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Abstract
Ecological niche models are widely used for mapping the distribution of species during the

last glacial maximum (LGM). Although the selection of the variables and General Circulation

Models (GCMs) used for constructing those maps determine the model predictions, we still

lack a discussion about which variables and which GCM should be included in the analysis

and why. Here, we analyzed the climatic predictions for the LGM of 9 different GCMs in

order to help biogeographers to select their GCMs and climatic layers for mapping the spe-

cies ranges in the LGM. We 1) map the discrepancies between the climatic predictions of

the nine GCMs available for the LGM, 2) analyze the similarities and differences between

the GCMs and group them to help researchers choose the appropriate GCMs for calibrating

and projecting their ecological niche models (ENM) during the LGM, and 3) quantify the

agreement of the predictions for each bioclimatic variable to help researchers avoid the en-

vironmental variables with a poor consensus between models. Our results indicate that, in

absolute values, GCMs have a strong disagreement in their temperature predictions for

temperate areas, while the uncertainties for the precipitation variables are in the tropics. In

spite of the discrepancies between model predictions, temperature variables (BIO1-BIO11)

are highly correlated between models. Precipitation variables (BIO12- BIO19) show no cor-

relation between models, and specifically, BIO14 (precipitation of the driest month) and

BIO15 (Precipitation Seasonality (Coefficient of Variation)) show the highest level of dis-

crepancy between GCMs. Following our results, we strongly recommend the use of different

GCMs for constructing or projecting ENMs, particularly when predicting the distribution of

species that inhabit the tropics and the temperate areas of the Northern and Southern Hemi-

spheres, because climatic predictions for those areas vary greatly among GCMs. We also

recommend the exclusion of BIO14 and BIO15 from ENMs because those variables show a

high level of discrepancy between GCMs. Thus, by excluding them, we decrease the level

of uncertainty of our predictions. All the climatic layers produced for this paper are freely

available in http://ecoclimate.org/.
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Introduction
The last glacial maximum (LGM) was a period of extreme dry and cold climatic conditions [1].
During the LGM, the ice sheets covered large areas of the Northern Hemisphere and the sea
level decreased globally an average of 120 meters, modifying the shapes of the continents and
altering the current oceanic barriers [2]. Biologists are interested in understanding the impacts
that this glacial period had on current and past biotic and genetic diversity. To do this, ecologi-
cal niche models [3, 4] have been extensively used for mapping the range shifts of species
through time as a consequence of the climatic changes [5, 6]. Questions about past species ex-
tinction events [7–10], population genetics [11] and population dynamics [12] have been ad-
dressed using this methodology.

In this context, ecological niche models are often calibrated and/or projected on paleocli-
mates simulated with General Circulation Models (GCMs). In general terms, a GCM is a math-
ematical representation of the physical processes operating in the atmosphere, ocean,
cryosphere and land surface and are widely applied for hindcasting (including the LGM scenar-
io) and forecasting the global climatic responses to variations in planetary parameters through
time (e.g., solar constant, greenhouse gas concentration, ice sheet dynamics) [13]. Currently,
there is an attempt to summarize the knowledge about the climatic dynamics from GCMs (see
IPCC Fifth Assessment Report in [14]). Large research projects such as the Coupled Modelling
Intercomparison Project (CMIP5: http://cmip-pcmdi.llnl.gov/cmip5/) and the Paleoclimate
Modelling Intercomparison Project (PMIP3: https://pmip3.lsce.ipsl.fr/) aim to standardize and
coordinate the climate model experiments involving multiple research groups from around the
world [15].

However, in spite of the standardization of the basic conditions for the experiments, each
GCM has its particularities. Each model uses a particular set of equations to simulate the cli-
matic dynamics, a particular model of global vegetation and a particular resolution to run the
simulations (see Table 1). The differences in the initial setup conditions and in their algorithms
have the inevitable outcome of ending in different climatic predictions for similarly forced
models [15].

Although the use of the paleoclimatic simulations to map species distributions during the
LGM has increased in recent years, there has been no systematic review to guide researchers to
fully understand the uncertainties and particularities of these climatic predictions. In the last
years, researchers often used MIROC and/or CCSMmodels, mainly because they were easily
available through the www.worldclim.org web repository (nowadays this changed and it is pos-
sible to download more than these two GCMs in worldclim.org). Besides, normally, variable se-
lections are based on species requirements, but not on the inherent uncertainties of those
climatic layers.

In this paper, we aim to initiate a debate for biogeographers and macroecologists about the
uncertainties of the climatic predictions for the last glacial maximum and how to deal with
those uncertainties when working with ecological niche models. We aim to provide a simple
guideline to help researchers in selecting the most appropriate GCMs and variables for con-
structing their maps of species ranges during the LGM. We analyze the predictions of nine
GCMs for the LGM scenario (see Table 1) in a three-fold discussion. First, we quantify and
map the global spatial patterns of the discrepancies between the GCM predictions. Second, we
identify the similarities between models and group them to help researchers choose between
GCMs. Third, we analyze the correlations between the predictions of 19 bioclimatic variables
across the GCMs to help researchers select the appropriate variables for lessening the uncer-
tainties in their predictions about species ranges during the last glacial maximum.
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Methods

Raw GCM variables
We used the most recent climatic simulations for the LGM scenario from all coupled atmo-
sphere-ocean general circulation models available in the CMIP5 and PMIP3 databases
(Table 1). We downloaded four atmospheric variables per month: precipitation (pr), mean
temperature (tas), maximum temperature (tasmax) and minimum temperature (tasmin). All
of these are from the same ensemble member (r1i1p1), except GISS (r1i1p151).

Preparing the layers for comparison
The raw outputs of the GCMs have different spatial resolutions (see Table 1). Thus, in order to
compare the climatic predictions of the GCMs, we built a set of climatic layers directly compa-
rable between models (same variables, same geographic extent and same spatial resolution).
For doing so, first, we calculate a long-term mean from the time-series data of the GCMs, then
we interpolate the obtained values to the same grid, and finally, we constructed the 19 biocli-
matic variables based on monthly temperature and precipitation values.

GCMs run long-term simulations for stabilizing paleoclimatic predictions. Thus, we averaged
the monthly-predicted values from the entire time span available for each GCM. Most GCMs
have 100 years time-series, providing standard long-term means. However, some GCMs stabi-
lized predictions on a longer time-series (see Table 1). For those models, we maintained the orig-
inal time spans to guarantee reliable long-termmeans from all GCMs. Temperature variables
were transformed from Kelvin to degrees Celsius and precipitation flux (in mmm-2 s-1) was

Table 1. Details of the nine general circulation models (GCMs) used in this comparative study.

Model ID Modeling Center Resolution # of
years

Source Release

CCSM4 National Center for Atmospheric Research, USA 0.9° ×
1.25°

100 CMIP5/
PMIP3

2012

CNRM-CM5 Centre National de Recherches Meteorologiques / Centre Europeen de
Recherche et Formation Avancees en Calcul Scientifique, France

1.4° x 1.4° 200 CMIP5/
PMIP3

2012

COSMOS-ASO
(FUB)

Freie Universität Berlin, Germany 3.75° x 3.7° 600 PMIP3 2012

GISS-E2-R NASA Goddard Institute for Space Studies, USA 2.5° x 2.0° 100 CMIP5/
PMIP3

2012

FGOALS-g2 National Key Laboratory of Numerical Modeling for Atmospheric Sciences and
Geophysical Fluid Dynamics (LASG). Institute of Atmospheric Physics (IAP),
China

2.8° × 2.8° 100 CMIP5/
PMIP3

2013

IPSL-CM5A-LR Institut Pierre Simon Laplace, France 3.75° x 1.9° 200 CMIP5/
PMIP3

2012

MIROC-ESM Atmosphere and Ocean Research Institute (University of Tokyo), National Institute
for Environmental Studies, and Japan Agency for Marine-Earth Science and
Technology, Japan

2.8° × 2.8° 100 CMIP5/
PMIP3

2012

MPI-ESM-P Max Planck Institute for Meteorology, Germany 1.9° x 1.9° 100 CMIP5/
PMIP3

2011

MRI-CGCM3 Meteorological Research Institute, Japan 1.1° x 1.1° 100 CMIP5/
PMIP3

2012

All simulations were obtained from r1i1p1 ensemble member, except GISS (r1i1p151). The original resolutions of the maps, in decimal degrees (longitude°

— latitude), are coarse (between 1° and 4°). Most models were run along a 100 years time-series after the spin-up period. Source: CMIP5, Coupled Model

Intercomparison Project Phase 5 (http://cmip-pcmdi.llnl.gov/cmip5/) and PMIP3, Paleoclimate Modelling Intercomparison Project Phase 3 (http://pmip3.

lsce.ipsl.fr/).

doi:10.1371/journal.pone.0129037.t001
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converted to total monthly precipitation (mmmonth-1), taking into account a month with 30
days according the specific calendar of 360 days year-1. The original netCDF files with the GCM
outputs were manipulated using the functions from ncdf R-package [16].

Next, the long-term means were downscaled to a resolution of 0.5 degree of latitude and
longitude. The downscaling procedure followed the standard change-factor approach [17], as
follows: (i) firstly we compute the anomalies (also called climate change trends) between LGM
and current climate for each raw variable at original GCM resolution, (ii) secondarily we inter-
polate the climate change trends (instead of LGM climates directly) and the current climate
from each GCM to the standard 0.5° grid, and (iii) thirdly we apply interpolated climate change
trends to the interpolated current climates to obtain the interpolated layers for LGM. In the
first step, the climate change trends for temperature variables were computed as the simple dif-
ference between LGM and modern conditions (a standard climate anomaly) from each GCM.
For precipitation, climate change trends were computed as ratios of such anomaly in relation
to its correspondent modern condition [(LGM—modern)/modern]. We used ratios because
they are a robust method in order to maintain the original spatial patterns when accounting for
large values, like precipitation [17].

In the second step, we used ordinary kriging technique to statistically downscale raw climate
change trends (differences and proportions) and current climate from each GCM to a standard
global 0.5° grid. We automated all that interpolation procedure by coupling different function
from gstat R-package [18] as follow. Interpolations were based on function krige from the 12
nearest observations to a given focal point (instead of fitting an inverse distance weighted
power from global neighborhood) and a variogram model. To model the spatial structure in
data, a variogram was fitted using the function fit.variogram. This function fits ranges and sills
from a variogram model (in our case, a spherical variogram) to a sample variogram. The spher-
ical variogram model was used because it shows a progressive decrease of spatial autocorrela-
tion until some distance, beyond which autocorrelation is zero, like the common spatial
structures observed in climate data. From an exponential model, for example, autocorrelation
would disappear completely only at an infinite distance, differing from the often observed. The
sample variogram was obtained using the function variogram, following the direction with the
largest range (i.e. the omnidirectional model type) in each variable and assuming a constant
trend for variables (i.e. we did not specify predictor variables to fit sample variogram).

A variety of statistical methods have been used for downscaling spatial data and generating
interpolated climate surfaces. We used ordinary kriging technique because it is known to pro-
duce reliable continuous interpolated surfaces by considering the spatial structure in raw vari-
ables to minimize the variance of the errors [19]. This is an important advantage in relation to
other simple linear interpolation techniques (e.g. regression methods, see [19] for an overview),
as it is desirable to interpolate climatic simulations which reflect the spatial structure of their
boundary conditions (e.g. ice sheet, topography, vegetation, insolation). Moreover, because our
dataset is based on climatic simulations, it makes no conceptual sense accounting for effects on
observed climate patterns, like coastal influence, terrain barriers, temperature inversions (ex-
plicitly accounted by PRISMmethod, for example; see [20], nor linking weather stations along
isoclines from irregularly spaced data points (which, for example, would be obtained by thin-
plate spline-fitting techniques like ANUSPLIN; see [21] and [22])).

To test the accuracy of our layers we spatially interpolated temperature and precipitation
layers from GCM CCSM4 using other four often used methods (thin-plate splines, inverse dis-
tance weighting, trend surface with 12th polynomial regression, natural neighbour), which
were highly correlated with our correspondent originally interpolated layers (r> 0.96 for pre-
cipitation, except from trend surface method, and r> 0.98 for temperature; S1 Table). More-
over, we evaluated the efficiency of all methods by comparing the values of 5000 spatially
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correspondent points (~10% of original CCSM4 grid cells) from interpolated (X) and original
(Z) layers using mean square errors [MSE = 1/n�S(Xi–Zi)2]. The points were randomly sam-
pled across geographical space and the general procedure was repeated 1000 times. Kriging
method showed the lowest MSEs (S1 Fig). Summarizing, our sensitivity analyses showed that
although all methods interpolate climatic layers with similar spatial patterns (high correla-
tions), kriging was the most precise for interpolating both temperature and precipitation (low-
est MSE).

Finally, we applied the interpolated climate change trends (differences and ratios) to their
correspondent interpolated modern conditions to obtain the interpolated LGM conditions.
Working with interpolating anomalies (climate change trends) instead of directly interpolating
the original variables from all climate scenarios (e.g. modern and LGM) ensures coherency of
the simulated climate patterns across time (see [23] for a similar procedure to guarantee topog-
raphy coherency across time when using observed modern climates instead of pre-industrial
simulations as a control data).

We then used the downscaled layers of the four initial variables of the 12 months—precipi-
tation, mean temperature, maximum temperature and minimum temperature—to construct
the 19 bioclimatic variables (see www.worldclim.org): BIO1 = Annual Mean Temperature,
BIO2 = Mean Diurnal Range (Mean of monthly (max temp—min temp)),
BIO3 = Isothermality (BIO2/BIO7) (� 100), BIO4 = Temperature Seasonality (standard devia-
tion �100), BIO5 = Max Temperature of Warmest Month, BIO6 = Min Temperature of Coldest
Month, BIO7 = Temperature Annual Range (BIO5-BIO6), BIO8 = Mean Temperature of Wet-
test Quarter, BIO9 = Mean Temperature of Driest Quarter, BIO10 = Mean Temperature of
Warmest Quarter, BIO11 = Mean Temperature of Coldest Quarter, BIO12 = Annual Precipita-
tion, BIO13 = Precipitation of Wettest Month, BIO14 = Precipitation of Driest Month,
BIO15 = Precipitation Seasonality (Coefficient of Variation), BIO16 = Precipitation of Wettest
Quarter, BIO17 = Precipitation of Driest Quarter, BIO18 = Precipitation of Warmest Quarter,
BIO19 = Precipitation of Coldest Quarter. We followed the standard equations from world-
Clim database to compute bioclimatic variables (see www.worldclim.org/bioclim). However,
BIO1 (annual mean temperature) was obtained directly from GCM simulations (raw variable
tas) instead of from average of maximum and minimum temperatures. We decided to use
these 19 bioclimatic variables because they are the most often used variables by ecologists and
biogeographers for training the ecological niche models. We also created a web-repository to
share these variables. These downscaled bioclimatic layers are free to use for research and avail-
able for download in the Ecoclimate Database (www.ecoclimate.org) and also in Figshare
(http://figshare.com/articles/past_GCMs_Sup_material_PLOS_ONE/1418256). e believe that
these 0.5° grids would be highly used in macroecological studies.

Statistical analysis
We constructed our initial array with the 19 variables of the 9 GCMs using the function abind,
from the abind package in R [24]. We then chose to run simple statistical analyses. We used
the standard deviation between all models to calculate the heterogeneity of the predictions for
every pixel using the function apply, from the base package in R [25]. For plotting the maps we
used raster [26] andmaptools [27], and the coastline shapefile map from Natural Earth (http://
www.naturalearthdata.com/downloads/110m-physical-vectors/). For quantifying the agree-
ment between models at each cell we calculated the standard deviation of the 9 GCMs, plus the
quartile coefficient of deviation (q3-q1)/q3+q1, in order to have a relative value of the climatic
uncertainties. We classified the models into groups by using the correlation between their cli-
matic predictions. We used the function hcluster from the R-library amap [28] for running a
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hierarchical clustering analysis to order the similarities between the model predictions (based
on the correlations between the predictions for the same variables), and we set the maximum
number of clusters to 4. All R-scripts are available in github/SaraVarela/LGM_climate.

Results
Our results show that the differences between the GCM predictions are not randomly distrib-
uted in geographic space (Figs 1 and 2). Predictions about temperature (BIO1-BIO11) during
the LGM have a low deviance in the tropics and a very high deviance in the temperate areas
(Figs 1 and 3). Conversely, differences in precipitation (BIO12-BIO19) are located in the trop-
ics (Figs 1 and 3). Comparing the agreement of the model predictions for BIO1 (annual mean
temperature) and BIO12 (annual precipitation) across 8 ecoregions we show that Paleartic,
Neartic and Antartic ecoregions show low agreements between GCMs for BIO1, while Afrotro-
pical, Indo-Malay, Neotropic, Australia and Oceania show higher levels of agreement between
models (S2 Fig). Precipitation values show the exact opposite pattern (S3 Fig).

After calculating the correlations between the model’s predictions for each climatic layer,
we observed that temperature variables are highly correlated; some models have more extreme
temperature predictions for the temperate and cold areas, but all the temperature predictions
are highly correlated. Precipitation variables show more discrepancies between models; corre-
lations between the predicted precipitation layers between models are not high, and the COS-
MOS climatic model showed the most different predictions (Fig 4 and S2 Table).

By identifying the groups of models with similar predictions, our hierarchical clustering
analysis suggests that the four GCMs that should be selected to cover the widest range of cli-
matic predictions for the LGM are: COSMOS (the model with the most singular predictions);
one model from the group MPI and MRI; one model from the group CCSM3, FGOALS and

Fig 1. Standard deviation of the climatic conditions predicted by the GCMs. Standard deviation of the temperature variables (BIO1-BIO11) and the
precipitation variables (BIO12-BIO19) predicted by the nine General Circulation Models for the last glacial maximum. In general, temperature predictions are
more robust for the oceans than for the continents, while precipitation errors are distributed in both seas and continents. Temperature predictions for the last
glacial maximum are highly heterogeneous for cold climates, including the mountains, while predictions for tropical, warm and desert environments are more
similar between models. On the other hand, tropical areas have highly heterogeneous predictions about precipitation, while predictions for the temperate and
cold environments show better agreement.

doi:10.1371/journal.pone.0129037.g001
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MIROC; and the last model from the group GISS, CNRM and IPSL (Fig 5 and Table 2). How-
ever, the selected GCMs are dependent on the variables that we choose to use in our analysis.
For instance, if we only consider BIO1 and BIO12 (Mean Annual Temperature and Annual
Precipitation), the groups of GCMs that cover all the variability between models for these two
variables are different. In this case, the simplest combination to cover all the variability between
GCM predictions for the LGM would be the group CCSM3, GISS, MRI, and one model from
the group of COSMOS and MPI (Table 2).

Finally, each temperature variable (BIO1-BIO11) shows high correlations and low devia-
tions between models, with two exceptions: BIO2, Mean Diurnal Range (Mean of monthly
(max temp—min temp)) and BIO3, Isothermality (BIO2/BIO7) (� 100). Moreover, precipita-
tion variables (BIO12-BIO19) show intermediate correlations, and BIO14 (Precipitation of the
driest month) and BIO15 (precipitation seasonality) show the lowest correlations between the
model predictions (Fig 6, S2 Table).

Discussion
In general, continental climatic predictions show lower agreement between models than ocean-
ic climatic predictions (Fig 7), and some regions in the continents show a high consensus be-
tween GCM predictions (such as Greenland and North-East Asia), while others show a low
consensus regarding climatic conditions (such as Europe, North Africa and Australia) (see Fig
7). Thus, our analysis suggests that the robustness of the predictions about the distribution of
species in the LGM is strongly dependent on the geographic extent of the studies. Until now,
the uncertainties about the climatic predictions of the GCMs were not generally discussed in
studies about biogeography, but see [29, 30]. The discussions have mainly focused on the biases

Fig 2. Maps identifying the areas where the bioclimatic predictions for the last glacial maximum show
between-model agreement (in dark red) separated by (A) temperature layers (BIO1 to BIO11) and (B)
precipitation layers (BIO12-BIO19). Pink areas are those with more climatic uncertainty (GCMs predict
different values for temperature and precipitation). These maps are based on the quartile coefficient of
dispersion (see methods), which takes into account the dispersion of the predictions related to the actual
range of the predictions.

doi:10.1371/journal.pone.0129037.g002
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of the data [31],[32] or the differences between the solutions found by different algorithms for
constructing the ecological niche models [33]. However, the climatic predictions from the
GCMs do not converge to one unique solution regarding the spatial pattern of the climatic lay-
ers in the LGM (Fig 1). We assume that the GCMs will improve their climatic predictions, and
in the near future should reach a stronger consensus. Meanwhile, a practical solution for bio-
geographical studies is to include a wide array of climatic simulations (GCMs) and discuss the
potential uncertainties of the so-obtained predictions. We strongly suggest the consideration of
different GCMs when predicting the LGM ranges of species suspected to inhabit areas with a
low level of consensus between models (Fig 7), in order to cover the observed variability in cli-
matic predictions. However, questions remain. Which models should be used? How many?
And further, which variables should we choose in order to decrease the uncertainties of our
species range maps?

Fig 3. Standard deviation of BIO1 (annual mean temperature) (A) and BIO12 (annual precipitation) (B)
in relation to latitude.Our analysis indicates that these variables show an opposite latitudinal distribution of
their uncertainties. Temperature predictions diverge at high latitudes, while precipitation predictions have
high standard deviations in the tropics.

doi:10.1371/journal.pone.0129037.g003
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Selection of the GCMs
Given our results, we suggest the selection of at least four different GCMs for calibrating and
projecting ecological niche models (ENM) in the LGM attempting to cover all the variability
observed between the GCMs (see Results and Table 2). However, as discussed above, there is

Fig 4. Boxplot showing the correlation values for the temperature variables (in red) and the
precipitation variables (in blue), of each General Circulation Model (GCM) compared with the rest of
the layers from the other GCMs. Although there are discrepancies in certain variables, temperature
variables are highly congruent between models. On the other hand, precipitation variables showmore
discrepancies between models. COSMOS is the most different model in relation to its predictions about
precipitation. Points are outliers (located 1.5 times the interquartile range above the upper quartile and bellow
the lower quartile, which is the default definition of outlier in the R function boxplot).

doi:10.1371/journal.pone.0129037.g004

Fig 5. Hierarchical cluster grouping the nine GCMs by the correlation of their predictions for all 19
bioclimatic variables.

doi:10.1371/journal.pone.0129037.g005
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no single solution about which models should be included. We grouped the GCMs according
to their similarities across variables (see Table 2), and we show that GCM groups are not iden-
tical across the 19 bioclimatic variables. This suggests that, for example, GCMs that have simi-
lar predictions for BIO1 and thus belong to the same group, diverge in their predictions for
BIO2, BIO3, etc. Therefore, our results suggest that there is no general solution about which
GCMs should be included in our studies about the past ranges of species to cover all the vari-
ability of climatic predictions. This is dependent on the variables used for constructing our
ENM and on the extent of our analysis.

Fig 6. Boxplot showing the correlation between GCM predictions for each bioclimatic variable.

doi:10.1371/journal.pone.0129037.g006

Fig 7. Areas with high agreement betweenmodels.Red areas show high agreement across the 19
bioclimatic variables (quartile coefficient of dispersion lower than 0.5 all variables at each cell).

doi:10.1371/journal.pone.0129037.g007
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Averaging the predictions of different GCMs is a common procedure in biogeography.
However, doing an ensemble of different GCMs is based on the idea that the errors are normal-
ly distributed between the GCM predictions and that the mean of those maps will be a close
proxy of the “truth”. Also, averaging the species range predictions smoothes the species geo-
graphic shifts, hiding extreme optimistic or pessimistic predictions. For all these reasons, we
recommend to repeat the models (the model calibration and the map projections) with differ-
ent GCMs in order to have different measures of range shift, area, etc. according to the different
GCMs. And, after that, show the dispersion of the obtained results. This is a more conservative
approach that allows researchers to include the GCMs uncertainties in their results. Table 2
should help researchers select the adequate GCMs for their models considering the selected
variables at a global scale. Continental and regional scales will be analyzed in the future.

Selection of the bioclimatic variables
A priori, the selection of the climatic layers used to calibrate ecological niche models could be
based on the climatic requirements of the focal species. However, here we deal with this issue
from a different perspective; we investigate the correlations between the predictions of each
bioclimatic layer across the different GCMs (Fig 6). Our results show that in general, ENMs
calibrated with temperature layers will be more robust than ENMs calibrated using precipita-
tion layers, because temperature layers show more agreement between GCMs (Fig 6). These
analyses support the results observed with real data; some former versions of the GCMs failed
to predict precipitation conditions estimated using pollen records [34].

Between the precipitation layers, two variables, BIO14 (Precipitation of Driest Month) and
BIO15 (Precipitation Seasonality), show a high variability between GCMs (Fig 6). Consequent-
ly, if we need to include precipitation variables, excluding certain variables (like BIO14 and
BIO15) would increase the robustness of the ENM's predictions.

Further, if we want to use both temperature and precipitation layers, not including BIO2
(Mean Diurnal Range (Mean of monthly (max temp—min temp)), BIO3 (Isothermality), BIO
14 and BIO15, for calibrating or projecting the ENMs on the LGM scenario would highly de-
crease the uncertainties of our species range predictions.

This method for discarding climatic variables does not take into consideration the biotic re-
quirements of the species, but rather the intrinsic uncertainties of the climatic models for the
LGM. In macroecological studies that deal with a large number of species at a continental level,
applying these types of criteria for discarding problematic variables will increase the robustness
of our map predictions. However, if working with a particular species that is highly sensitive to
those variables, e.g. to the precipitation of the driest month (BIO14), then we suggest projecting
the species niche using all the climatic scenarios from the nine GCMs, to obtain a more com-
plete picture of the solutions according to the different GCMs.

To summarize, climatic predictions for the last glacial maximum show different levels of
agreement across space, and, in general, temperature layers show higher consensus than pre-
cipitation layers. Thus, when mapping the distribution of species in the last glacial maximum
we should try to 1) select different GCMs for constructing our ENM and show the results of
our predictions with their associated uncertainty; 2) if possible, exclude the variables that show
high levels of uncertainty in our study area (normally precipitation variables) in order to reduce
the differences between our predictions.

Supporting Information
S1 Fig. Comparison among interpolation techniques for temperature and precipitation.
Comparison among interpolation techniques for temperature (A) and precipitation (B) layers.
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Boxplots show the mean square errors [MSE = 1/n�S(Xi–Zi)2] from interpolated (X) and origi-
nal (Z) climatic values.
(DOC)

S2 Fig. Differences between models: Annual Mean Temperature. Standard deviation of the
predictions of the 9 different General Circulation Models (GCMs) for the last glacial maximum
annual mean temperature (Bio1) across the 8 WWF ecoregions (ecoregions downloaded from
http://maps.tnc.org/files/metadata/TerrEcos.xml). Paleartic, Neartic and Antartic ecoregions
are the ones with higher differences between GCMs, which means a less agreement between cli-
matic predictions for Bio1 (Annual Mean Temperature). On the other hand, Afrotropical,
Indo-Malay, Neotropic, Australia and Oceania show higher levels of agreement
between models.
(DOC)

S3 Fig. Differences between models: Annual Precipitation. Standard deviation of the predic-
tions of the 9 different GCMs for the last glacial maximum annual precipitation (Bio12). In
this case, Antartic, Neartic and Paleartic show higher agreement between GCMs than Afrotro-
pic, Indo-Malay, Neotropic and Oceania regions.
(DOC)

S1 Table. Comparative of different interpolation techniques. Correlation (Pearson's coeffi-
cient—r) among interpolated temperature (above diagonal) and precipitation (below diagonal)
layers from distinct techniques. Krige: ordinary kriging, IDW: inverse distance weighting,
Splines: thin-plate spline; Trend: trend surface with 12th polynomial regression; NN: natural
neighbor.
(DOC)

S2 Table. Correlation coefficients of climatic variables between GCMs. Correlation between
the same variables of the different GCMs. Temperature layers (BIO1-11) show better agree-
ment between models than precipitation layers (BIO12-19).
(DOC)
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