three vertices colored green, three vertices colored red,
and four vertices colored blue. Note that no two vertices of the same color have an edge be-
tween them. For each color class, the sequence alignments for the associated genes are
concatenated into one long supergene alignment, and a supergene tree is computed on the su-
pergene alignment using a fully partitioned maximum likelihood analysis. After this point, the
weighted and unweighted binning methods have different strategies. In the unweighted bin-
ning method, exactly one copy of each supergene tree is given as input to the summary method,
but in the weighted binning method multiple copies of the supergene trees are given as input.
Hence, in this example, MP-EST analyzes only four supergene trees in the unweighted binning
pipeline, but it analyzes 12 supergene trees in the weighted binning pipeline.

By design, if the bin sizes are exactly the same, then the statistical binning pipelines pro-
duced using weighted and unweighted statistical binning produce the same results; hence,
these two approaches can only produce different results when the binning is unbalanced.

Experimental Study
Datasets. We use the avian and mammalian simulated datasets studied in [23] (each based

on MP-EST analyses of biological datasets, and having at least 37 taxa) and two other collec-
tions of simulated datasets with 10 and 15 taxa. The simulated datasets range from moderately
low ILS (the lowest ILS mammalian condition) to extremely high ILS conditions (the higher
ILS 10-taxon and 15-taxon model conditions), and range in terms of average gene tree boot-
strap support (from very low to moderately high). Thus, the simulated datasets provide a range
of conditions in which we explore the impact of statistical binning. We also analyzed two
biological datasets (a 48-species avian dataset and a 37-species mammalian dataset) studied
in [23].

We used biologically-based simulated datasets that were studied in [23], and are based on
species trees estimated using MP-EST on the avian dataset of [26] and the mammalian dataset
of [31]. In the avian simulation, the markers vary in sequence length (250bp, 500bp, 1000bp,
and 1500bp) in order to produce bootstrap support values similar to those we observed in the
biological dataset. In the mammalian simulation, we again explored the impact of phylogenetic
signal by varying the sequence length (250bp, 500bp, and 1000bp) for the markers. In both
cases, three levels of ILS are simulated by multiplying or dividing all internal branch lengths in
the model species tree by two, and we also explore various numbers of genes. The mammalian
datasets range in ILS level from relatively low (18% average distance between true gene trees
and the species tree) for the 2X branch length level to relatively high (54% average distance
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between true gene trees and the species tree) for the 0.5X branch length level, and the average
bootstrap support on the estimated gene trees ranges from low (43%) for the shorter (250bp)
sequences to moderately high (79%) for the longest (1000bp) sequences. The avian datasets
have higher ILS levels than the mammalian datasets, and range from moderate (35% average
distance between true gene trees and the species tree) for the 2X branch length condition to
high (59% average distance between true gene trees and the species tree) for the 0.5X branch
length condition. The estimated gene trees range in average bootstrap support from very low
(27%) for the shortest (250bp) sequences to moderate (60%) for the longest (1500bp)
sequences.

We also used a 15-taxon model species tree with a caterpillar-like (also known as a pecti-
nate, or ladder-like) topology, which has 12 short internal branches (0.1 in coalescence units)
in succession, a condition that gives rise to high levels of ILS [8, 32]. Ultrametric gene trees
were simulated down this tree using the multi-species coalescent process (see Methods). Unlike
the biologically-based model conditions, no transformations of branch lengths were used, and
therefore, gene trees follow a strict molecular clock. Sequence data were simulated down each
gene tree, and we built four model conditions by trimming gene data to 100 or 1000 sites, and
by using 100 or 1000 genes. This dataset is very homogeneous since all 10 replicates we simu-
lated are based on the same species tree, and gene trees differ in topology and branch length
only due to the coalescence process. The 15-taxon datasets have very high ILS levels (82% aver-
age topological distance between true gene trees and the species tree), and so represent a rather
extreme condition. The gene trees estimated on the shorter sequences (100bp) had only 35%
average bootstrap support, and the combination of very high ILS and very low average boot-
strap support represents a very challenging condition. Gene trees estimated on the longer se-
quences have better average bootstrap support (70%), and so represent a somewhat easier
condition.

We also generated 10-taxon simulated datasets using simPhy [33]. In this simulation proto-
col, we simulated a different species tree for each replicate, and simulated 200 gene trees for
each species tree using the multi-species coalescent process. We simulated two model condi-
tions, one with very high ILS and another with somewhat lower (but still high) ILS. The simPhy
procedure uses a host of various distributions to make the gene trees heterogeneous in various
aspects, such as sequence lengths, deviation of branch lengths from the strict molecular clock,
and rate variation across different genes. We used these gene trees to simulate sequence data
with 100 sites using Indelible [34]. Therefore, our 10-taxon datasets are very heterogeneous:
different replicates have different species trees, and within each replicate, various genes have
different rates of evolution. The ILS levels of the 10-taxon datasets range from moderately high
(40% average distance from true gene trees to the species tree) for the “lower ILS” condition to
extremely high (84% average distance) for the “higher ILS” condition. The average bootstrap
support on the estimated gene trees ranged from 37% for the higher ILS condition to 45% for
the lower ILS condition, and so both have very poor average bootstrap support. Thus, the
10-taxon and the 15-taxon datasets with short sequences represent the hardest model condi-
tions in that they have very high ILS and very low average bootstrap support.

The simulated datasets we studied varied in many respects (sequence length per locus,
whether the sequence evolution is ultrametric or not, and the ILS level). Table 1 presents data
about the ILS level, as reflected in the average topological distance between the true gene trees
and the true species tree. Note that two of the model conditions (the 10-taxon higher ILS and
15-taxon datasets) have extremely high ILS, reflected in average topological distances between
the true gene trees and the species tree. In fact, most of the model conditions have high ILS lev-
els (with 30% or more average topological distance between the true gene trees and the species
tree), and only one model condition has low levels of ILS (the mammalian datasets with 2X
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branch lengths, which have 18% average topological distance between the true gene trees and
true species tree). It is likely that the “1X” ILS levels for the mammalian and avian simulated
datasets are larger than the ILS levels for the respective biological datasets, since the model
trees that were used to generate these data are based on MP-EST analyses of the datasets, and
results in [23] suggest that MP-EST estimations tend to under-estimate branch lengths, and
hence inflate estimated ILS levels.

Methods. We computed coalescent-based species trees using summary methods with
MLBS gene trees in three ways: without binning, with weighted statistical binning and with un-
weighted statistical binning. Our main focus is on MP-EST, but we explore results with AS-
TRAL on a subset of the data. ASTRAL estimates species trees given unrooted gene trees, and
can analyze very large datasets (such as the plant transcriptome dataset with approximately
100 species and 600 loci [35]); hence, ASTRAL can analyze larger datasets than MP-EST, and
so understanding the impact of binning on ASTRAL’s accuracy is of practical importance.

We perform statistical binning using both weighted and unweighted pipelines and using
two support thresholds (B): 50% and 75%. Due to the extremely large computational effort in-
volved, on our two large biologically-based simulated datasets, we explore one threshold for
most of our results; we follow the protocol used in [23] and set B = 50% for the avian datasets,
and B = 75% for the mammalian datasets. However, we also study the impact of B on one
model condition for avian and mammalian datasets.

We compute gene trees and concatenation species trees using RAxML [36] maximum likeli-
hood. For estimating supergene trees, we use fully partitioned RAxML analyses (using the −M
option to vary branch lengths across genes) for smaller (10- and 15-taxon) simulated datasets
and for all biological analyses. However, since partitioned analyses are expensive, we use
unpartitioned analyses to compute supergene trees for our studies on the avian and mammali-
an simulated datasets (because these studies are very extensive). We compare results using coa-
lescent-based summary methods to concatenation, also using unpartitioned maximum
likelihood. Note that the binned methods and the concatenation analysis would potentially be-
come more accurate if fully partitioned analyses were employed.

Measurements. For the simulated datasets, we explore species tree accuracy with respect
to the true (model) species tree topology (the missing branch rate, or false negative rate (FN))
and branch lengths, and also examine the branch support of both true positive and false posi-
tive branches. We also explore the error in the estimated gene trees and gene tree distribution

Table 1. Topological discordance between true gene trees and true species tree. For each collection of
simulated datasets (defined by the type of simulation and the ILS level), we show the average topological dis-
tance between true gene trees and the species tree.

Dataset ILS level Discordance (%)

Avian 2X 35

Avian 1X 47

Avian 0.5X 59

Mammalian 2X 18

Mammalian 1X 32

Mammalian 0.5X 54

10-taxon Lower ILS 40

10-taxon Higher ILS 84

15-taxon High ILS 82

doi:10.1371/journal.pone.0129183.t001

Weighted Statistical Binning

PLOS ONE | DOI:10.1371/journal.pone.0129183 June 18, 2015 9 / 40



estimated using binning (weighted and unweighted), compared to unbinned analyses. We ana-
lyze these simulated datasets using weighted statistical binning with MP-EST and ASTRAL, to
determine if there are differences between weighted and unweighted statistical binning. Since
ASTRAL does not produce branch lengths, we only use MP-EST to evaluate branch length esti-
mation. In addition, we examine the bootstrap support on the branches of estimated species
trees produced using MP-EST, as false positive edges that have low support are not as deleteri-
ous as false positive edges with high support. The bootstrap support of estimated species trees
was not studied in [23], and so this study provides the first analysis of bootstrap support for
MP-EST on these datasets, as well as of the impact of binning on bootstrap support values.

These aspects of phylogenomic estimation are important for different reasons. Species tree
topologies indicate which species are more closely related to each other than to others, and so
estimating accurate species tree topologies is the most important aspect of phylogenomic esti-
mation. However, the improvement in species tree (coalescent-unit) branch length estimation
is also biologically relevant, since these lengths are related to effective population sizes and gen-
eration times of ancestral species, and are also used to estimate the amount of ILS in the data.
Bootstrap support is important, since low support branches are often ignored, but high support
branches are generally assumed to be correct; hence, understanding whether a method returns
high support for false positive branches (indicating incorrect relations within a tree) is particu-
larly important. Improvements in estimating the gene tree distribution matter because the ac-
curacy of summary methods depends on an input that captures the correct gene tree
distribution.

For the biological datasets, we compare estimated species trees to the literature for each
dataset, focusing on whether the estimated species tree violates known subgroups for the
phylogeny.

Results and Discussion

Biologically-based simulated datasets
Gene tree error and gene tree distribution error on avian simulated datasets. We evalu-

ated the impact of statistical binning on gene tree estimation error for the 1X (default ILS)
model condition, with sequence lengths varying from 250bp to 1500bp. At the shorter se-
quence lengths, gene tree estimation error was reduced substantially (from 79% to 57% for
250bp, and from 69% to 57% for 500bp) (S1 Table). Gene tree estimation error was reduced
slightly at 1000bp (from 55% to 51%) and even less at 1500bp (from 46% to 45%). Hence,
when gene tree estimation error is high due to insufficient sequence length, then binning re-
duces gene tree estimation error, but binning has little impact on gene tree estimation error
when the sequences are long enough.

We measure the error in estimated gene tree distributions using the deviation of triplet fre-
quencies from the triplet frequency distribution computed using the true gene trees (see Mate-
rials and Methods). We express these results using a cumulative distribution over all possible
triplets and all replicates; hence, if a curve for one method lies above the curve for another
method, then the first method strictly improves on the second method with respect to estimat-
ing the gene tree distribution. In Fig 2(a) we show results for 1000 avian genes under default
ILS levels, as we vary the sequence length. In Fig 2(b) we show results with 1000 genes of length
500bp, varying the ILS level. In both cases, both weighted and unweighted binning are nearly
identical. Weighted and unweighted binning also show nearly identical gene tree distribution
errors under other conditions (see S1 Fig). Binning improves the accuracy of estimated gene
tree distributions in general, but not for the longest sequences (1500bp). Also, the
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Fig 2. Divergence of estimated gene tree (triplet) distributions from true gene tree distributions for MP-EST analyses of simulated avian datasets.
In (a), we vary the gene sequence length (250bp genes have the highest error, and 1500bp has the lowest error) and explore 1000 genes under default ILS
levels, and in (b) we vary the amount of ILS and fix the number of genes to 1000 and sequence length to 500bp. True triplet frequencies are estimated based

on true gene trees for each of the
n

3

! 
possible triplets, where n is the number of species. Similarly, triplet frequencies are calculated from estimated gene/
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improvement over unbinned analyses was highest for the lowest ILS level (2X species tree
branch lengths), but was high even for the highest ILS level we explored.

Species tree estimation error on avian simulated datasets. Fig 3 shows results for species
tree topology estimation error for analyses of avian genes of different length under the default
ILS level using MP-EST and ASTRAL, for varying number of 500bp genes with default ILS
using MP-EST, and for 1000 genes of 500bp with varying ILS using MP-EST. Weighted and
unweighted statistical binning are essentially identical for both MP-EST and ASTRAL (no sta-
tistically significant differences were observed according to a two-way ANOVA test; see Tables
2 and 3), and both reduce species tree estimation error compared to unbinned analyses (differ-
ences were always statistically significant with p< 0.001; see Tables 2 and 3).

The largest improvements are for the shortest gene sequences, where error is reduced from
23% to 14% using MP-EST and from 19% to 13% using ASTRAL. The difference between
binned and unbinned analyses is lower for 1000bp sequences, and there are no noteworthy dif-
ferences for 1500bp sequences (sequence length has a statistically significant impact; see Tables
4 and 5). When the number of genes is changed (see Fig 3(c)), the impact of binning on
MP-EST ranges from neutral to highly positive, and the largest improvements are for datasets
with large numbers of genes (impact of the number of genes is statistically significant; see
Table 4). The impact of binning is also significantly impacted by ILS levels (see Table 4), with
the largest improvements obtained for lower levels of ILS. In general, binning helps both AS-
TRAL and MP-EST, but MP-EST tends to be helped more than ASTRAL. For example, with
500bp genes, the error for MP-EST is reduced from 19% to 10% using binning, but error of AS-
TRAL is reduced from 15% to 9%.

Fig 4 shows the impact of binning on species tree branch length estimation error on the bio-
logically-based simulations using MP-EST; Fig 4(a) shows results on 1000 genes under default
(1X) ILS levels and varying gene sequence length, and Fig 4(b) shows results on 1000 genes of
500bp with varying ILS levels. Branch length estimation accuracy is reported using the ratio of
the estimated branch length to the true branch length, for those true branches recovered by the
method. Thus, values equal to 1 indicate perfect accuracy, values below 1 indicate under-esti-
mation of branch lengths (and hence over-estimation of ILS), and values above 1 indicate over-
estimation of branch lengths (and hence under-estimation of ILS).

Both types of binning (weighted and unweighted) produce nearly identical results with re-
spect to species tree branch length estimation (with a slight advantage for weighted analyses).
Unbinned analyses substantially under-estimate branch lengths, but as the sequence length in-
creases, the branch length estimations produced by unbinned analyses improve, so that they
are more accurate with 1500bp markers. The most accurate species tree branch length estima-
tion is obtained using true gene trees. Using binning (either type) improves branch length esti-
mation from estimated gene trees, and the improvement is very large for the shorter sequences
(Fig 4(a)). When levels of ILS are changed, weighted and unweighted binning are again close
(with a slight advantage for weighted), and show little change in branch length estimation with
changes in ILS levels; however, unbinned analyses substantially under-estimate branch lengths
for the lowest ILS model condition, and then become more accurate (although still under-

supergene trees. For each of these
n

3

 !
triplets, we calculate the Jensen-Shannon divergence of the estimated triplet distribution from the true gene tree

triplet distribution. We show the empirical cumulative distribution of these divergence scores. The empirical cumulative distribution shows the percentage of
the triplets that are diverged from the true triplet distribution at or below the specified divergence level. Results are shown for 10 replicates. We used 50%
bootstrap support threshold for binning, and estimated the supergene trees using RAxML with unpartitioned analyses.

doi:10.1371/journal.pone.0129183.g002
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Fig 3. Species tree estimation error (FN) for MP-EST and ASTRALwith MLBS on avian simulated datasets. (a) MP-EST on 1000 genes with varying
gene sequence length (controlling gene tree error) and with 1X ILS. (b) ASTRAL on the exact same conditions, (c) MP-EST on varying numbers of genes with
fixed default level of ILS (1X level) and 500bp sequence length, and (d) MP-EST on varying levels of ILS and 1000 genes of length 500bp. We show results
for 20 replicates everywhere, except for 2000 genes that are based on 10 replicates. Binning was performed using 50% bootstrap support threshold. We
estimated the supergene trees, and performed concatenation using RAxML with unpartitioned analyses.

doi:10.1371/journal.pone.0129183.g003
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estimate) with increases in the ILS level. Hence, the biggest improvement obtained by binning
is for the lowest ILS (2X branch lengths), and there is less improvement for the highest ILS
level (0.5X). The likely explanation for this trend is that MP-EST interprets all discord as due
to ILS, and produces a model tree (with branch lengths) that it considers most likely to generate
the observed discordance. Hence, MP-EST tree branch lengths will be closer to the correct
lengths when the ILS level is very high.

Bootstrap support on avian simulated datasets. We explore bootstrap support of trees
estimated on simulated avian datasets, as follows. We assign relative quality to each edge in an
estimated tree, taking bootstrap support into account. The highest quality edges are the true
positive branches with the highest bootstrap support, and the lowest quality edges are the false
positive branches with the highest bootstrap support, and all other edges fall in between. We
order all the edges by their quality, so that the true positive branches come first (with the high
support branches before low support branches), followed by the false positive branches (with
the low support branches before the high support branches). Given this ordering, we create fig-
ures in which the x-axis indicates the edge quality (from very high to very low, as you move
from left to right), and the y-axis indicates the fraction of the edges having at least the quality
indicated by the x-axis. Thus, the higher the curve, the better the overall quality of the species
tree.

Table 2. Statistical significance test results for choice of binning method on MP-EST.We performed ANOVA to test the significance of the choice of
methods (unbinned, weighted binned, unweighted binned, WSB-50: weighted statistical binning using 50% bootstrap support threshold andWSB-75: weight-
ed binning using 75% bootstrap support threshold). For weighted vs. unweighted, we compared 50% bootstrap support threshold for avian, 75% for mammali-
an, and both 50% and 75% for 15- and 10-taxon datasets. All p-values are corrected for multiple hypothesis testing using the FDR correction (n = 16). “n.a.”
stands for “not available”.

Dataset Varying parameter Weighted vs. Unweighted WSB-50 vs. Unbinned WSB-75 vs. Unbinned

10-taxon ILS level 0.96 0.96 0.96

15-taxon # of genes, seq length 0.96 0.96 0.04

Avian sequence length 0.96 <0.0001 n.a.

Avian ILS level 0.96 <0.0001 n.a.

Avian # of genes 0.91 <0.0001 n.a.

Mammalian # of genes, seq length 0.96 n.a. <0.0001

Mammalian ILS level 0.96 n.a. 0.0003

doi:10.1371/journal.pone.0129183.t002

Table 3. Statistical significance test results for choice of binning method on ASTRAL.We performed ANOVA to test the significance of the choice of
methods (unbinned, weighted binned, unweighted binned, WSB-50: weighted statistical binning using 50% bootstrap support threshold andWSB-75: weight-
ed binning using 75% bootstrap support threshold). For weighted vs. unweighted, we compared 50% bootstrap support threshold for avian, 75% for mammali-
an, and both 50% and 75% for 15- and 10-taxon datasets. All p-values are corrected for multiple hypothesis testing using the FDR correction (n = 14). “n.a.”
stands for “not available”.

Dataset Varying parameter Weighted vs Unweighted WSB-50 vs Unbinned WSB-75 vs Unbinned

10-taxon ILS level 1 1 0.91

15-taxon # of genes, seq length 0.91 0.57 0.008

Avian sequence length 0.91 <0.0001 n.a.

Avian sequence length 1 n.a. 0.57

Mammalian ILS level 0.57 n.a. 0.0009

Mammalian # of genes 0.91 n.a. <0.0001

doi:10.1371/journal.pone.0129183.t003
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Fig 5 shows results on 1000 avian genes under default ILS and with varying sequence length,
and also with 1000 genes of 500bp with varying ILS levels. Both types of binning are nearly
identical in terms of their impact on bootstrap support, and both improve bootstrap support;
in particular, using binning increases the number of highly supported true positive branches
and decreases the number of highly supported false positive branches. However, the sequence
length modulates the impact of binning on bootstrap support, so that the largest impact is for
the shortest sequences (250bp) and there is no discernible impact for the longest sequences
(1500bp). ILS levels also impact how binning affects the bootstrap support, so that the biggest
improvement in bootstrap support is obtained for the lowest ILS level (2X branch lengths).
The number of genes also impacts the bootstrap support (supporting information S2 Fig). so
that the biggest improvement in bootstrap support is obtained for the largest number of genes
(2000) (and there is little to no difference between binned and unbinned analyses on 50 or 100
genes); furthermore, weighted and unweighted binning produce very similar bootstrap support
values.

Comparisons to concatenation on avian simulated datasets. On the shortest 250bp se-
quences, concatenation matches the accuracy of weighted and unweighted binned MP-EST
methods (Fig 3(a)) and is slightly less accurate than both binned ASTRAL trees (Fig 3(b)). As
sequence length increases, both types of binning using either ASTRAL or MP-EST become

Table 4. Statistical significance test results for interaction effects (binning and simulation parameter) on MP-EST.We performed ANOVA to test the
significance of whether there is an interaction between the choice of the method (unbinned, weighted binned, unweighted binned, WSB-50: weighted statisti-
cal binning using 50% bootstrap support threshold andWSB-75: weighted statistical binning using 75% bootstrap support threshold) and the variable
changed in each dataset. For weighted vs. unweighted, we compared 50% bootstrap support threshold for avian, 75% for mammalian, and both 50% and
75% for 15- and 10-taxon datasets. All p-values are corrected for multiple hypothesis testing using the FDR correction (n = 21). “n.a.” stands for “not
available”.

Dataset Interaction variable Weighted vs Unweighted WSB-50 vs Unbinned WSB-75 vs Unbinned

10-taxon ILS level 0.99 0.99 0.49

15-taxon # of genes, seq length 0.99 & 0.99 0.59 & 0.99 0.24 & 0.17

Avian sequence length 0.99 <0.0001 n.a.

Avian ILS level 0.99 <0.0001 n.a.

Avian # of genes 0.99 <0.0001 n.a.

Mammalian # of genes, seq length 0.99 & 0.99 n.a. 0.99 & 0.38

Mammalian ILS level 0.15 n.a. 0.15

doi:10.1371/journal.pone.0129183.t004

Table 5. Statistical significance test results for interaction effects (binning and simulation parameter) on ASTRAL.We performed ANOVA to test the
significance of whether there is an interaction between the choice of the method (unbinned, weighted binned, unweighted binned, WSB-50: weighted statisti-
cal binning using 50% bootstrap support threshold andWSB-75: weighted statistical binning using 75% bootstrap support threshold) and the variable
changed in each dataset. For weighted vs. unweighted, we compared 50% bootstrap support threshold for avian, 75% for mammalian, and both 50% and
75% for 15- and 10-taxon datasets. All p-values are corrected for multiple hypothesis testing using the FDR correction (n = 17). “n.a.” stands for “not
available”.

Dataset Interaction variable Weighted vs Unweighted WSB-50 vs Unbinned WSB-75 vs Unbinned

10-taxon ILS level 0.99 1 0.99

15-taxon # of genes, seq length 0.99 & 0.99 0.99 & 0.99 0.29 & 0.02

Avian sequence length 0.99 <0.0001 n.a.

Mammalian sequence length 0.99 n.a. 0.29

Mammalian ILS level 0.99 n.a. 0.29

Mammalian # of genes 0.99 n.a. 0.99

doi:10.1371/journal.pone.0129183.t005
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Fig 4. Effect of binning on the branch lengths (in coalescent units) estimated by MP-EST using MLBS on the avian andmammalian simulated
datasets.We show the species tree branch length error (the ratio of estimated branch length to true branch length for branches of the true tree that appear in
the estimated tree; 1 indicates correct estimation). Results are shown for (a) 1000 avian genes of 1X ILS level with varying gene sequence length, (b) 1000
avian genes of 500bp and with varying levels of ILS, and (c) varying number of mammalian genes and varying sequence length (250bp, 500bp, and 1000bp)
with 1X ILS level. Results are shown for 20 replicates. We used 50% and 75% bootstrap support threshold for binning on avian and mammalian datasets,
respectively, and estimated the supergene trees using RAxML with unpartitioned analyses.

doi:10.1371/journal.pone.0129183.g004
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Fig 5. Cumulative distribution of the bootstrap support values (obtained using MLBS) of true positive (TP) and false positive (FP) edges estimated
by binned and unbinnedMP-EST on avian datasets. In (a) we fix the number of genes to 1000, use default ILS levels, and vary sequence length to control
gene tree estimation error, and in (b) we study 1000 genes with 500bp sequence length, and vary ILS levels. To produce the graph, we order the branches in
the estimated species tree by their quality, so that the true positives with high support come first, followed by lower support true positives, then by false
positives with low support, and finally by false positives with high support. The false positive branches with support above 75% are the most troublesome,
and the highly supported false positives are indicated by the grey area. When the curve for a method lies above the curve for another method, then the first
method has better bootstrap support. We used 50% bootstrap support threshold for binning, and estimated the supergene trees using RAxML with
unpartitioned analyses.

doi:10.1371/journal.pone.0129183.g005
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more accurate than concatenation. Unbinned analyses are less accurate than concatenation for
shorter sequences and more accurate for longer sequences (the transition point depends on
whether ASTRAL or MP-EST is used). Both binned analyses are more accurate than concate-
nation and unbinned analyses at all ILS levels (Fig 3(d)). Thus, compared to concatenation,
binned analyses have their largest advantage on longer gene sequences, higher ILS levels, and
higher number of genes.

Results on mammalian datasets. Results on simulated mammalian datasets are similar to
analyses of avian datasets. In nearly every condition, both weighted and unweighted binning
show very similar results (see Fig 6) and have no statistically significant differences using either
ASTRAL or MP-EST (see Tables 2 and 3). As before, we evaluated the impact of statistical bin-
ning on gene tree estimation error under the 1X (default ILS) model condition with varying se-
quence lengths (S1 Table), and observed that binning substantially reduces gene tree
estimation error for short sequences (250bp and 500bp) but had little impact on longer se-
quences (1000bp). Binning improves gene tree distributions, generally with very large improve-
ments, and the improvements decrease with the sequence length and ILS level (S3 Fig).
Binning also improves species tree topology estimation (Fig 6 and Tables 2 and 3). The impact
appears to depend on the sequence length (binning seems more beneficial for shorter se-
quences and neutral for longer sequences) and number of genes (binning can dramatically im-
prove species tree topologies given a large number of genes, but can be neutral or even
detrimental for a small number of genes), and the choice of summary method (binning helps
both ASTRAL and MP-EST, but helps MP-EST more). ILS level also seems to impact relative
accuracy (Tables 4 and 5), so that binning seems most helpful for low ILS levels, and less help-
ful for high ILS levels (S4 Fig). However, the effects of number of genes, sequence length, and
the ILS level were not statistically significant for this dataset (Tables 4 and 5).

As observed in the avian simulations, unbinned analyses substantially under-estimate spe-
cies tree branch lengths (Fig 4(c) and S5 Fig). Both weighted and unweighted binning produce
nearly identical branch lengths for all sequence lengths, number of genes, and ILS levels, and
both types of binning come closer to the true branch lengths than unbinned analyses. Finally,
both weighted and unweighted binning produce nearly identical species tree branch support
values, where both match or improve unbinned analyses for all tested numbers of genes, se-
quence lengths, and ILS levels (S6 and S7 Figs). However, improvements increase with the
number of genes and decrease with the sequence length and ILS level.

Impact of support threshold B on avian and mammalian simulated datasets. In addi-
tion to varying model conditions, we use a single avian and a single mammalian model condi-
tion to study the impact of the support threshold B on binning (Fig 7). We use a mixed model
condition with 200 genes of 500bp and 200 genes of 1000bp for the mammalian dataset, and a
model condition with 1000 genes of 500bp for the avian dataset (both with default 1X ILS
level).

On the avian dataset, binning is always beneficial, but the impact is larger with B = 50%
compared to B = 75% (Fig 7(a)). For example, unbinned MP-EST has 19% error, and using
B = 50% reduces the error to 11%, and using B = 75% reduces the error to 13%.

On the mammalian mixed data, binning is beneficial in all cases (see Fig 7(b)); however, the
extent of the impact depends substantially on both the threshold and the summary method.
ASTRAL has high accuracy even without binning, and binning with either threshold has only a
small impact on its accuracy. When MP-EST is used, binning with B = 50% leads to relatively
small improvements in accuracy, whereas B = 75% results in much larger improvements. Thus,
the choice of the threshold can have an impact, but for the two model conditions we studied
here both choices of the threshold are beneficial.
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Fig 6. Species tree estimation error for MP-EST and ASTRAL using MLBS onmammalian simulated datasets.We show average FN rate over 20
replicates. (a) Results for MP-EST. We varied the number of genes (50, 100, 200, 400 and 800) and sequence length (250bp (43% BS), 500bp (63% BS) and
1000bp (79% BS)) with default amount of ILS (1X level). (b) ASTRAL on varying numbers of genes with fixed 1X ILS level and 500bp sequence length. We
used 50% and 75% bootstrap support threshold for binning on avian and mammalian datasets, respectively, and estimated the supergene trees using
RAxML with unpartitioned analyses.

doi:10.1371/journal.pone.0129183.g006
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Effects of binning on gene tree and species tree error for 15-taxon datasets. We ex-
plored the impact of statistical binning on gene tree estimation error using two sequence
lengths and two values for B, the bootstrap support threshold parameter (S1 Table). For the
shorter sequence lengths (100bp), binning increases gene tree estimation error (from 77% to
80% when B = 50%, and from 77% to 86% when B = 75%). For the longer sequence lengths
(1000bp), binning with B = 50% has no impact on gene tree estimation error, but using

Fig 7. Species tree estimation error for MP-EST and ASTRAL using MLBS on avian andmammalian
simulated datasets with two support thresholds (B).We show average FN rate for unbinned, and wighted
and unweighted binned analyses with both B = 50% and B = 75%. Results are shown for (a) the avian dataset
with 10 replicates of 1000 genes of length 500bp and 1X ILS level, and (b) the mammalian dataset with 20
replicates of 400 mixed genes (200 genes with 500bp and 200 genes with 1000bp) with 1X ILS level.

doi:10.1371/journal.pone.0129183.g007
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B = 75% increases error from 36% to 40%. Thus, statistical binning increases gene tree estima-
tion error for these very high ILS 15-taxon datasets, but the amount of the increase depended
on the parameter B (with larger increases for B = 75% and small increases for B = 50%) and se-
quence length (where the impact on gene tree estimation error is much reduced for the 1000bp
alignments).

Fig 8 shows the impact of weighted and unweighted statistical binning on species tree accu-
racy for the 15-taxon dataset. We apply statistical binning with two support thresholds (50%

Fig 8. Species tree estimation error for MP-EST and ASTRALwith MLBS on 15-taxon simulated datasets.We show average FN rate over 10
replicates. We varied the number of genes (100 and 1000) and sequence length (100bp and 1000bp). We used 50% and 75% bootstrap support thresholds
for binning, and estimated the supergene trees using RAxML with fully partitioned analyses.

doi:10.1371/journal.pone.0129183.g008
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and 75%), and we use both MP-EST and ASTRAL as the summary method. In all cases,
weighted and unweighted binning have similar accuracy, with no statistically significant differ-
ences (Tables 2 and 3). The relative accuracy of unbinned and binned analyses depends on the
support threshold, so that with B = 50%, there are no statistically significant differences, but
with B = 75%, binning significantly improves accuracy (p = 0.04 for MP-EST and p = 0.008 for
ASTRAL; Tables 2 and 3). The extent of the improvements seems larger for more genes and
smaller alignments, but the impact of these factors are not statistically significant for MP-EST
(p = 0.24 and p = 0.17 respectively) and only impact of sequence length was significant for AS-
TRAL (p = 0.02; Tables 4 and 5). The biggest gains are obtained when the 75% threshold is
used with 1000 genes of 100bp, where binning reduces the error of MP-EST from 21% to only
7%. Thus, the choice of the threshold can matter, and on this dataset, the effects of binning can
range from neutral to highly beneficial, depending on the threshold used, number of genes,
and gene sequence length.

Effects of binning on species tree error for 10-taxon datasets. Fig 9 shows the impact of
binning on species tree accuracy on the 10-taxon datasets with two choices of the threshold B
for the statistical binning pipeline (B = 50% and 75%), two choices of the summary method
(MP-EST and ASTRAL), and two levels of ILS (high and very high). No statistically significant

Fig 9. Species tree estimation error for MP-EST and ASTRALwith MLBS on 10-taxon simulated
datasets.We show average FN rate over 20 replicates. We varied the amount of ILS and fixed the number of
genes to 200 and gene sequence length to 100bp. We used 50% and 75% bootstrap support thresholds for
binning, and estimated the supergene trees using RAxML with fully partitioned analyses.

doi:10.1371/journal.pone.0129183.g009
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differences are observed on these data between weighted and unweighted binning, or between
weighted binning and unbinned analyses (see Tables 2 and 3); nevertheless, some patterns can
be observed in terms of the average error (Fig 9). Both weighted and unweighted statistical bin-
ning are close to neutral (regardless of the choice of method or level of ILS) when applied with
a 50% threshold. When the 75% threshold is used, the impact of binning depends on the level
of ILS: binning improves accuracy with low ILS levels and reduces accuracy with high ILS lev-
els, especially when MP-EST is used, but these differences are not statistically significant (Ta-
bles 2 and 3).

Analysis of biological datasets
We compared weighted and unweighted binning of MP-EST and ASTRAL on MLBS gene
trees on the avian and mammalian biological datasets studied in [23].

Results for MP-EST on these datasets showed the following trends. First, for the avian data-
set, there are no topological differences between MP-EST trees estimated using weighted or un-
weighted statistical binning, and extremely small differences in branch support (less than 3%;
see Fig 10). Thus, although [26] only explored unweighted statistical binning with MP-EST,
the main conclusions they drew about the evolutionary history of modern birds are also found
in the weighted statistical binning analysis using MP-EST. The unbinned MP-EST analysis vio-
lates several subgroups established in the avian phylogenomics project and other studies (indi-
cated in red in Fig 10), but the binned MP-EST analyses do not violate any of these subgroups.
Of these violated subgroups, the failure of the unbinned MP-EST analysis to recover Austra-
laves is the most significant, since it has been recovered in many prior analyses [37–40]. On the
mammalian dataset, weighted and unweighted MP-EST again produce the same exact tree,
with small differences in support (less than 3%; see S11 Fig). The unbinned MP-EST tree, how-
ever, has one topological difference (the position of treeshrews; compare S10 and S11 Figs).
with binned analyses, as discussed in [23].

Results for ASTRAL on the biological datasets show generally similar trends. Unbinned AS-
TRAL on the avian dataset (S8 Fig) recovers Australaves and hence is more in line with the
prior literature than unbinned MP-EST; however, just like unbinned MP-EST, the unbinned
ASTRAL does not recover some key clades recovered by concatenation and other analyses re-
ported in [26]. Using weighted and unweighted statistical binning with ASTRAL on the avian
dataset produces almost identical results, and are also almost identical to the binned MP-EST
tree (the only change is the position of hoatzin which has low support in all trees; see support-
ing information S9 Fig). On the mammalian dataset, trees produced by binned ASTRAL analy-
ses with weighted or unweighted binning pipelines are topologically identical to each other,
and to the tree produced by the unbinned analysis, and have rather small differences in boot-
strap support (see S12 Fig). Binned and unbinned ASTRAL analyses and binned MP-EST anal-
yses all put treeshrews as sister to Glires, while unbinned MP-EST puts them as sister to
primates. The placement of treeshrews is of substantial debate, and so the differential place-
ment is of considerable interest in mammalian systematics.

Overall, results on the two biological datasets show that weighted and unweighted statistical
binning analyses produced identical species trees and nearly identical branch support values;
furthermore, these binned analyses were more congruent with established subgroups than
unbinned analyses.

Summary of observations
Across all our analyses, results for both ASTRAL and MP-EST are very similar with respect to
how they responded to statistical binning. Weighted statistical binning produces nearly
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identical results to unweighted statistical binning on the biologically-based simulated datasets,
and topologically identical results (with very similar bootstrap support values) on the biological
datasets we explored in this study, and so this study generally supports the conclusions about
statistical binning in [23]. In addition, because weighted and unweighted statistical binning
produce topologically identical trees on the avian dataset, this study supports the findings
about the avian phylogeny reported in [26]. The fact that weighted and unweighted binning
typically produced similar results is not surprising, since the unweighted binning technique
strives to create “balanced” bins as much as possible, and largely achieves this on the datasets
we explored. Furthermore, if the bins produced by statistical binning have exactly the same

Fig 10. Trees computed on the avian biological dataset using MP-EST on MLBS gene trees.We show results with weighted and unweighted binning
(left), and unbinned analyses (right). We used 50% bootstrap support threshold for binning. Supergene trees were estimated using fully partitioned analyses.
MP-EST with weighted and unweighted binning returned the same tree. The branches on the binned MP-EST tree are labeled with two support values side
by side: the first is for unweighted binning and the second is for weighted binning; branches without designation have 100% support. Branches in red indicate
contradictions to known subgroups.

doi:10.1371/journal.pone.0129183.g010
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size, then pipelines based on weighted and unweighted statistical binning will produce the
same species tree, since the distributions of gene trees they produce will be identical. Since the
bin sizes produced using our heuristic for balanced minimum vertex coloring are close to bal-
anced, this explains why we observed very small differences between weighted and unweighted
statistical binning in these analyses.

Under most of the model conditions we studied, both weighted and unweighted statistical
binning improved the estimation of gene tree topologies, gene tree distributions, species tree
topologies and branch lengths, and bootstrap support (so that statistical binning increases
bootstrap support for true positive edges, and reduces the number of highly supported false
positives), compared to unbinned analyses. These improvements are largest when gene se-
quence alignments have low phylogenetic signal, the gene trees exhibit at most moderately
large ILS levels, or there are many genes.

The impact of statistical binning on the 15-taxon datasets is somewhat different than for the
biologically-based simulations. Gene tree estimation accuracy is reduced for both sequence
lengths (though the impact is small for the longer sequence lengths and only substantial for the
short sequence lengths with B = 75%). Nevertheless, the impact on species tree estimation on
these data tends to be neutral, but there are also conditions where binning was beneficial.

On the lower ILS 10-taxon datasets, statistical binning reduces gene tree estimation error,
and both weighted and unweighted binning reduce species tree estimation error for B = 75%.
However, species tree estimation error is unchanged when B = 50%.

The results on the higher ILS 10-taxon datasets stand out from the other analyses: statistical
binning slightly increases gene tree estimation error when B = 50% but substantially increases
gene tree estimation error when B = 75%. Furthermore, while species tree estimation error is
not increased for B = 50%, when B = 75%, the error increases.

The difference in impact for statistical binning in this case is interesting, and points out the
significance of how B is set. To understand this, note that when B is very small, then bin sizes
will tend to be very small, since any pair of incompatible branches with support above B will be
considered to be evidence of statistically significant discord; thus, small settings for B produce
results that are similar to unbinned analyses. Conversely, very large settings for B are more like-
ly to bin genes together, since only the strongest supported conflicting branches will prevent
genes from being binned. Therefore, if all the gene trees have low support then statistical bin-
ning could tend to produce results that are similar to concatenation. Thus, the choice of the
threshold matters.

To better understand the difference in impact of statistical binning on these simulated data-
sets, it is helpful to consider the ILS levels and gene tree bootstrap support values for these
data. As shown in Table 1, the average distance between the true gene trees and the species
trees ranges for these datasets from as low as 18% (for the Mammalian 2X collection) to above
80% (for the 10-taxon higher ILS collection and the 15-taxon collection). Fig 3 shows how the
effect of statistical binning used with MP-EST is impacted by ILS level on the avian datasets:
statistical binning provided an improvement at all ILS levels, with the largest improvement for
the lowest ILS level (2X branch lengths) and the smallest improvement on the highest ILS level
(0.5X branch lengths). S3–S5 Figs evaluate this issue on the mammalian datasets, and shows
large improvements provided by statistical binning under the lowest (2X branch lengths) ILS
level, smaller improvements under the middle (1X branch length) ILS level, and then no im-
provement under the highest (0.5X branch lengths) ILS level. Thus, statistical binning provided
an improvement except for a small number of model conditions: some of the 15-taxon condi-
tions (which have discordance of 82%), the higher ILS 10-taxon conditions (which have discor-
dance of 84%), and the highest ILS mammalian condition (which have discordance of 54%). S2
Table shows that the average bootstrap support for the higher ILS 10-taxon datasets is quite
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low—only 37%. Thus, statistical binning seems to be beneficial when both ILS level and gene
tree bootstrap support are not too high, will be neutral when bootstrap support values are high
(so little or no binning occurs), but can be detrimental when ILS levels are extremely high but
gene tree bootstrap support is low enough that binning occurs. Thus, one consequence of this
study is the suggestion that when ILS levels are very high and the average gene tree bootstrap
support is low, then either statistical binning should not be used, or it should be used in a very
conservative fashion—with the parameter B set very low.

Conclusions
Because species trees and gene trees can differ, the estimation of species trees requires multiple
loci. One approach to estimating species trees from multiple conflicting loci seeks to restrict
the set of loci using principled arguments [41], but other approaches that explicitly model the
discordance have also been developed. When gene tree discord is due to incomplete lineage
sorting, then summary methods, such as MP-EST or ASTRAL, can be used to estimate the spe-
cies tree by combining gene trees. However, this study, as well as others [16, 21–24, 42], dem-
onstrates that gene tree estimation error impacts species tree estimation, so that species trees
estimated using summary methods on poorly estimated gene trees can have low accuracy. The
(unweighted) statistical binning technique proposed in [23] improved the accuracy of estimat-
ed gene trees, and was shown to improve the accuracy of MP-EST when applied to MLBS gene
trees. However, as we proved here, using unweighted statistical binning within a phylogenomic
pipeline can be statistically inconsistent under the GTR+MSC model. This is a significant issue.

This study described a simple modification to statistical binning, obtained by replicating
each supergene tree by the number of genes in its bin (equivalently, replacing each gene tree
from the input set by its recalculated tree, which is the supergene tree for the bin). This modifi-
cation, which we call “weighted statistical binning” (WSB), is statistically consistent under
GTR+MSC model (i.e., as the number of genes and the number of sites for each gene increases,
the estimated species tree topology converges to the true species tree topology), and so ad-
dresses this drawback. However, the current mathematical theory does not suggest any advan-
tage will be gained using WSB within a phylogenomic pipeline, compared to an unbinned
analysis (i.e., the use of the summary method without binning) because when gene sequence
length is unbounded, unbinned analyses using summary methods are also statistically consis-
tent. Indeed, the current mathematical theory about standard coalescent-based summary
methods does not establish any guarantees in the presence of gene tree estimation error (which
is inevitable given limited length), and the same limitation applies to the theory established for
WSB. Hence, from a theoretical standpoint, there is no benefit obtained in using WSB—at least
not according to the current mathematical theory.

The reason to use WSB within a phylogenomic pipeline is empirical—how it impacts the ac-
curacy of the estimated species trees—and so our study focused on whether WSB tends to in-
crease or decrease the accuracy of summary methods, and how the model conditions impact
the relative performance of binned and unbinned analyses.

On the biologically-based simulated datasets, weighted and unweighted statistical binning
generally improved estimated gene tree distributions and led to improvements for MP-EST
and ASTRAL estimations of species tree topologies. The use of statistical binning with MP-EST
also improved estimated species tree branch lengths, increased bootstrap support for true posi-
tive edges, and reduced the number of highly supported false positives, compared to unbinned
MP-EST analyses. These improvements increased when gene sequence alignments had low
phylogenetic signal, the species tree had low ILS, or there were many genes.
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The estimation of species tree branch lengths is biologically significant since these lengths
are used to infer the amount of ILS in the data. Unbinned MP-EST analyses tended to substan-
tially underestimate branch lengths (and thus over-estimate ILS), but both weighted and un-
weighted binning reduce this problem and produce branch lengths that are much closer to
their true lengths. Since MP-EST tends to over-estimate ILS in the presence of gene tree estima-
tion error, this means that predictions of ILS levels for biological datasets may have been over-
estimated. Another consequence of this observation is that the biologically-based model species
trees used here and in [23, 43] may have inflated levels of ILS, since they used MP-EST to con-
struct the model species tree. If so, then performance under the lower ILS levels (species tree
branch lengths of 2X or larger) might be closer to the biological dataset conditions than the de-
fault 1X condition and higher ILS conditions.

The improvement in branch support is biologically relevant, especially since unbinned
MP-EST analyses sometimes produced highly supported false positive branches in the presence
of poorly estimated gene trees and low levels of ILS, but binning reduced the incidence of these
false positive branches with high support.

The results on small numbers of species, and in particular on the higher ILS 10-taxon data-
sets, show somewhat different trends. While results on the 15-taxon datasets showed binning
generally being helpful or neutral, statistical binning ranged from neutral to detrimental on the
higher ILS 10-taxon datasets (however, the differences were not statistically significant). Both
the higher ILS 10-taxon and 15-taxon datasets had extremely high levels of ILS (the two highest
we examined—average topological distance between true gene trees and the true species trees
of 84% and 82%, respectively). Given that statistical binning ranged from neutral to highly ben-
eficial for all the other model conditions, these data suggest that statistical binning may not be
suitable to datasets with extremely high ILS levels. Clearly, further research is therefore needed
to understand the conditions under which binning will be beneficial and where binning may
reduce accuracy.

This study also did not examine model conditions in which gene tree estimation error is due
to model misspecification, nor other biological causes for gene tree discord, such as gene dupli-
cation and loss or horizontal gene transfer. Furthermore, while we examined sequence datasets
with varying numbers of sites for each locus (including some with 100bp), even shorter se-
quences may be needed to avoid loci that include any recombination [24].

This study mainly examined the impact of statistical binning on MP-EST, and examined its
impact on ASTRAL only for a subset of the data and only with respect to species tree topology
estimation (instead of the full set of criteria). Thus, an important direction for future study is to
consider other coalescent-based methods for estimating the species tree from multiple loci. As
a simple example, Mirarab et al. [43] showed that the accuracy of MP-EST species trees de-
pended on whether MLBS or best maximum likelihood (BestML) gene trees were used, and
that MP-EST trees based on BestML gene trees generally produced more accurate species tree
topologies for datasets with large numbers of genes (such as some of the model conditions
studied in this paper). The explanation offered for this is that BestML gene trees are generally
closer to the true gene tree than MLBS gene trees, and that this helps coalescent-based species
tree estimation. Hence, the evaluation of the impact of binning on MP-EST with BestML gene
trees is also needed. It is also possible that better results would be obtained using Bayesian
methods (such as MrBayes [44]), rather than MLBS, to generate the distribution of gene trees
[45], since the posterior distribution produced by Bayesian MCMCmethods may be more
closely centered around the true gene tree than the MLBS sample.

This study suggests that substantial improvement in species tree estimation could be ob-
tained if we can develop more accurate methods for gene tree estimation. For example, meth-
ods that co-estimate gene sequence alignments and trees, such as BAli-Phy [46], SATé [47, 48],
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and PASTA [49], might provide improved gene tree estimation accuracy, compared to stan-
dard two-step procedures for estimating trees (first align, and then compute the tree).

Indeed, another challenge is that if loci are restricted to ultra-short sequences (10–50 sites),
so as to decrease the probability of intra-locus recombination, then approaches based on com-
bining estimated gene trees may not be able to provide highly accurate results, no matter what
techniques are used to estimate gene trees. Hence, it is also possible that methods that construct
species trees directly from the sequence data, rather than by combining gene trees, will have
the best accuracy (see, for example, [50–52]), since they can avoid the analytical and empirical
challenges caused by gene tree estimation error.

However, as observed in this and other studies [24, 42], concatenation often produces more
accurate trees than even the best coalescent-based methods when the level of ILS is low enough.
Therefore, an important question is whether a given biological dataset has a sufficiently high
level of ILS that a coalescent-based analysis is needed. Conversely, coalescent-based methods
that are not only more accurate than concatenation under conditions with high ILS, but also
comparably accurate even under low levels of ILS, would be very helpful tools.

Finally, since statistical binning did reduce accuracy for some of the data we examined with
small numbers of species and the very highest ILS levels, an important question that needs to
be addressed is whether these very high ILS simulation conditions explored here and elsewhere
represent realistic levels of ILS, or whether they represent extreme conditions that are unlikely
to be observed in nature. Accurate estimations of ILS levels in biological data would enable the
research community to direct its efforts to developing methods that would have the greatest
utility in practice.

Overall, this study confirms the general finding in [23] that highly accurate coalescent-based
species tree estimation is possible, and that statistical binning used with good coalescent-based
methods can provide improved accuracy relative to concatenation under many conditions.

Materials and Methods

Proofs
Recall that under the GTR+MSC model, gene trees evolve within a species tree under the
multi-species coalescent (MSC) model, and then sequences evolve down each gene tree under
the General Time Reversible (GTR) model. The different gene trees are equipped with their
own GTR model parameters, and so the tree topologies, 4 × 4 substitution matrices, and gene
tree branch lengths can differ between the different genes.

The main results of this section are given in Theorem 2 and Theorem 3, where we prove
that using weighted statistical binning in a phylogenomic pipeline is statistically consistent
under the GTR+MSC model, but that replacing weighted statistical binning with unweighted
statistical binning is not statistically consistent under the GTR+MSC model, respectively.

The statistical binning algorithm uses a heuristic to color the vertices, which we now de-
scribe. Since each gene is associated with a vertex, we will describe the heuristic in terms of
what it does with genes. The algorithm has two stages. In the first stage, we use a heuristic to
find a large clique in the incompatibility graph (i.e., a set of pairwise incompatible genes) and
we assign each gene in the clique to a different bin. Then, in the greedy stage, genes are pro-
cessed in turn (according to an order described below), and each gene is placed in the bin with
the smallest number of genes with which it has no strongly supported conflicts (where strongly
supported conflict between two genes means that there are branches, one for each of the esti-
mated gene trees, that are incompatible, and both branches have support above B, where B is
the user provided bootstrap threshold support value). If no such bin exists, a new bin is created
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and the gene is placed in this new bin. If there are two or more bins with the same smallest
number of genes into which the new gene can be placed, the tie is broken randomly. Genes are
processed based on a dynamic ordering, such that the next selected gene is always the one in-
compatible with the largest number of existing bins (breaking ties arbitrarily). Therefore,

Lemma 1: Let T = {t1, t2, . . ., tp} be the multi-set of estimated gene trees for p genes g1, g2,
. . ., gp, and assume that all the branches in each ti have bootstrap support above B, the user-
provided bootstrap support threshold. Then, when statistical binning is run, there will be one
bin for each of the different estimated gene tree topologies in T, and for every bin, every two
genes in the bin will have the same estimated gene tree topology.

Proof: Our inductive hypothesis is that after placing K genes into bins, there will be one bin
for each of the estimated gene tree topologies for this set of K genes, and that every two genes
in any bin will have the same estimated gene tree topology. We will prove the lemma true by in-
duction on K� 1.

For K = 1, it is trivially true. Now suppose the inductive hypothesis holds for K − 1 genes,
and consider what happens when the Kth gene, gK, is placed. Recall that the algorithm operates
in two stages: first it finds a clique in the graph and places the genes within that clique into dif-
ferent bins, and then it enters the greedy phase. We can consider the genes within the clique to
be arbitrarily ordered, and placed in bins using that order. There are two cases to consider, de-
pending on whether gK is part of the initial clique found by the algorithm. If gK is part of the ini-
tial clique, then gK is placed in a separate bin by itself, and has a different topology from the
K − 1 genes that preceded it (because these are also in the initial clique, and are placed in bins
by themselves). If gK is not part of the initial clique, then it is placed in a bin during the greedy
stage of the algorithm. By the inductive hypothesis, the algorithm has placed the first K − 1
genes into bins, there is a single bin for each of the different estimated gene tree topologies ob-
served among the first K − 1 genes, and every two genes in any bin have the same estimated
gene tree topology. When we process gK, there are two cases, depending on whether its estimat-
ed gene tree tK is a gene tree topology that has been seen before. If tK = ti for some 1� i�
K − 1, then there is a bin that contains all the genes with that topology, and gK can be added to
that bin. Note that by the inductive hypothesis, all other bins contain genes with different esti-
mated gene tree topologies than tK. Furthermore, by assumption, all edges of all gene trees have
bootstrap support above B. Hence, we cannot add gK to any other bin. Therefore, if tK has been
seen before, there is only one bin we can add gK to, and it is the bin for genes with the same tree
topology as tK. The other case is where tK has not been seen before. In this case, tK is different
from every previously seen gene tree, and so a new bin is created. As a result, the new set of
bins satisfies the inductive hypothesis, so that there is one bin for every estimated gene tree to-
pology, and no two genes in any bin have different estimated gene tree topologies.

Therefore,
Theorem 1: Let T sp be a species tree with branch lengths in coalescent units, and T = {t1, t2,

. . ., tp} be a set of p rooted gene trees sampled from the distribution defined by T sp under the
multi-species coalescent model. Let {θ1, θ2, . . ., θp} be a set of numeric GTR model parameters
(gene tree branch lengths and 4 × 4 substitution matrices) so that Ti = (ti, θi) is a GTR model
tree for each i = 1, 2, . . ., p. Let T 0 = {T1, T2, . . ., Tp}. For each i, 1� i� p, let sequence dataset
Si evolve down the GTR model tree Ti. Let � < 1 and bootstrap support threshold B< 1 be
given. Then, there is a sequence length L (that depends on T 0 and �) such that if at least L sites
evolve down each gene tree, then with probability at least 1−�, the following will be true:

• For each i = 1, 2, . . ., p, the gene tree estimated using GTR maximum likelihood on Si will
have the same unrooted topology as ti (the true gene tree for Si), and will have bootstrap sup-
port greater than B for all its branches,
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• For every bin produced by statistical binning based on GTR maximum likelihood analyses of
the gene sequence alignments, the estimated gene trees for genes in the bin will have the
same topology, and

• All genes with the same true gene tree topology will be in the same bin.

Proof: Since GTR maximum likelihood is statistically consistent for sequences generated by
GTR model trees, then for any �0 > 0, there is a sequence length Li such that given sequence
dataset Si with at least Li sites generated on Ti, the GTR maximum likelihood tree topology for
Si is ti (i.e., the true gene tree) and has bootstrap support greater than B, with probability at
least 1−�0. Letting L = maxi{Li}, it follows that all estimated gene trees will be the true gene trees
and have bootstrap support greater than B with probability at least 1−p�0. Therefore, when
�0 ¼ �

p
and the sequences are all of length at least L, the result then follows by Lemma 1.

Fully partitioned GTR maximum likelihood: In a fully partitioned GTR maximum likeli-
hood analysis, the input is a set of pmultiple sequence alignments, {S1, S2, . . ., Sp}. These align-
ments are concatenated into a supermatrix,M, in which the locations where the different
alignments begin and end are also noted. The maximum likelihood score of a candidate tree t
(note that t specifies only a topology and not also branch lengths) for inputM is

scoreðtÞ ¼ supY
Yp
i

PrðSijðt; yiÞÞ : Y ¼ fy1; y2; . . . ; ypg
( )

ð1Þ

Thus,Θ denotes a set of GTR model parameters (branch lengths and GTR substitution ma-
trix) for each of the parts within the concatenated alignmentM. We will refer to the tree topol-
ogy that achieves the optimal score under this fully partitioned analysis as the solution to the
fully partitioned maximum likelihood analysis of the concatenated matrix, understanding that
the numeric GTR parameters (branch lengths and substitution matrices) are estimated inde-
pendently for each part of the alignment, and hence can differ arbitrarily between parts.

Lemma 2: Let S be a set of taxa, and let Si be a set of DNA sequences for S, with i = 1, 2, . . .,
p. Suppose that tree topology t is an optimal solution for GTR maximum likelihood for each Si
(allowing various GTR parameters for different i = 1, 2, . . ., p). Then t will be an optimal solu-
tion to a fully partitioned GTR maximum likelihood analysis on a concatenation of S1, S2, . . .,
Sp.

Proof: Recall that in a fully partitioned GTR maximum likelihood analysis, the maximum
likelihood score of a given candidate tree t with respect to a matrixM under a fully partitioned
ML analysis is given by Eq (1). Suppose that the tree topology t is an optimal solution to GTR
maximum likelihood for each Si but not an optimal solution to the fully concatenated GTR
maximum likelihood analysis. Then, for some tree t0 6¼ t, score(t0)> score(t). Therefore, for at
least one i, supθ{Pr(Sij(t0, θ)}> supθ{Pr(Sij(t, θ))}. But then t is not an optimal GTR maximum
likelihood tree topology for Si, contradicting our assumption. Therefore, if the maximum likeli-
hood analysis is performed in a fully partitioned manner, then tree topology t will be an opti-
mal solution to the GTR maximum likelihood analysis.

Comments: The use of a fully partitioned analysis that enables different parameters for dif-
ferent partitions is critically important for the proof. Consider, for example, the result that
would be obtained given a set of p sequence alignments for n species, of which p−1 of them are
constant (meaning all the sequences are identical across all the species), but one sequence
alignment, Sp, is obtained by evolving sequences down a GTR gene tree, T. In a fully partitioned
GTR maximum likelihood analysis, the p−1 multiple sequence alignments that exhibit no
changes do not impact the solution to maximum likelihood, because they have the same score
for every possible tree topology. Therefore, the outcome of a fully partitioned GTR maximum
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likelihood analysis of the concatenated alignment will simply have the GTR maximum likeli-
hood tree topology for Sp (recall that a fully partitioned analyses does not produce one unique
set of branch lengths or other model parameters). However, in an unpartitioned GTR maxi-
mum likelihood analysis, the result can be quite different—because the p−1 alignments without
changes on them will drive down the estimated branch lengths, which are held in common
across all the sites. See [6] for an analysis of the theoretical properties of unpartitioned maxi-
mum likelihood in the context of the multi-species coalescent model. We now consider the re-
sult of applying weighted statistical binning within a phylogenomic pipeline.

Corollary 1: Let G = {g1, g2, . . ., gp} be a set of p genes, and Ti = (ti, θi) be the true gene tree
and GTR parameters (including branch length) for gi, i = 1, 2, . . ., p. Let B< 1 be the user pro-
vided bootstrap support value. Assume that the gene sequence alignment Si evolves down the
GTR model tree Ti = (ti, θi), for i = 1, 2, . . ., p. As the sequence lengths for all the genes increase
then with probability converging to 1, for each bin produced during a statistical binning analy-
sis, the estimated gene trees will be the true gene trees, all genes in any bin will have the same
estimated and true gene tree, and the supergene trees produced for each bin will converge in
probability to the common true gene tree for the genes in the bin.

Proof: By Theorem 1, as the sequence length increases, then with probability converging to
1, the genes in each bin will share a common true gene tree topology, their estimated gene trees
will be topologically identical to each other and to the true gene tree, and will each have boot-
strap support greater than B. By Lemma 2, under these conditions, a fully partitioned GTR
maximum likelihood analysis of the concatenated alignment of the genes in a bin will produce
the true gene tree topology for the genes in the bin.

We now address the statistical consistency of phylogenomic pipelines that use weighted and
unweighted statistical binning.

Theorem 2: The phylogenomic pipeline that uses GTR maximum likelihood to estimate
gene trees, uses weighted statistical binning to compute supergene trees, and then combines
the supergene trees using a coalescent-based summary method, is statistically consistent under
the GTR+MSC model.

Proof: We begin with the proof of statistical consistency for weighted statistical binning. By
Corollary 1, as the sequence length for each gene goes to infinity (k!1) all genes put in any
bin by statistical binning will have the same true gene tree with probability converging to 1,
and the supergene trees produced for each bin will converge in probability to this common
true gene tree. In weighted statistical binning, this common true gene tree topology is replicat-
ed as many times as the number of genes in the bin, and hence the distribution produced using
weighted statistical binning is identical to the distribution of the unbinned true gene trees.
Therefore, as both k and p increase, the gene tree distribution produced by weighted statistical
binning converges to the true gene tree distribution. The statistical consistency of the pipeline
follows from the use of a coalescent-based summary method, since as p!1, the species tree
produced by the summary method given true gene trees converges to the true species tree.

We now consider the case where we use unweighted statistical binning instead of weighted
statistical binning.

Theorem 3: The phylogenomic pipeline that uses GTR maximum likelihood to estimate
gene trees, uses unweighted statistical binning to compute supergene trees, and then combines
the supergene trees using a coalescent-based summary method, is statistically inconsistent
under the GTR+MSC model.

Proof: The proof for Theorem 2 shows that as the sequence length k increases, the set of
bins produced by statistical binning converges in probability to having one bin for each of the
true gene trees, and the supergene tree for each bin converges to the common true gene tree for
the bin. As p!1, the set T converges in probability to the set of all possible gene trees (since
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all gene trees have strictly positive probability under the multi-species coalescent model).
Hence, the multi-set of supergene trees produced by unweighted statistical binning will con-
verge to the set that has each possible gene tree appearing exactly once. This is a flat distribu-
tion, and it is not possible to reconstruct the species tree from a flat distribution. Hence, the use
of unweighted statistical binning in a phylogenomic pipeline is not statistically consistent.

Evaluation
We explored the performance of MP-EST and ASTRAL with weighted and unweighted statisti-
cal binning, and also without binning. We also examine concatenation of the entire set of gene
sequence alignments using an unpartitioned maximum likelihood analysis using RAxML. We
explore performance on a collection of simulated and biological datasets originally studied in
[23]. We applied MP-EST and ASTRAL to a set of RAxML gene trees computed on bootstrap
replicates of each gene sequence alignment. With bootstrap ML gene trees for each gene, sum-
mary methods were applied with the site-only multi-locus bootstrapping (MLBS) procedure
[53], implemented as follows. For each gene or supergene, 200 replicates of bootstrapping are
performed using RAxML. Next, 200 replicates (R1, R2, . . ., R200) of input datasets to the sum-
mary methods are created such that Ri contains the i

th bootstrap tree across all genes/super-
genes. The summary methods are then run on these 200 input replicates, and 200 species trees
are estimated. Finally, the greedy consensus tree of these 200 estimated species tree is comput-
ed, and support values are drawn on the branches of the greedy consensus tree by counting the
occurrences of each bipartition in the 200 species trees.

Triplet gene tree distribution error. MP-EST computes species trees using the estimated
distribution on rooted triplet trees defined by its input of gene trees. We therefore evaluated
the impact of binning on the estimated gene tree distribution, measuring the divergence be-
tween the triplet distribution of estimated gene trees and the triplet distribution of true gene
trees. We represent the gene tree distribution by the frequency of each of the three possible al-

ternative topologies for all the
n
3

� �
triplets of taxa, where n is the number of taxa. Therefore,

we have
n
3

� �
true triplet distributions. Hence, for each triplet of taxa, we have estimated trip-

let distributions using the unbinned analysis, as well as weighted and unweighted binning anal-

yses. We computed the Jensen-Shannon divergence of each of these
n
3

� �
triplet distributions

and showed the empirical cumulative distribution of these divergences. The Jensen-Shanon di-
vergence is a symmetrized and smoothed version of Kullback-Leibler divergence [54] between
two distributions P and Q, and can be calculated as follows [55]:

JSðP;QÞ ¼ 1

2
KLðP;MÞ þ 1

2
KLðQ;MÞ ð2Þ

whereM ¼ PþQ
2
, and KL is the Kullback-Leibler divergence.

Species tree estimation error and branch support. We compared the estimated species
trees to the model (i.e., true) species tree (for the simulated datasets) or to the scientific litera-
ture (for the biological datasets). We measure topological error using the missing branch rate
(also known as the false negative (FN) rate), which is the proportion of branches in the true
tree that are missing from the estimated tree. We also reported the error in species tree branch
lengths estimated by MP-EST using the ratio of estimated branch length to true branch length
for those branches of the true tree that appear in the estimated tree; thus, 1 indicates correct es-
timation, values above 1 indicate lengths that are too long, and values below 1 indicate branch
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lengths that are too short. Note that species tree branch lengths reflect the expected amount of
ILS, and so under-estimation of species tree branch lengths means over-estimation of ILS, and
over-estimation of branch lengths means under-estimation of ILS. We also computed the
branch support of the false positive (FP) and true positive (TP) edges, where false positive
edges are present in the estimated tree but not in the true tree, and edges that are present in
both the estimated and true tree are true positive edges.

Simulated datasets
We studied four collections of simulated datasets: two based on biological datasets that were
generated in a prior study [23], and two new collections with smaller numbers of species. We
briefly describe the simulation protocol for the biological datasets, and direct the reader to [23]
for full details.

Mammalian simulated datasets. This dataset was generated by [23], and studied there
and also in [43]. Here we describe the procedure followed by [23] to generate these data. First,
a species tree was computed for the full biological dataset in [31], using MP-EST (this was done
before removing 23 erroneous genes), and the tree topology and branch lengths were used as
the model tree. Thus, the mammalian simulation model tree has an ILS level based on an
MP-EST analysis of the biological mammalian dataset. Gene trees were simulated within this
species tree under the multi-species coalescent model, and then the branch lengths on the gene
trees were defined using the gene trees estimated on the biological dataset.

Variants of the basic model condition were generated by varying the amount of ILS, the
number of genes, and the sequence length for each gene; these modifications also impact the
amount of gene tree estimation error and the average bootstrap support in the estimated gene
trees, and so can be modified to produce datasets that resemble the biological data.

The amount of ILS was varied by adjusting the branch length (shorter branches increase
ILS). A model condition with reduced ILS was created by uniformly doubling (2X) the branch
lengths, and a model condition with higher ILS was generated by uniformly dividing the
branch lengths by two (0.5X). The amount of ILS obtained without adjusting the branch
lengths is referred to as “default ILS”, and was estimated by MP-EST on the biological data.

The average bootstrap support (BS) in the biological data was 71%, and so [23] generated se-
quence lengths that produced estimated gene trees with bootstrap support bracketing that
value—500bp alignments produced estimated gene trees with 63% average BS and 1000bp
alignments produced estimated gene trees with 79% BS. We also generated model conditions
with very short sequence lengths (250bp), which have 43% average BS.

Here, we varied the number of genes from 50 to 800 to explore both smaller and larger num-
bers of genes than the biological dataset (which had roughly 400 genes). In total, we generated
17 different model conditions specified by the ILS level, the number of genes, and the sequence
length. For each of these model conditions, [23] created 20 replicates.

Avian simulated datasets. Mirarab et al. [23] used the species tree estimated by MP-EST
on a subset of the avian dataset with 48 species and 14,446 loci studied by [26], and simulated
gene trees by varying different parameters (similar to the mammalian simulated datasets).
Three types of genomic markers were studied in [26]: exons, UCEs, and introns. The average
bootstrap support (BS) of the gene trees based on exons, UCEs, and introns, was 24%, 39% and
48%, respectively; the longest introns had the highest average BS (59%). Mirarab et al. varied
sequence lengths (250bp, 500bp, 1000bp, and 1500bp) to produce four model conditions with
patterns of average bootstrap support that resemble these four marker types. Mirarab et al. var-
ied the number of genes from 200 to 2000, but here, we augmented the dataset to also look at

Weighted Statistical Binning

PLOS ONE | DOI:10.1371/journal.pone.0129183 June 18, 2015 33 / 40



fewer genes (50 and 100). Mirarab et al. varied the amount of ILS, using the same technique as
was used in generating the mammalian simulated datasets.

15-taxon simulated datasets. We simulated a collection of 15-taxon datasets. The model
species tree is a caterpillar-like ultrametric tree (i.e., the substitution process obeys a strict mo-
lecular clock) with 15 taxa; hence, it has two leaves x and y that are siblings in the tree. The
lengths of all internal branches and the two branches incident with leaves x and y are all set to
0.005 substitutions per site; note that the assumption of ultrametricity defines the remaining
branch lengths. The population size parameter (θ = 4Nμ) is set to 0.05 for all branches, and this
results in 12 short internal branches (0.1 in coalescence units) in succession. Ultrametric gene
trees were simulated down this tree using McCoal [56] and commands given in S13 Fig. Se-
quence data were simulated down each gene tree using bppseqgen [57] according to GTR+Γ
parameters given in S13 Fig. We built four model conditions (with ten replicates each) by trim-
ming gene data to 100 or 1000 sites and by exploring 100 or 1000 genes.

10-taxon simulated datasets. We used simPhy [33] to simulate species trees using the
Yule process with two different maximum tree length settings: 200K generations, resulting in
short trees and high levels of ILS, and 1.8M generations, resulting in relatively longer trees and
lower levels of ILS. We generated 20 species trees per model condition, and used simPhy to
simulate 200 gene trees for each species trees using the multi-species coalescent process (sim-
Phy parameters and commands are given in S14 Fig). The gene trees (with branch lengths in
substitution units) deviate from the strict molecular clock, and the rates of evolution vary
across genes. We used Indelible to simulate GTR+Γ sequence evolution down these gene trees
with 100 sites, with parameters given in S14 Fig.

Biological datasets
We studied two biological datasets also studied in [23]: the avian dataset [26] containing
14,446 loci across 48 species, and a reduced version of the mammalian dataset studied by Song
et al. [31] with 447 loci across 37 species, from which [23] deleted 23 erroneous genes and re-
estimated gene trees using RAxML (see [23, 43] for discussion of these loci).

Methods and commands
Gene tree estimation. RAxML version 7.3.5 [58] was used to estimate gene trees under

the GTRGAMMAmodel, using the following command:

raxmlHPC-SSE3 -m GTRGAMMA -s [input_alignment] -n [output_name] -N 20 -p
[random_seed_number]

The following command was used for bootstrapping:

raxmlHPC-SSE3 -m GTRGAMMA -s [input_alignment] -n [output_name] -N 200 -p [ran-
dom_seed_number] -b [random_seed_number]

Supergene tree estimation. For the biological datasets and the 10- and 15-taxon simulated
datasets, we used a fully partitioned maximum likelihood analysis. All other analyses were
based on unpartitioned maximum likelihood analysis, using the command given above for
gene tree estimation. For the fully partitioned analysis, we used the following command:

raxmlHPC-SSE3 -m GTRGAMMA -s [input_alignment] -m GTRGAMMA -n [output_name]
-N 20 -M -q [partition_file] -p [random_seed_number]

Concatenation. We concatenate the alignments of all genes into one supermatrix, and
then estimate a tree from the supermatrix using unpartitioned maximum likelihood. We
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computed a parsimony starting tree using RAxML version 7.3.5, and then ran RAxML-light
version 1.0.6. The following commands were used:

raxmlHPC-SSE3 -y -s supermatrix.phylip -m GTRGAMMA -n [output_name] -p
[random_seed_number]

raxmlLight-PTHREADS -T 4 -s supermatrix.phylip -m GTRGAMMA -n name -t
[parsimony_tree]

MP-EST. We used version 1.3 of MP-EST. We ran MP-EST 10 times with different ran-
dom seed numbers, and selected the species tree with the best likelihood score using a custom
shell script. MP-EST was run using site-only multi-locus bootstrapping, using 200 MLBS repli-
cates, and returning the greedy consensus of the 200 MP-EST MLBS species trees as the output.
The branch support on the edges of the tree represent the frequency of the bipartition in the
sample of 200 species trees.

ASTRAL. We used ASTRAL version 4.7.6. in its default mode using the following
command:

astral.4.7.6.jar -i [input_gene_trees] -o [output_file]

Greedy consensus. The greedy consensus (also called the “extended majority consensus”)
of a set of trees, all on the same set of leaves, is obtained by ordering the bipartitions that appear
in one or more trees in the order of their frequency (most frequent first). Then, a tree is built
from this set, beginning with the first bipartition, and then modifying the tree to include the
next bipartition in the list, if the addition of the bipartition is possible. We used Dendropy ver-
sion 3.12.0 [59] to compute greedy consensus trees when running MP-EST or ASTRAL with
MLBS gene trees.

Data Availability
Most of the datasets used in this study are available through the prior publications. The new
datasets generated for this study are available on figshare, with DOI: http://dx.doi.org/10.6084/
m9.figshare.1411146. (Retrieved May 13, 2015.) The weighted statistical binning software is
available on github at https://github.com/smirarab/binning (Retrieved May 14, 2015.)

Supporting Information
S1 Table. Gene tree estimation error, with and without binning for simulated datasets.We
show the average gene tree estimation error for the simulated datasets analyzed in this paper.
Results are shown for fixed number of genes (1000 for avian and 200 for mammalian, 100 for
15-taxon and 100 for 10-taxon). We fixed the level of ILS to 1X for avian, mammalian and
15-taxon datasets; and varied the level of ILS for 10-taxon datasets with 100bp sequence length.
Gene tree error is mean topological distance, measured using the missing branch rate between
the true gene tree and all 200 bootstrap replicates of each estimated gene tree. For the super-
gene trees, each bootstrap replicate of each supergene tree is compared separately against each
true gene tree for the genes put in that bin. “n.a.” stands for “not available”.
(PDF)

S2 Table. Average bootstrap support of estimated gene trees.We show the average bootstrap
support values of the estimated gene trees for the simulated datasets. Results are shown for
fixed number of genes (1000 for avian and 200 for mammalian, 100 for 15-taxon and 100 for
10-taxon datasets). We fixed the level of ILS to 1X for avian, mammalian and 15-taxon
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datasets; and varied the level of ILS for 10-taxon datasets with 100bp sequence length.
(PDF)

S1 Fig. Effect of binning on the branch lengths (in coalescent units) estimated by MP-EST
using MLBS on the avian simulated datasets with varying numbers of gene trees.We show
the species tree branch length error (the ratio of estimated branch length to true branch length
for branches of the true tree that appear in the estimated tree; 1 indicates correct estimation).
We varied the number of genes from 50 to 2000, and fixed the sequence length to 500bp with
default amount of ILS (1X level). We used 50% bootstrap support threshold for binning. Super-
gene trees were estimated using unpartitioned analyses.
(EPS)

S2 Fig. Cumulative distribution of the bootstrap support values (obtained using MLBS) of
true positive (TP) and false positive (FP) edges estimated by MP-EST on avian datasets.We
varied the numbers of genes, and fixed the sequence length to 500bp (UCE-like) with default
amount of ILS (1X level). We used 50% bootstrap support threshold for binning. Supergene
trees were estimated using unpartitioned analyses. To produce the graph, we order the
branches in the estimated species tree by their quality, so that the true positives with high sup-
port come first, followed by lower support true positives, then by false positives with low sup-
port, and finally by false positives with high support. The false positive branches with support
above 75% are the most troublesome, and that fraction are indicated in the grey area. When
the curve for a method lies above the curve for another method, then the first method has bet-
ter bootstrap support.
(EPS)

S3 Fig. Divergence of estimated gene trees triplet distributions from true gene tree distri-
butions for simulated mammalian datasets. (a) Varying gene sequence alignments lengths
with 200 number of genes and default levels of ILS (1X); (b) varying ILS levels with fixed 200
genes and sequence length fixed to 500bp (63% BS). We used 75% bootstrap support threshold
for binning. Supergene trees were estimated using unpartitioned analyses. True triplet frequen-

cies are estimated based on true gene trees for each of the
n

3

 !
possible triplets, where n is the

number of species. Similarly, triplet frequencies are calculated from estimated gene/supergene

trees. For each of these
n

3

 !
triplets, we calculate the Jensen-Shannon divergence of the esti-

mated triplet distribution from the true gene tree triplet distribution. We show the empirical
cumulative distribution of these divergences. The empirical cumulative distribution shows that
for a given divergence level, what percentage of the triplets are diverged from true triplet distri-
bution at or below that level. Results are shown for 10 replicates.
(EPS)

S4 Fig. Species tree estimation error for MP-EST with MLBS on mammalian simulated
datasets with varying amounts of ILS.We show average FN rate over 20 replicates. We varied
the amount of ILS, and fixed the number of genes to 200 and sequence length to 500bp (63%
BS). We used 75% bootstrap support threshold for binning. Supergene trees were estimated
using unpartitioned analyses.
(EPS)

S5 Fig. Effect of binning on the branch lengths (in coalescent units) estimated by MP-EST
using MLBS on the mammalian simulated datasets with varying amounts of ILS.We show
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the species tree branch length error (the ratio of estimated branch length to true branch length
for branches of the true tree that appear in the estimated tree; 1 indicates correct estimation).
We varied the amount of ILS, and fixed the number of genes to 200 and sequence length to
500bp (63% BS). We used 75% bootstrap support threshold for binning. Supergene trees were
estimated using unpartitioned analyses.
(EPS)

S6 Fig. Cumulative distribution of the bootstrap support values (obtained using MLBS) of
true positive (TP) and false positive (FP) edges estimated by MP-EST on mammalian data-
sets.We varied the numbers of genes, and gene sequence alignments length with default
amount of ILS. We used 75% bootstrap support threshold for binning. Supergene trees were es-
timated using unpartitioned analyses. To produce the graph, we order the branches in the esti-
mated species tree by their quality, so that the true positives with high support come first,
followed by lower support true positives, then by false positives with low support, and finally
by false positives with high support. When the curve for a method lies above the curve for an-
other method, then the first method has better bootstrap support.
(EPS)

S7 Fig. Cumulative distribution of the bootstrap support values (obtained using MLBS) of
true positive (TP) and false positive (FP) edges estimated by MP-EST on mammalian data-
sets with varying amounts of ILS.We varied the amount of ILS, and fixed the number of
genes to 200 and sequence length to 500bp. We used 75% bootstrap support threshold for bin-
ning. Supergene trees were estimated using unpartitioned analyses. To produce the graph, we
order the branches in the estimated species tree by their quality, so that the true positives with
high support come first, followed by lower support true positives, then by false positives with
low support, and finally by false positives with high support. When the curve for a method lies
above the curve for another method, then the first method has better bootstrap support.
(EPS)

S8 Fig. Species trees estimated by unbinned ASTRAL using MLBS on avian biological data-
sets. Branches without designation have 100% support. We used 50% bootstrap support
threshold for binning. Supergene trees were estimated using fully partitioned analyses.
(EPS)

S9 Fig. Species trees estimated by binned (with and without weighting) ASTRAL using
MLBS on avian biological datasets. (a) Unweighted binned ASTRAL, and (b) weighted
binned ASTRAL. Branches without designation have 100% support. We used 50% bootstrap
support threshold for binning. Supergene trees were estimated using fully partitioned analyses.
Binned ASTRAL with weighting and binned ASTRAL without weighting differ only in the
placement of Opisthocomus hoazin. However, the branches supporting different placements of
Opisthocomus hoazin have low support values (47% for unweighted binning and 55% for
weighted binning).
(EPS)

S10 Fig. Species trees estimated by unbinned MP-EST using MLBS for mammalian biologi-
cal datasets. Branches without designation have 100% support. We used 75% bootstrap sup-
port threshold for binning. We estimated the supergene trees using fully partitioned analyses.
(EPS)

S11 Fig. Species trees estimated by binned (with and without weighting) MP-EST using
MLBS for mammalian biological datasets. Binned and unbinned ASTRAL returned identical
topology. The branches on this tree are labeled with two support values side by side: the first
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one corresponds to unweighted binning and the next one corresponds to weighted binning.
Branches without designation have 100% support. We used 75% bootstrap support threshold
for binning. Supergene trees were estimated using fully partitioned analyses.
(EPS)

S12 Fig. Species trees estimated by unbinned and binned (with and without weighting) AS-
TRAL using MLBS for mammalian biological datasets. Binned and unbinned ASTRAL re-
turned identical topology. The branches on this tree are labeled with three support values side
by side: the first one corresponds to unbinned ASTRAL, the next one corresponds to unweight-
ed binning, and the last one is for weighted binning. Branches without designation have 100%
support. We used 75% bootstrap support threshold for binning. Supergene trees were estimat-
ed using fully partitioned analyses.
(EPS)

S13 Fig. Simulation parameters and commands for the 15-taxon datasets.
(PDF)

S14 Fig. Simulation parameters and commands for the 10-taxon datasets.
(PDF)
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