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Abstract
Meiotic errors during oocyte maturation are considered the major contributors to embryonic

aneuploidy and failures in human IVF treatment. Various technologies have been devel-

oped to screen polar bodies, blastomeres and trophectoderm cells for chromosomal aberra-

tions. Array-CGH analysis using bacterial artificial chromosome (BAC) arrays is widely

applied for preimplantation genetic diagnosis (PGD) using single cells. Recently, an in-

crease in the pregnancy rate has been demonstrated using array-CGH to evaluate trophec-

toderm cells. However, in some countries, the analysis of embryonic cells is restricted by

law. Therefore, we used BAC array-CGH to assess the impact of polar body analysis on the

live birth rate. A disadvantage of polar body aneuploidy screening is the necessity of the

analysis of both the first and second polar bodies, resulting in increases in costs for the pa-

tient and complex data interpretation. Aneuploidy screening results may sometimes be am-

biguous if the first and second polar bodies show reciprocal chromosomal aberrations. To

overcome this disadvantage, we tested a strategy involving the pooling of DNA from both

polar bodies before DNA amplification. We retrospectively studied 351 patients, of whom

111 underwent polar body array-CGH before embryo transfer. In the group receiving pooled

polar body array-CGH (aCGH) analysis, 110 embryos were transferred, and 29 babies

were born, corresponding to live birth rates of 26.4% per embryo and 35.7% per patient. In

contrast, in the control group, the IVF treatment was performed without preimplantation ge-

netic screening (PGS). For this group, 403 embryos were transferred, and 60 babies were

born, resulting in live birth rates of 14.9% per embryo and 22.7% per patient. In conclusion,

our data show that in the aCGH group, the use of aneuploidy screening resulted in a signifi-

cantly higher live birth rate compared with the control group, supporting the benefit of

PGS for IVF couples in addition to the suitability and effectiveness of our polar body pooling

strategy.
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Introduction
The success of an infertility treatment is strongly associated with the age of the female partner,
mainly due to the rapid increase in aneuploidies that occurs in the oocytes of women aged 35
years and older. Additionally, aneuploidy rates in the oocytes of infertile female patients seem
to be even higher than those in the oocytes of women of the same age without fertility problems
[1,2]. Therefore, it is reasonable to assume that the identification of such oocytes or embryos
without chromosomal aberrations in women over 35 years of age may improve pregnancy
rates and consequently, live birth rates. Unfortunately, no consistent relationship appears to
exist between the embryo karyotype and its morphology [3].

The technique of preimplantation genetic diagnosis (PGD) has been used for several years
with the goal of either improving pregnancy rates by selecting euploid embryos or detecting
specific genetically inherited diseases [4,5]. Since the introduction of PGD, a variety of different
techniques have been developed for a wide range of indications [6–8]. The first attempts to an-
alyze embryonic karyotypes used fluorescence in situ hybridization (FISH) to screen polar bod-
ies, blastomeres or trophectoderm cells. However, several studies using FISH for aneuploidy
screening have failed to show a clear benefit for women of advanced maternal age (AMA) or
with recurrent implantation failure [9–11]. The limited number of chromosomes that can be
examined by FISH is the most likely explanation for this lack of benefit. The analysis of com-
plete embryo karyotypes has been achieved following the introduction of new techniques, such
as comparative genomic hybridization (CGH), array-CGH, real-time PCR, and more recently,
next-generation sequencing (NGS) [12,13]. Using these techniques, several studies have dem-
onstrated improved pregnancy rates by screening all 24 chromosomes [14–16]. A large majori-
ty of these studies have applied array-CGH technology in combination with bacterial artificial
chromosome (BAC) arrays.

As an alternative approach to the aneuploidy screening of blastomere or trophectoderm
cells, the analysis of polar bodies by array-CGH has been discussed [17]. One disadvantage of
polar body preimplantation genetic screening (PGS) is the high costs that arise because of the
requirement for separate analyses of the first and second polar bodies to obtain a precise pre-
diction of the putative chromosomal aberration in the oocyte. To reduce the costs of polar
body analysis, we performed BAC array-CGH using DNA that was extracted and amplified
from pooled polar bodies. Our results indicate that meiotic separation errors can be effectively
detected in pooled polar bodies. Moreover, the live birth rate per transferred embryo strongly
increased in couples after the BAC array-CGH-based PGS of pooled polar bodies in compari-
son with a control IVF group without PGS.

Methods
In the present study, 351 women between 35 and 45 years of age were included. The patients
were treated using standard IVF/ICSI protocols. In the study group (aCGH group), 111 pa-
tients with a mean age of 39.5 years underwent BAC array-CGH-based aneuploidy screening
(PGS) before embryo transfer using DNA obtained from pooled polar bodies. The indication
for polar body screening was either repeated implantation failure or advanced maternal age.

The control group without PGS before embryo transfer consisted of 240 consecutive pa-
tients who were also between 35 and 45 years of age (mean age of 38.4 years). Intracytoplas-
matic sperm injection (ICSI) was performed for 231 patients and oocytes of nine patients
(3.8%) were fertilized by in vitro fertilization (IVF). Each patient was included only once in the
study, and for women who underwent more than one IVF/ICSI attempt during the recruitment
time, only the last treatment was taken into account for the present study. In both groups, 1 to
3 embryos were transferred between days 2 and 5. In the aCGH group, only embryos for which
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the screening indicated no chromosomal aberration were used for transfer, while in the control
group, the embryos for transfer were chosen on the basis of morphological criteria [18,19]. The
primary endpoints were the live birth rates for both groups.

All patients signed an informed consent form. The present case-control study was per-
formed according to the STROBE guidelines [20] and was approved by the institutional review
board of the Medical University of Vienna.

Polar body biopsy
In the aCGH patient group, two to three hours after oocyte retrieval, cumulus cells were dis-
solved using hyaluronidase medium. Intracytoplasmatic sperm injection (ICSI) was performed
for all patients in the aCGH group to avoid contamination. Biopsies of both polar bodies were
conducted at 16 to 18 hours after ICSI. Assisted hatching of the embryo was performed using
an OCTAX laser system (Octax Microsience GmbH, Bruckberg, Germany).

DNA amplification of polar bodies
First and second polar bodies were transferred together into a 0.2-ml microtube containing
medium with 2.5 μl of phosphate-buffered saline (PBS). Extraction and amplification of the
DNA from the polar bodies was performed according to the BlueGnome SurePlex CGH Am-
plification System protocol (SurePlex; BlueGnome, Cambridge, UK). After DNA amplification,
5-μl aliquots of the products were separated by gel electrophoresis as a quality control measure,
and 1-μl aliquots were used for DNA quantification with a Qubit 2.0 Fluorometer (Life Tech-
nologies, Vienna, Austria). Typically, WGA amplification resulted in a DNA concentration of
20–40 ng/μl.

Array-CGH analysis
Eight microliters of the amplified DNA from the pooled polar bodies as well as male and female
control DNA were labeled according to the 24sure V3 protocol (BlueGnome, Cambridge, UK).
Either Cy3 dCTP or Cy5 dCTP nucleotides were incorporated into the DNA using random
primers and Klenow enzyme. A labeling reaction was performed for two hours in a thermal cy-
cler at 37°C. Thereafter, the samples were dried in a centrifugal evaporator at 75°C for 40 min-
utes. After the addition of 25 μl of COT human DNA (1 μg/μl) to the probes, the probes were
again incubated in a centrifugal evaporator at 75°C until the volume was reduced to approxi-
mately 3 μl. The DNA was then resolved and denatured at 75°C for 10 minutes in 21 μl of hy-
bridization buffer containing 15% dextran sulfate. Eighteen microliters of the DNA solution
was used for hybridization to the BAC array for 4 to 16 hours at 47°C. The washing steps were
performed according to the 24sure protocol. Finally, the slides were dried by centrifugation at
200 x g for 2 minutes and scanned using a DNAMicroarray Scanner (Agilent Technologies,
Santa Clara, United States) at 10 μm resolution. Signals were called with BlueGnome software
(BlueFuse Multi analysis software version 3.0), with an adjustment for first polar body analysis
[16]. Aneuploidy screening using BlueFuse Multi analysis software is based on the median log2
ratio for each chromosome. For analysis of a diploid cell, the predicted log2 ratio for chromo-
some gain is +0.58 (log2 3/2), and for chromosome loss, it is -1.0 (log2 ½). For pooled polar
bodies, the predicted log2 ratio for chromatid gain is reduced to +0.48 (log2 4/3), and for chro-
matid loss, it is -0.59 (log2 2/3). BlueFuse Multi analysis software is able to detect a chromo-
some gain with 100% confidence when the median ratio is� +0.35 and a chromosome loss
with 100% confidence when the median ratio is� -0.6 [21,22].
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Multiplex STR analysis
Multiplex STR analysis using a PowerPlex 16 System (Promega, Mannheim, Germany) was
performed to verify the successful transfer of the first and second polar bodies to the tube, to
assess the possible contamination of the probes and to determine the ratio of DNA amplifica-
tion between the two polar bodies in a random subset of the aCGH group. Forty samples were
tested using 1 μl of amplified DNA from pooled polar bodies. Amplification of the polymor-
phic DNA fragments was conducted according to the manufacturer's protocol. One microliter
of the product was separated with an ABI PRISM 3170 Avant Genetic Analyzer, and fragment
sizes were determined using Gene Mapper software (Life Technologies, Vienna, Austria).

Statistical analysis
Continuous variables were presented as the mean ± standard deviations (SD), and categorical
variables were represented by counts and percentages, unless indicated otherwise. Group-
based comparisons including all samples were compared using Student’s t-test (or the Wil-
coxon rank sum test if the normality assumption was violated) or Fisher's exact test. Uni- and
multivariable logistic regression models were used to assess associations between the outcome
parameter (i.e., live birth) and explanatory variables, such as polar body analysis (the parameter
of main interest), age (metric scaled, years), BMI (metric scaled, kg/m2), the number of treat-
ment attempts>1 (binary), the number of oocytes (square root-transformed (sqrt)), the num-
ber of transferred embryos>1 (binary), and the day of transfer (categorical). A backward
stepwise selection algorithm was used for variable reduction in the multivariable logistic regres-
sion model, whereby the selection algorithm was applied according to Akaike’s information
criterion. Effects were expressed as odds ratios (ORs) and 95% confidence intervals (95% CIs).
Statistical analysis was performed with R (V3.0.2) and associated packages [23] and SPSS (ver-
sion 21). A two-sided p-value of�0.05 was considered to be statistically significant. P-values
were interpreted descriptively, and multiplicity was not adjusted in this observational study.

Results

STR analyses
In a first step to establish aneuploidy screening using amplified DNA from pooled polar bodies,
we performed multiplex analyses on 40 DNA samples, testing 16 highly polymorphic STR
markers. DNA samples of pooled first and second polar bodies should contain three chroma-
tids for each chromosome, and for a heterozygous allele, a 2:1 ratio should be observed. Uneven
amplification of the DNA from the first and second polar bodies by a WGA kit would interfere
with this 2:1 distribution. Moreover, contamination of the polar body sample by extrinsic
DNA should result in the detection of more than two alleles for at least one of the tested STR
markers. In all 40 analyzed samples, we observed two or more STR markers displaying a 2:1
distribution, supporting the successful transfer of both polar bodies to the tube as well as the
proportionate DNA amplification of all three chromatids. Additional STR signals were not
observed, indicating that the contamination of the samples by exogenous DNA or cells was
unlikely.

Array-CGH analyses
Of the 351 patients included in the study, 111 (32%) received BAC array-CGH-based aneuploi-
dy screening of pooled polar bodies, while 240 (68%) did not (Fig 1). Descriptive analysis of all
samples is provided in Table 1. The mean age of the women in the aCGH group was 39.5 years,
while in the control group, the mean age was 38.4 years. The women in the aCGH group had a
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significantly greater number of previous IVF/ICSI attempts (Table 1). There were no signifi-
cant differences in the IVF/ICSI protocols between the two groups (p = 0.205); however, more
embryos were transferred in the control group, with an average of 1.76 embryos, compared to a
mean transfer of 1.57 embryos in the group subjected to aCGH analysis.

In the aCGH group, a total of 930 oocytes were collected. Polar bodies were isolated from
530 oocytes and analyzed by aCGH, while the other oocytes did not develop or polar bodies
could not be isolated from them. The results of the polar body screening revealed that 147
(28.6%) oocytes were euploid, whereas 359 (67.7%) were not. No results were obtained for 24
oocytes (4.5%). In 35.6% of aneuploid oocytes, a gain or loss of only one chromosome was ob-
served (Fig 2A). Gains or losses of two chromosomes were observed in 22.2% of aneuploid
oocytes, and 42.2% of aneuploid oocytes showed three or more chromosomal aberrations
(Fig 2A). All 23 chromosomes were involved in aneuploidies. The gain or loss of chromosome
19 was the most commonly detected aneuploidy (28.7%), whereas aneuploidy for chromosome

Fig 1. Flowchart of patients’ treatments. The white fields show data for the control group, whereas the gray shadowed fields depict the data for the array-
CGH (aCGH) group. In the aCGH group, 41 patients had no embryo transfer because no euploid oocyte could be identified. In the control group, 11 patients
had no embryo transfer because no oocyte could be retrieved or fertilized or because of poor embryo quality.

doi:10.1371/journal.pone.0128317.g001
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4, 5 or 6 was observed scarcest affecting approximately 10% of aneuploid oocytes (Fig 2B).
Forty-one patients (37%) had no oocytes without a putative chromosome aberration, and these
women decided not to undergo embryo transfer (Fig 1). In the control group without aCGH,
embryo transfer was not performed in eleven patients (4.6%). Overall, 52 women did not un-
dergo transfer. Therefore, the remaining 299 patients were considered for further analysis.

In the control group, a total of 403 embryos were transferred, and 60 babies were born, cor-
responding to live birth rates of 14.9% per embryo and 22.7% per patient. In the aCGH group,
110 embryos were transferred, and 29 babies were born, resulting in a significantly higher live
birth rate of 26.4% per embryo (p = 0.015) and a live birth rate of 35.7% per patient (p = 0.031).
In addition, in the aCGH group, no women with clinical pregnancy experienced a miscarriage,
while in the control group, nine patients (3.93%) lost their fetus.

Interestingly, in the control group, only two babies were born from women who were 40
and 41 years old, while in the aCGH group, 9 babies were born from women who were 40 to 43
years old, suggesting a benefit of the aCGH analysis, especially for women of an advanced age
(Table 2).

A univariable analysis revealed that the age of the patient, number of transferred oocytes,
transfer of more than one embryo, day of transfer and aCGH were associated with the live
birth rate (Table 3). In addition, multivariable logistic regression models were used to adjust
for several possible confounders, revealing that the live birth rate was significantly higher in the
polar body analysis group after adjustments for the remaining variables (Table 3). Moreover,
aCGH (OR 2.57, 95% CI 1.37–4.82, p = 0.003), age (OR 0.80, 95% CI 0.70–0.91, p<0.001), and
the transfer of>1 embryo (OR 2.15, 95%CI 1.19–4.01, p = 0.013) were selected as independent
predictors of the live birth rate by backward stepwise elimination.

Discussion
The results of this study strongly suggest that array-CGH analysis using amplified DNA from
pooled polar bodies improves the live birth rate compared with that observed in the absence of
aneuploidy screening. A number of studies have demonstrated that chromosome aberrations
are strongly increased in women older than 35 years and that aneuploidy may be the main rea-
son for infertility in couples with an advanced maternal age. Aneuploid oocytes can be identi-
fied with high sensitivity by the comprehensive chromosome screening of amplified DNA

Table 1. Characteristics of the total study population.

non-CGH CGH p-value
n = 240 n = 111

Age (years) 38.4(yea 39.5(yea <0.001

Antagonist protocol 152 (63.3%) 73 (65.8%) 0.394

Agonist protocol 87 (36.3%) 38 (34.2%) 0.394

BMI (kg/m2) 20.3(kg/ 20.5(kg/ 0.354

Attempts 2.0 (1.0–3.0) 2.0 (1.0–4.0) 0.002

Attempts >1 142 (59.2%) 78 (70.2%) 0.046

Number of oocytes 6.0 (4.0–10.0) 8.0 (5.0–11.0) <0.001

Transferred embryos 2.0 (1.0–2.0) 1.0 (0.0–2.0) <0.001

Transferred embryos >1 154 (65.0%) 48 (43.2%) <0.001

Day of embryo transfer 3.0 (2.0–3.0) 3.0 (3.0–5.0) 0.070

The data are expressed as the mean ± standard deviation as well as the median (IQR) and counts (%).

* p-value based on the Wilcoxon rank sum test.

doi:10.1371/journal.pone.0128317.t001
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from polar bodies. In former studies, polar bodies have been evaluated to predict the majority
of aneuploidies in resulting embryos [24,25]. However, in these studies, first and second polar
bodies were extracted successively from oocytes and amplified separately. After hybridization,
the polar bodies were analyzed using software with specific settings for the first and second

Fig 2. (A) Number of chromosomal aberrations in aneuploid oocytes. In total, the polar bodies of 530 oocytes were tested by aCGH, and 359 were found to
have a chromosomal aberration. Approximately 65% of aneuploid oocytes had two or more aneuploidies. (B) Distribution of chromosome errors in aneuploid
oocytes. All chromosomes were found to be involved in aneuploidies. Aneuploidy of chromosome 4 was observed in only 10% of oocytes, while chromosome
19 aberrations were most frequently detected in up to 30% of oocytes.

doi:10.1371/journal.pone.0128317.g002
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Table 2. Results of the IVF-treatment in combination with or without aCGH.

Age No. of
patients

No. of
transferredembryos

No. of live
births

No. of twin
births

No. of tested
oocytes

No. of euploid
oocytes

% of euploid
oocytes

35 34 51 12 1

5 9 4 1 32 18 56.3

36 34 56 10 2

6 3 - - 30 3 10.0

37 27 52 12 2

11 14 4 - 58 21 36.2

38 40 67 13 2

13 16 7 2 63 28 44.4

39 36 63 11 1

23 23 5 1 111 41 36.9

40 27 47 1

21 18 2 - 85 27 31.8

41 12 21 1

10 13 4 - 47 14 29.8

42 7 9 -

9 5 1 - 32 8 25.0

43 12 19 -

8 6 2 - 41 9 22.0

44 7 12 -

3 1 - - 10 1 10.0

45 4 6 -

2 2 - - 11 2 18.2

The first column depicts the patients’ ages. In each line upper rows show the data for the control group, and the lower rows show the data for the

aCGH group.

doi:10.1371/journal.pone.0128317.t002

Table 3. Uni- andmultivariable analyses of 299 subjects with transfers resulting in live births.

Univariable Multivariable*
OR 95% CI p-value AOR 95% CI p-value

CGH 1.89 1.05–3.36 0.031 2.83 1.36–5.96 0.006

Age (years) 0.83 0.74–0.93 0.002 0.79 0.69–0.91 0.001

BMI (kg/m2) 1.00 0.94–1.07 0.885 1.01 0.98–1.05 0.473

Attempts >1 0.87 0.51–1.49 0.596 0.85 0.47–1.54 0.583

Sqrt (oocytes) 1.44 1.04–2.01 0.030 1.01 0.65–1.53 0.980

Embryos >1 1.97 1.11–3.60 0.023 2.14 1.15–4.11 0.018

Day of ET = 1 or 2 (reference) - - - - - -

Day of ET = 3 1.01 0.52–1.97 0.982 0.85 0.41–1.79 0.666

Day of ET = 4 1.09 0.28–3.49 0.897 0.66 0.15–2.46 0.559

Day of ET = 5 2.13 1.06–4.36 0.035 1.32 0.55–3.20 0.537

*Adjusted odds ratios (AORs) for a fully adjusted logistic regression model.

doi:10.1371/journal.pone.0128317.t003
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polar bodies. Because the BlueFuse Multi software that we used has no setting for pooled polar
bodies, we plotted our samples with an adjustment for first polar body analysis. Previous stud-
ies have shown that BlueFuse Multi software is able to detect mosaicism for aneuploidy at levels
as low as 25–37% with high confidence [21,22]. Our approach to pool the first and second
polar bodies corresponds to an aneuploidy mosaicism of 50–60%. Therefore, if the quality of
the hybridization signals is sufficient, the BlueFuse Multi software will detect chromatid gains
or losses in pooled polar bodies with high efficiency. However, it should be noted that a certain
amount of false positives have been reported in previous studies involving sequential and com-
plementary assessments of polar bodies [25]. These discordant results may be due to trisomic
rescue, which occurs in the embryo at a very early stage of cleavage and can result in either a
normal embryo or an embryo with uniparental disomy or isodisomy [24–27]. Depending on
the involved chromosome, disomy is expected to have clinical consequences in the child. In
contrast with polar body analysis, isodisomic embryos can be identified by analysis of trophec-
toderm cells using SNP arrays.

Our results show that approximately two-thirds of aneuploid oocytes have copy number
variations of two or more chromosomes, making a rescue resulting in an euploid embryo quite
unlikely. In fact, another study has shown that only 1% of embryos of AMA patients found to
be aneuploid by polar body analysis result in an embryo without a chromosomal aberration
[24,26,28,29]. Reciprocal aneuploidy may be another reason for obtaining false positive or false
negative results in sequential polar body analysis. Depending on the quality of the experiment,
it may be difficult to distinguish between a gain/loss of a single chromatid versus the gain/loss
of a chromosome with two chromatids and to assess a chromosomal imbalance. Therefore, in
several studies putative euploid embryos were lost because in the presence of reciprocal chro-
mosome aberrations in first and second polar bodies these embryos were predicted as aneu-
ploid [30]. Our approach using pooled polar bodies limits the risk of the misinterpretation of
putative reciprocal chromosomal aberrations in the first and second polar bodies. This assump-
tion is supported by the results of our multiplex STR analyses, which suggested that DNA am-
plification of the first and second polar bodies was balanced, although we could not completely
rule out the asymmetric amplification of partial DNA from the first or second polar body
occurring in the same reaction.

Another potential cause of false results in aneuploidy screening using DNA from pooled
polar bodies can be an undetected loss of one polar body during biopsy [31–33]. However, for
the prediction of oocyte karyotypes, the analysis of both polar bodies is essential because chro-
mosomal aberrations may occur during the first or second meiotic division [34]. Multiplex
STR analysis can be used to verify the successful transfer of both polar bodies as well as to ex-
clude contamination of the sample with external DNA.

A clear disadvantage of polar body analysis versus a later analysis of embryonal cells is the
inability to detect aneuploidies of paternal origin. However, paternal aneuploidies reflect only
3–4% of numeric chromosomal aberrations [1,35,36]; furthermore, no increase in aneuploidy
has been detected in men of advanced paternal age [37]. This finding applies to couples with a
normospermic male partner; however, the risk of paternal-derived aneuploidy may be in-
creased in men with spermatogenic defects [25]. Whether women of advanced maternal age
having a partner with a spermatogenic defect may also benefit from PGS using DNA from
pooled polar bodies must be evaluated.

In blastomere biopsies, mosaicism of the pre-embryo presents a diagnostic challenge in se-
lecting euploid embryos. Up to 24% of blastomere biopsies have been shown to be false posi-
tives due to the biopsy of an aneuploid cell from a blastomere in which the remainder is
euploid [38]. On the other hand, 22% of blastomere biopsies have been shown to be false nega-
tives, indicating the aspiration of a euploid cell from a blastomere in which the remainder is
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aneuploid, leading to incorrect procedural decisions [38]. The issue of mosaicism questions the
diagnostic accuracy of the analysis of one blastomere cell as a representation of the whole em-
bryo. However, mosaicism does not impact the diagnosis of aneuploidy in polar bodies, and
PGS has been shown to have over 90% diagnostic efficiency when aCGH is applied [39]. Addi-
tionally, the removal of more than one cell from a cleavage stage embryo to enhance diagnostic
security significantly reduces the implantation rate [40]. Even the removal of one blastomere
has been shown to diminish the implantation potential by 12.5% [41]. The effect of polar body
biopsy on the implantation rate has not been studied to date. The aneuploidy rates of blasto-
cysts and polar bodies appear to be very similar, while blastomeres have an altered rate of aneu-
ploidy, possibly caused by mitotic errors [29,42,43]. These mitotic origins of aneuploidy
cannot be assessed by polar body analysis.

Most women of advanced maternal age experience a decline in oocyte numbers and conse-
quently, a reduced number of blastocysts, causing the preimplantation genetic screening of
blastocysts to be difficult in this group [44,45]. PGS of DNA from pooled polar bodies may be
an alternative for these women to avoid the manipulation of the blastocyst. Our results suggest
that euploid embryos can be identified in woman of advanced maternal age, improving the
chances of having a live birth.

Recently published studies have revealed that the most frequent aneuploidies affect chromo-
somes 16, 21, 22, 15 and 19, representing more than half of all aneuploidies [29]. Our results
are very similar, indicating that chromosome 19 is the most frequent chromosome affected by
aneuploidy, followed by chromosomes 16, 21, 13, 15 and 22. Conventional FISH (fluorescence
in situ hybridization) analysis does not cover all chromosomes; therefore, a significant amount
of fatal aneuploidies cannot be detected, and this technology is not recommended for PGS
[29,34,46]. In contrast, classical comparative genomic hybridization provides information on
all chromosomes contained in the oocyte; however, this technique is labor-intensive [47].
Therefore, conventional CGH has been replaced by array-CGH, which can be automated and
allow for the detection of chromosomal aberrations with a very high level of accuracy [48]. By
applying aCGH to evaluate embryos on days 3 and 5, the deleterious effects of maternal age on
pregnancy and the implantation rate may be diminished [49].

In some countries, preimplantation diagnosis of embryos has legal implications that may be
avoided by analyzing polar bodies. Even for patients who oppose conventional preimplantation
diagnosis of the early embryo for religious reasons, polar body analysis may represent an alter-
native approach [50,51]. Because polar body biopsy can be performed on the day of fertiliza-
tion, there is adequate time for analysis, and embryo freezing can be avoided [52]. However,
performing conventional polar body aneuploidy screening during the early stage of embryonic
development leads to increased costs for IVF couples because more samples need to be ana-
lyzed. Our results demonstrate that the first and second polar bodies can be pooled for PGS
without a significant loss of sensitivity, notably reducing the costs of analysis. In our study,
36.9% of the patients who underwent polar body analysis had no embryo transfer because
none of the retrieved oocytes were found to be euploid. This situation represents a negative fac-
tor influencing the outcome of assisted reproductive technology [53]. However, these patients
do not need to undergo psychological pressure waiting for a very unlikely positive pregnancy
test or to experience the stress of a very probable pregnancy loss.
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