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Abstract
In human perception, the ability to determine eye height is essential, because eye height is

used to scale heights of objects, velocities, affordances and distances, all of which allow for

successful environmental interaction. It is well understood that eye height is fundamental to

determine many of these percepts. Yet, how eye height itself is provided is still largely un-

known. While the information potentially specifying eye height in the real world is naturally

coincident in an environment with a regular ground surface, these sources of information

can be easily divergent in similar and common virtual reality scenarios. Thus, we conducted

virtual reality experiments where we manipulated the virtual eye height in a distance percep-

tion task to investigate how eye height might be determined in such a scenario. We found

that humans rely more on their postural cues for determining their eye height if there is a

conflict between visual and postural information and little opportunity for perceptual-motor

calibration is provided. This is demonstrated by the predictable variations in their distance

estimates. Our results suggest that the eye height in such circumstances is informed by

postural cues when estimating egocentric distances in virtual reality and consequently,

does not depend on an internalized value for eye height.

Introduction
Eye height is a reliable metric to scale for example the heights of objects [1, 2], velocities [3],
affordances [4] and egocentric distances [5, 6]. All of these percepts are fundamental for suc-
cessful interaction with our surrounding environment, whether real or virtual. The notion is
that the distances to and heights of viewed objects are understood by using one’s eye height
(i.e., the distance from the eyes to the ground) as a unit of measure with which to scale the
world. The use of this term is in contrast to the concept of eye level, which could be considered
mutable and more akin to line of sight. Eye level is important for perceiving the relationship be-
tween one’s eye height and sizes or distances (i.e. horizon ratio, see [6]), whereas eye height de-
fines the unit of the scale [7]. In order to derive size and distance in terms of a metric, eye
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height must be known (alternatively, interpupillary distance could be used for scaling near-
space distances); whereas, for determining object height relative to the body (i.e. the object is
smaller than me), only eye level is required.

However, our eye height can change quite drastically during our everyday lives or while explor-
ing a virtual environment. For example, during the course of a day, we constantly change our pos-
ture, and consequently our eye height changes accordingly. One may stand, sit down, stand again
and then even recline, yet the bookshelf across the room is still perceived to be at the same dis-
tance and to have the same size most of the time. Thus, to be a useful metric, the known eye height
needs to be flexible to ensure that the perception of the surrounding visual environment does not
change due to such natural variations in eye height. How is the flexibility of this important metric
ensured? If there is only little possibility for calibration (see [8], why calibration might be impor-
tant), eye height could either be informed by experience, i.e. by a stable internalized value for eye
height across different postures, or be informed by different sources of information in real-time.

In principle, there are multiple sources of information, which could be used to inform eye
height in real-time to ensure the necessary flexibility throughout the naturally occurring varia-
tions of our eye height. However, theoretically we can distinguish between two main sources of
sensory information specifying eye height: visual and postural sources. The former is composed
of optical information like accommodation, convergence, binocular disparity and motion par-
allax and the latter is composed of proprioceptive and vestibular information [9]. When acting
in a flat environment in the real world, both sources of information are naturally coincident. If
they are not, recent research in the real world suggests that for example the eye height above a
table surface can be informed by stereo vision, but only if one can calibrate to this visual infor-
mation by performing a goal directed action over time [8, 10]. Thus, an experienced percep-
tion-action coupling might enable us to calibrate our eye height across different circumstances.

That such a calibration to new visual information may be necessary might be explained by
the reliability of the visual information alone for determining eye height. As Warren &Whang
[11] described, “the potential visual information itself like accommodation and convergence
are ineffective for greater distances (e.g. beyond one meter) and binocular disparity does not
provide absolute distance information” [11]. Furthermore, motion parallax, similar to accom-
modation and convergence, yields poor estimates of distance. However, not only calibration to
potentially noisy visual information might help to determine eye height. Warren &Whang hy-
pothesized that the body might also contribute important information for determining our eye
height [11]. However, despite the findings that calibration might be necessary to inform eye
height appropriately using stereo vision for a near space task [8, 10], empirical studies investi-
gating how we might determine eye height for tasks in action space, especially if no calibration
is allowed, are rare (to some extent [11, 12, 13]).

In the real world, the potential sensory information for determining eye height is naturally
coincident most of the time (e.g. when acting on planar surfaces), whereas this information is
easily dissociated in virtual environments. In addition, there is often little opportunity to give
the user enough experience in virtual environments for calibration by providing them with the
possibility to perform perception-action couplings for the given space, like reaching to objects
[14] or walking around in the virtual world [15]. In contrast to the real world, where an experi-
mental apparatus such as an adjustable surface where the height of the surface is unknown to
the observer is needed, visual and postural information are easily decoupled (either by accident
or on purpose) in a virtual reality scenario. Thus, we were interested in investigating how eye
height in such a virtual reality scenario is determined, which in combination with egocentric
distance perception might have different consequences on the perceived distance.

The angle of declination hypothesis [5, 6] states that the eye height of the observer and the
visual angle to the target (angle of declination below the horizon) is used to determine distances
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to objects with physical contact to the ground (Fig 1). Sedgwick [6] proposed that the angle of
declination below the horizon (AoD) to a target on the ground in combination with the
(known) eye height (EH) of the observer can be used to determine distances (d) following the
equation d = EH/tan(AoD) (see also [5, 16]). This tight coupling of eye height and perceived
egocentric distances enables us to make predictions about how each potential source of infor-
mation for determining eye height in VR portrayed in a head-mounted display (HMD) may in-
fluence perceived distance.

Specifically, suppose that observers assess their eye height by relying solely on visual infor-
mation of the virtual surrounding environment displayed in the HMD. If this were true, then
observers should determine their eye height depending on the visual information specifying
depth to the ground surface and this should vary depending on e.g. their posture or manipula-
tions to the visual information (i.e. their virtual eye height). In other words, any discrepancy
between postural and visual cues in the specification of eye height should be negligible and the
ratio between eye height and the angle of declination remains invariant. In such a case, per-
ceived distance would be constant even when visually specified eye height in VR and the corre-
sponding angle of declination change (Fig 2). Alternatively, if there is a discrepancy between
the virtual and postural eye height and eye height is determined via postural cues (see Fig 3),
the related visual angle from the different experienced virtual eye height should be combined
with the postural eye height. Consequently, the angle of declination to the target changes with
an increase in the virtual eye height. In combination with an unchanged postural eye height, an
increase in the virtual eye height should result in decreases in perceived distance; whereas de-
creases in the virtual eye height should result in increases in perceived distance (see Fig 3).

However, because of visual limitations, specifically limitations in providing naturally occur-
ring stereo cues such as matching accommodation and convergence cues when using 3D dis-
plays (see [14]), the visual information might not be reliable enough to be used for determining
eye height without any possibility for calibration. Thus, postural cues may become more im-
portant as compared to a real world setting. For example, recent research has demonstrated
that even when the observers were allowed to walk across a virtual room (and potentially cali-
brate), they ignore visual stereo cues in favour of a fictional stable world [17]. Consequently,
the observers made large errors in size judgments after the virtual environment was dynamical-
ly altered in size. Thus, the participants might have been relying more on their unaltered pos-
tural information than what they visually perceived. Therefore, we hypothesize that our
observers might rely more on their postural information for determining their eye height. Con-
sequently, we expect that observers in a virtual environment determine their eye height by rely-
ing on postural cues, because they are not able to use or ignore visual information potentially

Fig 1. Egocentric distance perception using eye height and the angle of declination below the horizon to an object on the ground.

doi:10.1371/journal.pone.0127000.g001
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indicating an altered eye height in a virtual environment, which should have predictable conse-
quences on perceived egocentric distances in virtual environments.

Furthermore, we hypothesize that if eye height in virtual worlds is determined by postural
cues, such a system is flexible enough to allow for a consistent perception of distance. For ex-
ample when the observer is changing postures from standing to sitting or even lying in a bed,
distance should be perceived as the same (similar to the perceived size of objects, see [1, 2]).
Thus, the eye height used to determine distances should change according to changes in the

Fig 2. If eye height is informed by vision (EHv) and continuously informed by visual information across various environmental contexts, the ratio
between eye height and tangent of the angle of declination (AoDv) and therefore the distance remains the same. Note: The camera symbol
represents the manipulated virtual eye height in the VE.

doi:10.1371/journal.pone.0127000.g002

Fig 3. Prediction based on the use of a combination of the visually specified angle of declination (AoDv) and the postural eye height (EHpos) of the
observer regardless of the potentially displayed environment. In the case illustrated, underestimation of the distance is predicted, whereas for a lowered
virtual EH overestimation of the distance is predicted.Note: The camera symbol represents the manipulated virtual EH.

doi:10.1371/journal.pone.0127000.g003
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posture of the body. To achieve such a constant perception of the virtual world the eye height
unit could be internalized as a remembered eye height, as suggested by Sinai et al. [13]. Perceiv-
ers have exhaustive experience with various postures and the perceptual system could learn the
relationship between the different eye heights of such postures over time. However, we expect
that to assure perceptual constancy across various postures, eye height is determined with re-
spect to changes in the body posture in real-time, which would eliminate the need for a stored
representation of eye height based on prior experience.

To investigate our hypotheses, we conducted three experiments using a distance perception
task in virtual environments, while manipulating the virtual (visual) eye height across different
postures (Experiments 1–3). If our participants rely more on postural information in these cir-
cumstances, we expect predictable variations in the distance estimates following a manipula-
tion of the virtual eye height. Furthermore, we conducted two experiments to investigate
whether humans would be able to use the visual information present in virtual environments
to determine their eye height or whether the visual information is unreliable due to known lim-
itations of the VR technology.

Experiment 1: Determining eye height in a standing posture in VR
Postural and the potentially visually specified (virtual) eye height were decoupled using VR.
Participants experienced a visually taller or shorter eye height while standing on a flat (real and
virtual) ground plane and estimated distances to targets, while they were not told that that the
floor they saw in the VR scene was at the same height as the height of the physical floor they
felt under their feet in the real world. Changes in the virtual eye height should be coupled with
the corresponding changes in the angle of declination. As a result, if perceived eye height
would be specified by using the available visual information, distance estimates should remain
constant across different eye heights. However, if eye height in such circumstances is deter-
mined by postural cues, then increases and decreases in the virtual eye height should only influ-
ence the angle of declination with respect to determining distance. Thus, this change should
lead to a compression of distances following an increase of visual eye height and expansion of
distances following decreases in visual eye height compared to the baseline estimates where the
virtual eye height is matching the postural eye height.

Method
Participants. Fifty-four paid (26 female) participants were recruited from the university

community of Tübingen, Germany. All had normal or corrected to normal visual acuity and
could fuse stereo displays. The age ranged from 18 to 64 years (M = 29.13).

Ethics Statement. In this and all subsequent experiments, participants started by complet-
ing a written consent form. All experiments were performed in accordance with the 1964 Dec-
laration of Helsinki and were approved by the ethical committee of the University of Tübingen.
All participants were debriefed and informed of the purpose of the study at the end of the ex-
periments. Individuals depicted in this manuscript (i.e. in images) have given written informed
consent (as outlined in PLOS consent form) to publish these case details.

Stimuli and apparatus. We displayed a virtual environment consisting of a flat ground
plane without any familiar size cues through an Nvis nVisor SX60 head-mounted display (Nvis
Inc., Reston, VA, USA) with a resolution of 1280 × 1024 pixels per eye (in stereo). The head-
mounted display (HMD) has a refresh rate of 60 Hz per eye and a contrast of 100:1. The field of
view of the HMD is 60° diagonal, with a spatial resolution of approximately 2.2 arc-minutes per
pixel. The HMD has collimated optics with a focal point at infinity, creating a virtual image,
which appears to be at infinity rather than just a few centimeters from the face. This means that
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with the parallel display setup in the HMD the eyes converge and accommodate towards a vir-
tual plane at simulated infinity. The position and orientation of the HMD was tracked by a
16-camera Vicon MX13 (Vicon, Oxford, UK) tracking system. The environment included a vi-
sual horizon and a blue sky. To provide a correct visual horizon, a software correction was im-
plemented to compensate for radial distortion due to the optics of the HMD (if uncorrected,
the horizon would appear as a curve at the edges of the optics). The ground plane in the virtual
environment was textured with a random stone pattern to eliminate familiar size cues while still
providing linear perspective cues (through tiling) and texture gradient cues. An octagonal green
disc with a radius of 21.5 cm and a height of 1.4 cm indicated the distances to be judged.

Design and procedure. All participants received written and verbal instructions and
were shown a meter stick with additional labels every 10 centimeters, until they indicated
that they had a good representation of the length of the stick. The participants were randomly
assigned to only one of three conditions (between-subject design), in which the virtual eye
height: (1) matched the postural eye height (0 cm), (2) was 50 cm lower than the postural eye
height (-50 cm), or (3) was 50 cm higher than the postural eye height (+50 cm). The partici-
pants stood comfortably upright. They were not allowed to turn, bend, or lean forward or to
the sides, nor were they allowed to deviate from their standing position (see Fig 4). In addi-
tion, in this and all subsequent experiments, the participants were not provided with (percep-
tual-motor) feedback from forward, backward or sideways locomotion. This allowed us to
investigate, whether a change in visual or postural cues specifying eye height in virtual envi-
ronments influences distance estimates in isolation and without the opportunity to calibrate
actions to the visual cues by providing feedback about the target distance (c.f. [15]). However,
because we used head tracking (position and orientation), motion parallax as a visual cue to
eye height was available for all participants.

The experiment started with a 5 minute training phase to familiarize the participants with
the virtual environment and give them the possibility to explore the environment (stationary—
free head movements were allowed) and the manipulated eye height without any targets dis-
played. During this and the judgment phase all participants had the possibility to look down
and were encouraged to do so. After the exploration phase, the target was displayed in the
same environment at a certain distance, and the participants had as much time as they needed
to judge the distance. When the participants indicated they were ready, the screen of the HMD
was blanked; participants closed their eyes and turned their head 90° to the left and verbally re-
ported the distance. Participants were instructed to report as accurately as they could in meters
and centimeters. After reporting, the participants turned their head back, and following an in-
dication of readiness from the participants, the next target was displayed. Participants complet-
ed 18 trials (4, 5 and 6 meters, each six times in a random blocked order).

Results
We analyzed the verbal distance estimates using a repeated measures analysis of variance
(ANOVA) with distance (4, 5, 6 m) and repetition (1–6) as within-subjects factors, virtual
eye height (-50, 0, or +50 cm) as a between-subjects factor, and distance estimates as the de-
pendent measure. As expected, distance was significant, with the estimates of distance in-
creasing linearly from the 4 to 5 to 6 m distances, F(2, 102) = 382.88, p< .001, ŋp

2 = .88.
Overall distances were compressed, which is a well-documented phenomenon in VR using
HMDs (see for example [18, 19]).

The repeated measures ANOVA also revealed that the eye height manipulation had a signif-
icant effect on the estimated distances in the -50 cm (M = 5.23, SE = 0.33), 0 cm (M = 4.04,
SE = 0.18), and +50 cm (M = 3.17, SE = 0.17) eye height conditions, F(2, 51) = 18.85, p< .001,
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ŋp
2 = .43. This suggests that in this experiment postural eye height rather than the virtual eye

height is used to determine the egocentric distances if these sources of information are in con-
flict and there is little possibility for calibration (see Fig 5). Post-hoc pairwise comparisons
using Bonferroni correction confirmed significant differences between the -50 and 0 cm eye

Fig 4. The used experimental setup. A: Experimenter showing the participant a meter stick with additional
labels every 10 centimeters.B: Participant during the distance judgment task using the NVisor SX 60 HMD.
C: The sparse-cue virtual environment used for Experiments 1–3. Note: The individuals in these images
have given written informed consent (as outlined in PLOS consent form) to publish these case details.

doi:10.1371/journal.pone.0127000.g004
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height conditions, p = .003, the 0 and +50 cm conditions, p = .039, and the -50 and +50 cm con-
ditions, p< .001. In addition, there was an interaction between eye height condition and dis-
tance, F(4,204) = 10.84, p< .001, ŋp

2 = .30, with the differences between the eye height
conditions increasing as a function of increase in distance, which is predicted by the postural
eye height hypothesis (see Fig 3).

Experiment 2: Determining eye height in a sitting posture
The results of Experiment 1 suggest that postural eye height is used to determine egocentric
distances in a standing posture, if the information potentially specifying eye height in a vir-
tual environment is in conflict. However, eye height needs to be flexible across various pos-
tures to achieve perceptual constancy (see e.g. [1]). We conducted another experiment using

Fig 5. The effect of a manipulated virtual eye height (-50 cm or +50 cm) on egocentric distances in a standing position in comparison to the
respective baseline condition (0 cm). Error bars represent ±1 SE. The actual mean participant (postural) eye height in the experiment is depicted in the left
upper corner.Note: (a) The predictions are shifted by the observed underestimation in the baseline condition to account for the usually observed distance
underestimation in head mounted displays (in an ideal world, the 0 cm estimates would correspond to veridical performance). (b) If the virtual eye height were
used, there should be no differences and the prediction for visual eye height would apply for all conditions.

doi:10.1371/journal.pone.0127000.g005
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a standard sitting posture, which resulted in an approximately 50 cm shorter postural eye
height compared to the standing eye height in Experiment 1. If eye height would be deter-
mined by postural cues changing with the posture of the body, we would expect estimates in
the 0 cm condition to be comparable to those in Experiment 1 (0 cm) and underestimation
to occur in the raised (+50 cm) condition.

Method
Participants. Twenty-five paid (17 female) participants were recruited from the university

community of Tübingen, Germany. All had normal or corrected to normal visual acuity and
could fuse stereo images. Age ranged from 18 to 54 years (M = 29.08).

Stimuli and apparatus. The same technical setup and virtual environment as in Experi-
ment 1 were used. In this experiment, the participants sat on a standard chair with 44 cm sit-
ting height (with a 44 cm long × 46 cm wide seat). The chair was positioned on the ground at
the same location on the floor where the participants were standing in Experiment 1.

Design and procedure. The procedure was the same as in Experiment 1, except that par-
ticipants were seated (see Fig 6). The participants were randomly assigned to only one of two
conditions (between-subject design), either (1) a baseline condition where the visually specified
eye height matched the actual seated eye height (0 cm) or (2) a 50 cm raised (+50 cm) visually
specified eye height. We omitted the -50cm condition for this experiment as the -50 condition
situated individuals in a pilot study so close to the ground plane that, given a seated posture
and a moving head (with varying eye height), the virtual eye height that was not always positive
(as in above the floor). Participants were instructed to sit upright and not to bend at the waist
or lean forward to obtain a better view of the target. The participants were allowed to rotate
their heads freely. The participants did not receive any feedback about the accuracy of their es-
timates. Participants completed 18 trials (4, 5 and 6 meters, each six times in a random blocked
order). The procedure for reporting the distances was the same as in Experiment 1.

Results
Two participants were removed from the analysis, one for being more than 3 SD above the
mean and another after her admission of being a specialist in this research area. Distance esti-
mates were analyzed using a repeated measures ANOVA with distance (4, 5, 6 m) and repeti-
tion (1–6) as within-subjects factors, virtual eye height (0 and +50 cm) as a between-subjects
factor, and distance estimates as the dependent variable. As expected, distance was significant,
with distance estimates increasing linearly with increasing distance, F(2, 42) = 371.68, p< .001,
ŋp

2 = .95. We observed a similar distance compression as in Experiment 1.
Supporting the hypothesis of using postural cues to determine eye height in VR, a repeated

measures ANOVA confirmed that the distance estimates were significantly higher in the 0 cm
eye height condition (M = 3.69, SE = 0.13) compared to the +50 cm condition (M = 2.97,
SE = 0.23), F(1, 21) = 7.67, p = .012, ŋp

2 = .27 (see Fig 7). In addition, there was an interaction
between eye height condition and distance, F(2, 42) = 3.34, p = .045, ŋp

2 = .14, with the differ-
ences between the eye height conditions increasing as a function of increase in distance, which
is in line with the postural eye height hypothesis (see Fig 3). Furthermore, we also tested the
converse prediction. If distance judgments would have been based on an internalized standing
eye height, the +50 cm condition of Experiment 2 should yield similar estimates than those ob-
served in the baseline condition (0 cm) of Experiment 1. However, an independent samples t-
test confirmed, that they are reliably different, t(27) = -3.61, p< 0.01, supporting the idea that
eye height is determined by postural cues according to the body posture.

Postural Cues for Determining Eye Height in VR

PLOSONE | DOI:10.1371/journal.pone.0127000 May 18, 2015 9 / 23



Experiment 3: Determining eye height in an uncommon lying
posture
The results of Experiments 1 and 2 suggest that the visual information provided in the virtual
environment seen through a HMDmay not be dominant or reliable enough for determining
eye height, if the potential sources of information are in conflict. However, these experiments
do not fully resolve whether participants use an internalized eye height informed by experience
of the posture or whether it is determined in real-time according to postural information.
Standing and sitting are very common postures so experience in these postures and conse-
quently, an internalized value could have informed eye height. To investigate whether

Fig 6. Participant judging distances in the sparse-cue virtual environment in a sitting posture. The
individual in this image has given written informed consent (as outlined in PLOS consent form) to publish
these case details.

doi:10.1371/journal.pone.0127000.g006
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experience is necessary to determine eye height in VR, we put participants in a less common
posture: lying prone on a bed. If experience is important, we would expect participants to rely
mostly on an internalized standing eye height. If eye height is determined by postural informa-
tion in real-time, then the participants should use their postural information from getting on
the bed to specify their new eye height with respect to the ground surface.

Method
Participants. Forty-two paid (22 female) participants were recruited from the university

community of Tübingen, Germany. All had normal or corrected to normal visual acuity and
were screened for the ability to fuse stereo displays. The age ranged from 16 to 48 years
(M = 27.33).

Fig 7. The effect of a manipulated virtual eye height (+50 cm) on egocentric distances in a sitting posture in comparison to the respective baseline
condition (0 cm). Error bars represent ±1 SE. The actual mean participant (postural) eye height in the experiment is depicted in the left upper corner.Note:
(a) The predictions are shifted by the observed underestimation in the baseline condition to account for the usually observed distance underestimation in
head mounted displays (in an ideal world, the 0 cm estimates to veridical performance). (b) If the virtual eye height were used, there should be no differences
and the prediction for visual eye height would apply for all conditions.

doi:10.1371/journal.pone.0127000.g007
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Stimuli and apparatus. For Experiment 3, we used the same technical setup and virtual
environment as in Experiment 1. Participants completed the distance judgments while lying
prone on an adjustable hospital bed (model Evolution MA 2, Hill-Rom, Batesville, IN, USA,
see Fig 8).

Design and procedure
Participants started in a different room than the one in which the experiment was conducted.
The participants received written and verbal instructions. To allow for lowering and raising the
virtual eye height, while still being able to climb on the bed directly from the floor, it was ad-
justed to reflect the approximate seated eye height of the participant (adjusted by the experi-
menter before the participant entered the room). The experimenter showed the participants
the meter stick, until they indicated that they had a good image of the stick in mind. The exper-
imenter then guided the participants into the tracking space and instructed them to get on the
bed and repositioned them to ensure that all participants had approximately the same lying po-
sition on the bed. After donning the HMD, the experiment began with the same exploration
phase as in Experiments 1 and 2. The participants were randomly assigned to only one of three
conditions (between-subject design). The visually specified eye height either: (1) matched the
actual eye height (0 cm), (2) was 50 cm lower than the actual eye height (-50 cm, here the posi-
tion of the head could not go lower than the bed surface in comparison to Experiment 2), or
(3) was 50 cm higher than the actual eye height (+50 cm). Participants completed 18 trials (4, 5
and 6 meters, each six times in a random blocked order). The procedure for reporting the dis-
tances was the same as in Experiments 1 and 2.

Results
Due to technical errors with the HMD, the data of four participants were excluded from the
analysis. We analyzed the verbal distance estimates using a repeated measures ANOVA with

Fig 8. Participant judging distances in the sparse-cue virtual environment in a lying prone posture on
an adjustable hospital bed. The individual in this image has given written informed consent (as outlined in
PLOS consent form) to publish these case details.

doi:10.1371/journal.pone.0127000.g008
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distance (4, 5, 6 m) and repetition (1–6) as within-subjects factors, virtual eye height (-50, 0, or
+50 cm) as a between-subjects factor, and distance estimates as the dependent variable. As ex-
pected, distance was significant, with the estimates of distance increasing linearly with increas-
ing distance, F(2, 70) = 201.51, p< .001, ŋp

2 = .85.
The repeated measures ANOVA revealed that the eye height manipulation had a significant

effect on the estimated distances in the -50 cm (M = 5.25, SE = 0.41), 0 cm (M = 4.37,
SE = 0.24), and +50 cm (M = 3.10, SE = 0.38) eye height conditions, F(2, 35) = 9.32, p = .001,
ŋp

2 = .35. These results suggest that the participants did not rely on their visual information to
determine their eye height to judge the egocentric distances (see Fig 9). Post hoc pairwise com-
parisons using Bonferroni correction confirmed significant differences between the -50 and 0

Fig 9. The effect of a manipulated virtual eye height (-50 cm or +50 cm) on egocentric distances in a prone position on a bed (adjusted to be
approximately at seated eye height) in comparison to the respective baseline condition (0 cm). Error bars represent ±1 SE. The actual mean
participant (postural) eye height in the experiment is depicted in the left upper corner. Note: (a) The predictions are shifted by the observed underestimation in
the baseline condition to account for the usually observed distance underestimation in head mounted displays (in an ideal world, the 0 cm estimates would
correspond to the prediction, which is veridical performance). (b) If the virtual eye height were used, there should be no differences and the prediction for
visual eye height would apply for all conditions.

doi:10.1371/journal.pone.0127000.g009
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cm eye height conditions, p = .047, and the -50 and +50 cm conditions, p< .001. However,
there was no reliable difference between the +50 and 0 cm conditions, p = .241, which may
have been due to the greater variability of estimates in the prone position. In addition, the pre-
dictions for the 0 cm and +50 cm conditions differ by a smaller amount than the predictions
for the -50 cm and 0 cm conditions. As in the previous experiments, there was an interaction
between eye height condition and distance, F(4, 140) = 6.47, p< .001, ŋp

2 = .27, with the differ-
ences between the eye height conditions increasing as a function of distance, supporting the
postural eye height hypothesis.

In contrast to the postures used in Experiments 1 and 2, there were two different eye-height
possibilities for the prone position. The participants could use their physical standing eye
height (i.e., distance from their eyes to their feet), because the lack of experience in such a pos-
ture, which would suggest the use of an internalized eye height (c.f. [13]) when uncertain about
the posture. The other predictor is the actual distance from the participants’ eyes to the floor
while lying prone, suggesting the use of postural information to ensure the necessary flexibility
of perceived eye height to motor experiences. To investigate which eye height was used, we cal-
culated (cf. equation Fig 3) the distances based on our predictors of their standing and actual
eye height (mean eye height during the experiment—acquired from the motion capture data
from tracking the HMD). We found that actual postural eye height had the best fit (linear re-
gression with backward elimination), β = .53, t(36) = 3.69, p = .001. The predicted distances
based on the model of eye height informed by postural cues also explained a significant propor-
tion of variance in the participants’ distance estimates, R2 = .28, F(1, 36) = 13.64, p = .001.
These results support the hypothesis that eye height in VR is informed constantly by postural
cues across changes in body posture and consequently, does likely not depend on an internal-
ized value for eye height.

Experiment 4: The reliability of visual information for determining
eye height in virtual environments
The results of Experiments 1–3 suggest that our participants relied more on their postural cues
informed in real-time for determining their eye height in VR, and not on what they visually
perceived. Nevertheless, it is valuable to investigate whether a lack of visual information was
the reason that participants relied more on the postural information in the virtual environ-
ment. For example, missing visual cues such as familiar size cues, which are usually available in
a rich-cue environment, or the incomplete stereo information due to the optics of the HMD
and an accommodation-convergence mismatch might be reasons why postural information is
so important for determining eye height in VR with our setup. Thus, we conducted another ex-
periment where participants were required to rely on the visual information provided within
two virtual environments (sparse and rich-cue) seen in the same HMD and were asked to di-
rectly estimate their virtual eye height in an adjustment task. If the visual information present
in the virtual environments is sufficient to determine eye height, participants should be able to
quite accurately adjust the virtual camera to match their actual eye height.

Method
Participants. Twenty-five paid (12 female) participants were recruited from the university

community Tübingen, Germany. All had normal or corrected to normal visual acuity and were
able to fuse stereo images. Age ranged from 21 to 47 years (M = 28.0).

Stimuli and apparatus. We used the same technical setup and the same virtual environ-
ment (sparse-cue) as in Experiment 1–3 along with a second environment (rich-cue), which
was a replica of a real office and provided a wealth of familiar size cues (chairs, tables, doors,
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etc.). To control the virtual eye height, participants used a gamepad to adjust the position of
the camera in the y-axis.

Design and procedure. All participants received written and verbal instructions and then
the experimenter guided the participants to their standing position and helped them to don the
HMD. Each environment included six training trials to familiarize the participants with the ad-
justment task where the participant adjusted the virtual camera’s height to match their physical
eye height. The camera either started 50 cm above or below their physical eye height in coun-
terbalanced order. After four training trials, each participant completed 24 adjustment trials.
When the participant finished one environment, the procedure was repeated with the second
environment (counterbalanced, 48 trials in total).

Results
Adjustment trials were transformed into ratios by dividing the adjusted eye height by the real
eye height of the corresponding participant. This means, a ratio of 1.0 reflects a perfect match
between the visual virtual eye height and the real physical eye height of the participant. One
participant was removed from the analysis for being more than 3 SD above the mean.

We analyzed the eye height ratios using a repeated measures analysis of variance (ANOVA)
with environment (sparse-cue and rich-cue) and repetition (24) as within-subjects factors and
order as a between-subjects variable, and the ratios as the dependent measure. There was no ef-
fect of order for the ratios, p = .79.

There was only a marginal effect of the environment, with the averaged ratios in the sparse-
cue environment being overestimated (M = 1.12, SE = 0.05, standard errors denote between-
subject errors) compared to the rich-cue environment (M = 1.01, SE = 0.02), p = .064. This sug-
gests that if we consider the group average, minimal visual information might already be suffi-
cient to determine eye height (see Fig 10).

In the rich-cue environment, the participants were veridical on average, and in the sparse
environment, they were close to veridical in visually adjusting their virtual eye height to their
corresponding physical eye height, albeit overestimated. These results suggest that, on average,
eye height could be approximately determined based on the available visual information in our
experiments, suggesting that our obtained results might not be due to a complete lack of visual
information for perceived eye height. Nevertheless, we observed quite some between-subjects
variability in the adjustment task with a greater variability in the environment, where no cues
except HMD stereo and linear perspective were present. In fact, when considering the absolute
mean error in the visual eye height estimates in the rich-cue (M = 13.24 cm, SE = 2.09 cm) and
sparse-cue (M = 34.04 cm, SE = 5.53 cm) environments, visually specified eye height might not
be as veridical as the average results indicate. These results suggest that there is individual vari-
ability with regard to tendency to overestimate or underestimate visually adjusted eye height
leading to a close to veridical average performance.

However, examples from the real world show that judging visually perceived eye height
seems to be quite variable. For example, it has been shown that participants slightly underesti-
mate their standing eye height, and misjudge their eye height with respect to a lower ground
plane when standing on an elevated ground plane of two meters height (see [13]). Related to
eye height, real world experiments investigating for instance the perceived eye level have
shown that if humans judge their eye level, variability amounts to ~1° visual angle, and the
judgments are off by 2.2° of visual angle (e.g. [5]), even when the head is fixed and stable. In
this specific task, the absolute error corresponds to 13.9 cm underestimation when judging eye
level over a distance of 2.4 meters (c.f. [5]). Thus, we can tentatively conclude that although in-
dividuals’ estimates of their eye height in VEs were variable, the amount of this variability is
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very similar to the variability reported in similar domains (e.g. also eye level) for other mea-
sures conducted in the real world. Indeed, this variability in individual assessments of visually
perceived eye height in both real and virtual environments may provide a motivation for the
perceptual system to take postural information about eye height into account.

Experiment 5: Visually determining different virtual eye heights
within virtual environments
The results of Experiment 4 suggest that our participants were on average able to adjust the vir-
tual camera to their physical/postural eye height. However, the judgments were quite variable,
which could be an indication why the participants relied more on postural information to de-
termine their eye height for perceiving distances in virtual environments. We further wanted to
investigate how accurately different visual eye heights can be estimated with the visual informa-
tion available within virtual environments. In the previous experiment, our participants were
required to adjust the camera in the virtual scenes so that it matches their physical eye height.

Fig 10. Mean ratio adjusted/actual eye height for the tested environments. Error bars represent ±1 SE.

doi:10.1371/journal.pone.0127000.g010
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In this study, we instead asked participants to verbally judge several different virtual eye
heights. If the visual information in the virtual environment was not reliable or insufficient, we
would expect that the judgments would be inaccurate and highly variable.

Method
Participants. Twenty-two paid (10 female) participants were recruited from the university

community Tübingen, Germany. All had normal or corrected to normal visual acuity and were
able to fuse stereo images. The age of the participants ranged from 21 to 55 years (M = 32.59).

Stimuli and apparatus. We used the same technical setup (except the game pad) and the
same virtual environments (sparse-cue and rich-cue) as described in Experiment 4.

Design and procedure. All participants received written and verbal instructions and were
shown a meter stick with additional labels every 10 centimeters until they indicated that they
had a good representation of the length of the stick. Then, the experimenter guided the partici-
pants to their standing position and helped them to don the HMD. In each environment, the
participants started the experiment by verbally judging three different virtual eye heights (rich-
cue: 0.8 m, 1.6 m and 3.2 m; sparse-cue: 0.6 m, 1.8 m, 3.6 m) in a randomized order to familiar-
ize the participants with the task. These trials were discarded for analysis and the virtual eye
heights presented in these training trials were not used in the actual judgment trials. After
these training trials, the participants were required to judge varying virtual eye heights (0.5 me-
ters to 4.0 meters in 25 centimeter steps, each virtual eye height was repeated two times in a
fully randomized order). When the participant completed thirty trials (excluding training tri-
als), the procedure was repeated in the second environment (within-participant design). The
order in which the environments were presented was counterbalanced between participants.

Results
Three participants were removed from the analysis for being more than 3 SD above or below the
mean virtual eye height estimates in the sparse-cue environment as is typical in designs using
verbal estimates. We analyzed the verbal eye height estimates using a repeated measures
ANOVA with environment (rich-cue and sparse-cue), virtual eye heights (0.5 m to 4.0 m in 25
cm steps) and repetition (two) as within-subjects factors, order (rich or sparse-cue first) as a be-
tween-subjects factor, and the verbal virtual eye height estimates as the dependent measure. As
expected, the virtual eye height was significant, with the estimates of the virtual eye height in-
creasing linearly from the 0.5 m to the 4.0 m eye heights, F(14, 238) = 122.87, p< .001, ŋp

2 = .88.
The repeated measures ANOVA also revealed that the virtual eye height judgments varied

depending on the environment. The verbal judgments were significantly lower (actual mean of
all tested virtual eye heights is 2.25 meters) in the sparse-cue environment (M = 1.61,
SE = 0.07) compared to the rich-cue environment (M = 2.05, SE = 0.09), F(1, 17) = 30.73, p<
.001, ŋp

2 = .64 (see Fig 11). The judgments of the virtual eye heights did not vary as a function
of the order in which the environments were presented to our participants, p = .177.

In order to assess the degree of errors, we transformed the verbal estimates into ratios by di-
viding the estimated eye height by the actual virtual eye height. We conducted repeated mea-
sures ANOVA with the virtual eye height and environment as independent variables and the
ratios as the dependent measure. Environment was significant with eye heights in the sparse
cue environment (M = 0.77, SE = 0.04), being more underestimated than those in the rich cue
environment, (M = 0.94, SE = 0.03), F(1, 18) = 14.14, p<.001, ŋp

2 = .44. Eye height was also sig-
nificant with underestimations increasing as a function of increasing eye height, F(14, 252) =
4.56, p< .001, ŋp

2 = .20 (see Fig 11). The estimates do not drastically differ from 1.0 (i.e. perfect
accuracy) until after about 2 m, where participants begin to err more than 10%.
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Considering the single estimates for the differing virtual eye heights and the inherent vari-
ability in our measure (verbal estimates), our participants were able to quite accurately judge
the differing eye heights, at least up to about� 2 meters. In both environments, the partici-
pants underestimated the virtual eye heights that were higher than 2 meters and this underesti-
mation increased with increasing distance to the virtual ground plane. Importantly, in both
environments, the verbal judgments are quite accurate and less variable for the manipulated
eye heights used in Experiments 1–4 (i.e. 0.5 meters out to 2 meters), but were underestimated
for larger eye heights. However, for the virtual eye heights above 2 meters, the average absolute
error substantially increases, especially in the sparse-cue environment, where no additional
cues except stereo, linear perspective and texture density were available. In both environments,
the rich and sparse-cue environments, the errors rapidly increased, suggesting that estimates of
virtual eye heights greater than 2 meters are quite compressed. More work should be conducted
to investigate the origin of this compression, although, it is beyond the scope of the current re-
search questions. Consistent absolute errors were also observed in the real world when using a

Fig 11. Verbal estimates of different virtual eye heights in the rich-cue (black circles) and sparse-cue (blue squares) environment. Error bars
represent ±1 SE.

doi:10.1371/journal.pone.0127000.g011
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perceptual matching task to judge eye height visually to a ground plane with eye heights rang-
ing from approximately 3.25 meters to 3.75 meters, see [13].

In summary, the results of Experiment 5 suggest, that at least some visual information is
usable to visually determine the virtual eye height if little possibility for calibration to the vir-
tual space is provided, given that these eye heights are within a given range below 2 meters.
The manipulated eye heights in Experiments 1–3 were on average in the range of a minimum
of 0.75 meters to a maximum of 2.08 meters. Thus, according to the results of Experiment 5,
eye height can be reliably and somewhat accurately determined by visual information provid-
ed it is within this range. Even so, at least in virtual environments, people may experience the
information as unreliable (depending on their immersion), which could also be a reason why
humans might rely more on postural cues to determine their eye height, especially when little
possibility for calibration is provided. Whether this also applies to a real world scenario is an
open question.

General Discussion
Prior to our experiments, the sensory modality potentially used to specify eye height in virtual
environments had not yet been empirically investigated for tasks in action space. In this set of
experiments, we found that there are instances where humans seem to rely more on their pos-
tural information for determining eye height in virtual environments as demonstrated by the
predictable variations in their distance estimates. Our Experiments 1–3 demonstrate that varia-
tions in the virtual eye height have predictable effects on perceived egocentric distances and
that these effects are consistent across different postures. This indicates that determining eye
height in VR is likely achieved by relying on postural cues informing eye height in real-time,
and is consequently not dependent on an internalized representation of eye height (c.f. [13]).
Thus, these results suggest, that in some contexts, individuals may rely more on postural cues
to determine eye height for distance perception in VR, even though virtual environments main-
ly stimulate the visual modality. Nevertheless, the results of our Experiments 4–5 suggest that
our observed effects on perceived distances due to a reliance on postural cues is not the result
of a complete absence of visual cues to eye height within the virtual environment, although vi-
sually perceived eye height in VR seems to be quite variable. However, the results of Experi-
ment 5 suggest that the visual information even in a sparse-cue environment only providing
stereo, density and linear perspective cues is sufficient to estimate virtual eye heights quite ac-
curately in near space. Thus, we argue that our observed effects are likely not the result of an
absence of visual cues to virtual eye height, but likely the result of a diminished reliability of vi-
sual cues to eye height. This is also suggested by the variability in the visual judgments of virtual
eye height in our Experiments 4–5 and comparable experiments in the real world (e.g. [5, 13]).
Indeed, this variability in visually determining eye height in VR might provide an incentive for
the perceptual system to take postural information about eye height into account (c.f. [11]).

Our results are in line with a large body of literature, suggesting that eye height is very im-
portant in the context of visual perception (e.g. [1, 2, 3, 4, 7, 11, 12]), especially for perceiving
egocentric distances (e.g. [5, 6, 16]). Specifically, these results are in line with and support other
findings, highlighting the importance of postural cues in visual perception not only within vir-
tual (e.g. [20, 21, 22]), but also real environments [3, 7, 11, 12]. They also demonstrate that in
an environment with a regular ground surface [23] the body may contribute important infor-
mation for a visual task, like egocentric distance perception (e.g. [7, 19, 20]). These findings are
consistent with and extend previous literature stating that eye height is an important source of
information for perceiving different aspects of the spatial layout of our environment (e.g. [1, 2,
24]). Most importantly, the present work reveals that even in a task, which does not involve
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locomotion [20, 21] or navigation [22] postural cues can be important for the perception of the
spatial layout of our surrounding (virtual) environment.

However, how our findings generalize to other environments (e.g. real world scenarios [8,
10, 11, 12, 13]) and to different tasks (e.g. perceptual-motor tasks, where one can calibrate to
the visual environment by gaining feedback, see e.g. [8, 10, 14, 15, 25]), is an open question.
Our results are in line with research conducted in the real world, which shows that eye height
is accessible even if no perceptual-locomotor or other specific calibration feedback is provided
[1, 2, 12]. For example, manipulating eye height using a false or elevated floor influences per-
ceived size when no direct perceptual-motor feedback was provided (see [1, 2]). However, re-
lated work also suggests that providing perceptual motor feedback in action space can provide
the opportunity to interpret the available visual information with respect to one’s own move-
ments, thereby resulting in accurate judgments of distance in virtual environments (see for ex-
ample [25, 26]). Hence, it is possible that additional information provided via perceptual-
motor calibration is a main source of information specifying eye height, and that postural in-
formation is mainly used in the absence of this information. In support of this notion, recent
research in near space suggests that a perceptual-motor calibration of eye height to a new sup-
port surface (e.g. a table) is necessary for accurate reaching performance (see e.g. [8, 10]). Thus,
other paradigms using an experimental apparatus to elevate or lower participants without
them noticing this motion (i.e. moving them sub-threshold, see [27]) could be used to achieve
a greater control over the possible sensory inputs for perceiving eye height (i.e. visual, vestibu-
lar, body posture from proprioception). Furthermore, with such a setup it might be possible to
manipulate all of those inputs in a single paradigm to investigate this question further.

Future research should be conducted to fully understand when and why postural cues are
used to determine eye height, not only in virtual environments but also in real environments
and whether eye height in VR is still determined by postural cues when perceptual-motor cali-
bration is possible (as in [8, 10]). In addition, further studies are required to fully disentangle
what we describe as postural cues, which likely include but are not limited to proprioceptive,
haptic and/or vestibular cues (see [9]). Such research is needed, because one explanation for
our experimental results is that all available cues for determining eye height from various mo-
dalities, including vision, are integrated along a Bayesian multi-sensory integration approach,
where cues are weighted with respect to their reliability across the various contexts (e.g. see
[23] for such an approach). In our experimental context, it could be that cues to eye height
from other modalities were weighted higher than the visual cues potentially specifying eye
height; thereby leading to the observed influences on perceived distance. Nevertheless, our re-
sults also indicate that while eye height seems to be mainly informed by postural cues, it is
combined with the angle of declination, which is thought to be mainly informed by vision (e.g.
[5]). In our experiments, both sources of information from different modalities seem to be con-
sistently used in combination across different postures to ensure perceptual constancy (in con-
trast to other theories, see [28]). Such a mechanism would allow individuals to perceive an
unchanging surrounding environment.

It is also important to further explore whether limitations in the VR technology are a reason
for our observed reliance on postural cues for determining eye height in virtual environments
instead of visual information. Specifically, the accommodation-convergence mismatch in a
HMD (see [14, 29]) could be a reason for the quite variable judgments of visually perceived eye
height in our virtual environments and consequently the cause that our participants relied
more on their postural cues for determining eye height. However, it seems unlikely that this
limitation is a main factor for the observed reliance on postural cue. While there is compelling
evidence that an accommodation-convergence mismatch has effects on perceived distance (at
least in reaching space, see [14, 29]), it is doubtful that this fully accounts for the strength of
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our observed effects in action space, especially if we consider the results of Experiment 5. Spe-
cifically, the effect of such a mismatch is usually that convergence is pulled towards the accom-
modation distance (c.f. [14]). The HMD used in our experiments features collimated optics,
which simulate an accommodation distance at infinity. Thus, convergence should be pulled to-
wards infinity, which should result in an overestimation of distance (and the visually perceived
virtual eye height) as observed for reaching distances (see [14]). Furthermore, all conditions
should be similarly affected by such a mismatch, because if perceived distance was affected by,
for example, stereo information, it should be overestimated by a similar amount across all con-
ditions, still preserving any differences between conditions. Thus, the observed reliance on pos-
tural cues to determine eye height might even be a general phenomenon rather than specific to
virtual environments in the event that little calibration to an altered visual environment is pro-
vided. Therefore, more research in both virtual and real worlds are needed.

Finally, our research results are not only important for perception researchers, but also have
implications users and developers of many VR setups and applications emphasizing the impor-
tance of our results for everyone working with VR technology. Considering the simplicity of
achieving a conflict between visual and postural information specifying eye height in virtual en-
vironments (either on purpose like in our studies or by accident), it is extremely important for
VR application designers to consider the user’s posture and eye height to maintain the percep-
tual fidelity of the virtual environments. According to our results, every discrepancy between
the different sensory modalities potentially used for determining eye height in VR will likely
alter the perceived virtual space in VR setups, where due to technical, space or time constraints
only little calibration to the virtual environment is possible. This applies to many VR applica-
tions and scenarios existing today. For example, consider a multi-user scenario where success-
ful collaboration between the users is hindered, because only one user might have a correct
perspective and virtual eye height. According to our results the users will likely perceive the vir-
tual space differently. However, our results also indicate that because of the reliance on postural
cues in virtual environments, purposeful manipulations of the virtual eye height could also be a
solution to alter the perceived space in VR in desired ways [30].
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