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Abstract
Lipid composition may significantly affect membrane proteins function, yet its impact on the

protein structural determinants is not well understood. Here we present a comparative mo-

lecular dynamics (MD) study of the human adenosine receptor type 2A (hA2AR) in complex

with caffeine—a system of high neuro-pharmacological relevance—within different mem-

brane types. These are POPC, mixed POPC/POPE and cholesterol-rich membranes. 0.8-

μs MD simulations unambiguously show that the helical folding of the amphipathic helix 8

depends on membrane contents. Most importantly, the distinct cholesterol binding into the

cleft between helix 1 and 2 stabilizes a specific caffeine-binding pose against others visited

during the simulation. Hence, cholesterol presence (~33%-50% in synaptic membrane in

central nervous system), often neglected in X-ray determination of membrane proteins, af-

fects the population of the ligand binding poses. We conclude that including a correct de-

scription of neuronal membranes may be very important for computer-aided design of

ligands targeting hA2AR and possibly other GPCRs.

Introduction
Increasingly emerging experiments point to an important role of membrane lipid composition
in structure/function relationships of G-protein coupled receptors (GPCRs)—the largest mem-
brane protein family in mammals [1–4]. For instance, in rhodopsin, adding (1-palmitoyl-
2-oleoylphosphatidylethanolamine) POPE lipids into POPC (1-palmitoyl-2-oleoylphosphati-
dylcholine) lipid bilayers affect the equilibrium between two sub-states of the rhodopsin func-
tional cycle [5,6]. Another example is given by the class A GPCR serotonin1A receptor: its
binding to the agonist 8-OH-DPAT decreases with cholesterol concentration [7]. This issue is
crucial for pharmacological applications, as more than one quarter of FDA-approved drugs tar-
get GPCRs [8].
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Molecular Dynamics (MD) simulations are being instrumental to assess the effect of native
membrane environment on conformational properties of GPCRs. Indeed, MD studies of class
A GPCR, beta-2 adrenergic receptor, using four different membrane types with or without cho-
lesterol, have suggested that the stability of the receptor “ionic lock” [9] varies with different
lipid compositions [4]. In addition, 1.6 μs MD simulations of rhodopsin embedded in (1-stear-
oyl-2-docosahexaenoyl-phosphatidylcholine) SDPC/SDPE (1-stearoyl-2 docosahexaenoyl-
phosphatidylethanolamine) lipid bilayer, in the presence of cholesterol, have lead to the con-
clusion that specific cholesterol-rhodopsin binding modulates the TM1-TM2-TM7 helices/
helix 8 interactions, essential for the receptor’s activation [10]. Finally, MD simulations indi-
cates that the stabilization of the amphipathic helix 8 (H8) of the class C GPCR mGluR2 recep-
tor increases with cholesterol concentration and that such stabilization depends also on
membrane thickness [3].

Here we use MD simulations to elucidate the effect of membrane composition on an antag-
onist-bound neuronal GPCR. This is the class A GPCR human adenosine receptor type 2A
(hA2AR) [11]—highly localized in the so-called “striatum” of the brain [12]—in complex with
the antagonist caffeine (CFF, chemical formula in S1 Fig). CFF binding to hA2AR may lead to
neuroprotection [13–17]. It prevents apoptotic cell death in a Parkinson’s' model [18]. The ef-
fect on passing from artificial lipid bilayers to conditions near to real neuronal membranes,
where cholesterol content varies from 33% to 50% [19], is investigated by performing 0.8 μs-
long MD simulations on three systems, named in sequence as I, II and III (see Table 1). I is
composed by pure POPC lipid bilayer (see S1 Fig), which is commonly used for MD studies on
adenosine receptor [20–25]. II is a bilayer of equally mixed POPC and POPE lipids (S1 Fig).
III resembles the synaptic membrane (42% POPC, 34% POPE and 25% of cholesterol mole-
cules, S1 Fig), where hA2AR is expressed [26] and the binding to CFF exerts its beneficial neu-
roprotection effects [16]. Notably, IIImarkedly differs from the artificial membrane mimics
(detergent n-nonyl-β-D-glucopyranoside), where the CFF/hA2AR complex is embedded for X-
ray structure determination [27].

Results and Discussion

Convergence Analysis
The degree of convergence of the 800 ns long MD simulations of systems I, II and III is here
investigated by using the so-called ‘all-to-all RMSD analysis’ [28]. This assembles pairs of Cα
atoms' RMSDs in matrices along an MD simulation. In the last 400 ns, the matrices of the three
systems (S2 Fig) show a "leave-and-return pattern", a converged-alike feature according to
[28], see supporting information. On longer time-scales, this feature is not observed. This sug-
gests that the protein conformations of the three systems might have reached a fair conver-
gence in the last 400 ns timescale here. Consistently with this fact, the Cα RMSDs oscillate

Table 1. Composition of the three systems simulated here.

System Lipid ratio #POPC
molecules

#POPE
molecules

#Cholesterol
molecules

#Water
molecules

Ions #Total
atoms

I POPC 495 - - 26839 152 Na+;
165 Cl-

152,414

II POPC/POPE (0.50:0.50) 247 249 - 27244 152 Na+;
165 Cl-

151,522

III POPC/POPE /Cholesterol
(0.42:0.34:0.24)

248 204 141 25703 148 Na+;
161 Cl-

151,834

doi:10.1371/journal.pone.0126833.t001
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around average values in such time scale (Panel A in S3 Fig). The properties presented here are
therefore calculated for the last 400 ns.

Overall Fold
The typical seven transmembrane helices are maintained across the three systems during the
overall trajectory (Panel B in S3 Fig). However, the fold of H8, located at the membrane-
cytoplasm interface, which was not solved in the X-ray structure [27], shows membrane-
sensitive conformations. Indeed residues 292–317 of H8 preserve a helical conformation in II
and III only (Fig 1). Yet, the helical content of H8 decreases in I: residues 305–317 unfolded
into flexible loop after 250 ns MD (Fig 1). This is associated with two features, which are pres-
ent only in I: a very large increase of the Cα RMSD (Panel A in S3 Fig), and the presence of two
non-overlapping blocks in the matrix calculated with the all-to-all RMSD analysis (S2 Fig).
The latter is a signature of a significant, irreversible transition between two distinct conforma-
tions [28]. The different stability of H8 across the three systems is likely to be related to an in-
crease of membrane thickness on passing from I to II, and, more, to III, observed here (see
Section ‘Membrane Structure’ below for details). As results, H8 in II and III is only half-
exposed to the solvent, being the other half immersed in the membrane. This stabilizes H8, be-
cause this helix is amphipathic (Panel B in S4 Fig). Such stabilization is not present for system
I, where H8 is more solvent-exposed because of the thinner thickness of the bilayer. H8 is a key
structural element for hA2AR function, as it connects the transmembrane helices interacting
with ligands with the cytoplasmic C terminus coupling with alpha-actinin (type 2), dopamine
receptors (types 2 and 3), glutamate mGlu5 receptors and other regulatory GPCRs [29,30].
Hence, our simulations point to the importance of using proper membrane environment to
study this neurotransmitter receptor. Our findings share similarities with an NMR study of
the structurally-related class A GPCR human β2 adrenergic receptor, where H8 is helical in
DMSO and disordered in water [31]. Also for the class C GPCR mGluR2 receptor [3], mixed

Fig 1. Membrane-sensitive folding of H8. A) The cartoon representations of receptor’s backbone of systems I–III are shown in blue to red according to
residues’ increased flexibility, as emerging from the so-called PAD index values [32]; the inserted panel shows the location of H8 (in yellow cartoon) in each
membrane; POPC, POPE and cholesterol molecules are shown in red, blue, green lines respectively. The phosphorous atoms are shown as violet Van de
Waals spheres.B) Secondary structure content of H8-including C segment (res 292 to 329)
(292REFRQTFRKIIRSHVLRQQEPFKAAAAHHHHHHHHHHH329) is reported as a function of the simulated time. β sheet, α helix, coil and bend, and turn are
shown in red, blue, white, green and yellow, respectively.

doi:10.1371/journal.pone.0126833.g001
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POPC/cholesterol membrane was shown to stabilizes the helical structure of the H8, whereas
the pure POPC membrane induces a disruption of H8.

The flexibility of the three systems, here analyzed in terms of the so-called PAD index for
backbone atoms [32], is similar for the three systems, with the exceptions of the N-term of
helix H1 and the second extracellular loop ECL2 (S5 Fig), which are significantly more flexi-
ble in I.

Binding Site
CFF exhibits multiple binding poses (A-D in Fig 2) in receptor binding cavity across the three
systems, comparable to what found for adenosine in this receptor [33]. Most of the identified
binding poses are similar to those found in the 0.069-μs MD study of a H8-truncated CFF/
hA2AR complex [34]. Our poses yet differ from those in the 0.005-μs MD study [35], possibly
because of the large difference (more than two orders of magnitude) between our time scale
and theirs. The population of the CFF poses depends on the type of membrane environment. A
(38%), B (29%), and C (94%) are the most populated poses for I, II, III, respectively (see Fig 2
and Table 2). Notably, the pose in the X-ray structure (D) [27] (Fig 2), is not the most populat-
ed one in any of the three systems (see S1 Text). C is almost the only pose assumed by the

Fig 2. CFF’s most populated binding poses in systems I-III (A-D). For each binding pose, the upper panel shows the protein backbone in yellow cartoon,
CFF and residues interacting with CFF in thick and thin sticks, respectively. Water molecules forming H-bonds with CFF and residues are represented as red
sphere; the lower panel shows the corresponding 2-d chart.

doi:10.1371/journal.pone.0126833.g002

Table 2. Populations of CFF binding poses (%) detected across systems I-III over the last 400 ns of
MD simulated time.

BP Index I II III

A 38.1 -

B - 29.1 -

C 31.9 5.8 92.4

D - - 3.8

doi:10.1371/journal.pone.0126833.t002
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antagonist in the physiologically relevant system III. It is stabilized by hydrophobic contacts
between the CFF/C5 methyl group and ILE66 and SER67 side chains on the extracellular side
of H2 (panel A in Fig 3). This stabilizing interaction may be triggered by the diffusion of a cho-
lesterol molecule, already after 0.3 μs, to the cleft between H1 and H2 (panel B in Fig 3). Indeed,
this specific cholesterol binding induces conformational rearrangements of VAL57, LEU58,
ILE66 and SER67 (S6 Fig), which in turn result in the enhanced stabilization of the hydropho-
bic interaction between CFF and H2 residues. We conclude that the cholesterol very likely
drives specific pose for CFF. The calculated lateral diffusion coefficient of cholesterol molecules
around the receptor is not too dissimilar from that of cholesterol molecules in the proximity of
the lipids (5�10−8 cm2 s-1, 8�10−8 cm2 s-1 respectively, S2 Text and S7 Fig), suggesting that the
observed cholesterol binding event is not strongly dependent on cholesterol’s starting location.
Notably, in the absence of cholesterol molecules (systems I and II), one POPC molecule replac-
es cholesterol in the binding cleft. Hence, this receptor’s binding cleft seems to act like an anti-
diffusion trap for lipids and, more, for cholesterol molecules, showing higher specificity for the
latter. Interestingly, in the μs-MD simulations of apo hA2AR, Lyman et al. also detected the spe-
cific cholesterol presence between helices H1 and H2 [23].

Next, we investigated the mobility of CFF, i.e. the different extent of roto-translation of the
ligand inside the cavity across the three systems over the last 400 ns. This mobility is measured
in terms of the orientational flipping angle (defined in the method section, see S8 Fig) and the
CFF center of mass (Fig 4), sampled along the simulation time. Not surprisingly, III features
the smallest fluctuations of both quantities, as the ligand is mostly in the C conformation. II ex-
hibits the largest fluctuations whilst I features intermediate values (see Fig 4 and S8 Fig).

The MD-averaged number of water molecules in the binding cavity of II (32 molecules) is
much larger than those of I and, more, of III (21 and 16 molecules, respectively, see S9 Fig).
Hence, this study corroborates the plausible hypothesis that enhanced hydration of binding
cavity increases ligand dynamics in II [33].

Fig 3. Specific cholesterol binding to hA2AR A) Cartoon showing cholesterol-binding pose in H1/H2 cleft in system III. The receptor is shown in
yellow cartoon; the cholesterol molecule is shown as green sticks surrounded by its solvent accessible surface; CFF, cholesterol-interacting residues,
VAL57, LEU58, as well as CFF-interacting residues ILE66, SER67 are shown as green sticks with oxygen and nitrogen atoms colored in red and blue,
respectively. B) The diffusion of cholesterol into of the H1/H2 cleft enhances hydrophobic contacts between CFF and H2. The minimum distances
between the specific cholesterol molecule and H1 (residues 5–34), between cholesterol and H2 (residues 41–67), between C5@CFF and heavy atoms of
ILE66 and SER67 side chains, are shown in black, red, blue and green, respectively.

doi:10.1371/journal.pone.0126833.g003
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Membrane Structure
The primary amine group of POPE (in II and III) forms intra and intermolecular hydrogen
bonding with the lipids' phosphate groups (S2 Table) [36]. Water- and receptor-lipid hydrogen
bonds are comparable across the three systems (S2 Table).

The different membrane composition affects its thickness. The latter increases on passing
from I to II, and from II to III. The latter observation is consistent with the experimental ob-
servation that the presence of cholesterol causes an increase of thickness of lipid bilayers [37].
These features are shown by a plot of phosphate groups’ density distributions (panel A in S4
Fig). The area per lipid decreases from 0.61 nm2 (system I) to 0.56 nm2 (system II) and 0.50
nm2 (system III), see S2 Table. This is consistent with the fact that the average area per lipid
of pure POPC is greater than that of pure POPE membrane [38]. Hence, the area per lipid
is anti-correlated with the thickness of the membrane, consistently with what already found
in ref. [39].

The POPC and headgroups’ dipole moments turn out to be oriented differently on passing
from I to the other two systems. Let us define the PN vector (from the phosphorus atom to the
nitrogen atom of one lipid headgroup, see S10 Fig) and the angle (FPN) between the PN vector
and the axis perpendicular to the lipid bilayer surface (z-axis). The POPC headgroups’ dipoles
turn out to be perpendicular to z-axis in system I, with a large standard deviation (FPN ~ 90
(36) degrees, see S11 Fig). Instead, in systems II and III, these headgroups show a bivariate dis-
tribution with two shallow peaks around FPN ~ 65 degree and FPN ~ 115. Interestingly, the
POPE headgroups are oriented perpendicular to the z-axis (FPN ~ 90(28) degrees and 90(29)
for systems II and III, respectively).

In system III, the POPC/POPE ratio is 1.2:1. This differs from that of system II, which fea-
tures a POPC/POPE ratio of 1:1. To test whether this difference in POPC/POPE ratio plays a
role for protein structural, we performed an additional simulation where we replaced 24 POPE
molecules of system II with 24 POPC molecules. The results are rather similar to the ones of
system II and are reported in SI (S12 Fig).

Fig 4. The distribution of CFF center of mass within the ligand-binding cavity of hA2AR across systems I-III. The receptor and CFF are shown as
yellow cartoon and red sticks, respectively. CFF center of mass at each collected frame over the last 400 ns of MD simulated time is depicted as one
black dot.

doi:10.1371/journal.pone.0126833.g004
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Conclusion
Both hA2AR fold and CFF binding dynamics are sensitive to the lipid environment where
hA2AR is embedded. The lipid polar headgroups also exhibit varied dipole orientations in dif-
ferent membrane environments. Most importantly, the presence of cholesterol in the mem-
brane is shown to drastically affect CFF binding pose population and mobility. X-ray studies
commonly crystallize ligand/receptor complexes in detergent mimics [40], without the physio-
logically high concentration of cholesterol. The artificial environment is found here to affect
the population of ligand poses drastically: the pose found in the X-ray structure, at 3.6-Å of res-
olution, is the most populated one in none of our 0.8 μs-long MD simulations. This study sug-
gests that computer-aided studies of hA2AR in nearly physiological conditions may give key
contributions to the investigation of receptor's function as well as to the development of CFF
derivatives that retain CFF's neuroprotective benefits with much higher affinity for the target
than CFF [41,42].

Materials and Methods

Homology Modeling of hA2AR
hA2AR is a class A GPCR, composed of 7 transmembrane helices (H1–H7) and a helix lying at
the membrane-cytoplasm interface (H8). The X-ray structure of the CFF/hA2AR complex has
been solved at a 3.6-Å resolution (PDBid: 3RFM) [27]. Amino acid sequence after residue 317
was deleted to remove the highly mobile cytoplasmic C terminus. The truncated sequence was
joined by a polyhistidine tag (residues 318–329). Residues 1MPIMGS6, 150KEGKNHSQ157,
306HVLRQQEPFKAAAAHHHHHHHHHH329 are not detected in the crystal structure. More-
over the crystalized receptor contains 8 mutations (A54L, T88A, R107A, K122A, L202A,
L235A, V239A, S277A). The missing regions were complemented and the mutations were mu-
tated back to wild type by multiple-template-based homology modeling (S1 Table).

12 X-ray structures of hA2AR are deposited in the Protein Data Bank [15,27,43–47]. Among
these we selected 3RFM and 4 other templates with resolution below 3.0 Å (3VG9, 3EML,
4EIY, 2YDV). Notice that the 2YDV template where hA2AR is bound with an agonist
N-ETHYL-5'-CARBOXAMIDO (NEC), is the only one used for modeling the residues 291–
325 in the C terminus without including any other residues, as it has the longest resolved helix
H8 among all the available hA2AR X-ray structures. 100 models using the 5 templates were gen-
erated in Modeller 9.11 [48]. The best model, in terms of both DOPE score [49] and stereo-
chemistry PROCHECK analysis [50] underwent to loop refinement procedure [48]. 500
models were generated. The best model was selected as the optimal initial model for MD
simulations.

The first six residues in the N terminus are predicted as a helical segment. The missing 8 res-
idues (150KEGKNHSQ157) in the loop connecting helix 4 and helix 5 are also so as to form a
short helical segment. As for the missing residues at the C terminus, residues 306HVLRQQEPF-
KAAAAHHHH323 are modeled as the H8 [46]. The last six residues, all histidines, are modeled
as a loop. The backbone Root Mean Square Deviation (RMSD) between the model and 3RFM
is 0.9 Å. The backbone RMSD of the residues located in hA2AR ligand binding site (within 7.0
Å of CFF) against their counterparts in 3RFM is 3.3 Å.

Simulation Details
Membrane models in systems I, II and III were generated using the MemBuilder tool [51]. The
inflateGRO code [52] was used to pack lipids around the hA2AR constructed in the previous
step. The systems were inserted in a simulation box of size 14.8 nm x 11.1 nm x 10.0 nm. With
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this choice, the minimum distance between periodic images of the protein was larger than 1.5
nm in all systems. Water, sodium and chloride ions were added in order to solvate and neutral-
ize the systems at an ionic strength of 0.15 M. The final systems comprised ~150,000 atoms
(Table 1).

The AMBER99SB-ILDN force fields [53], the Slipids [54,55], the TIP3P [56] force fields
were used for the protein and ions, the lipids, and the water molecules respectively. The Gener-
al Amber force field (GAFF) parameters [57] were used for CFF, along with the RESP atomic
charge using Gaussian 09 [58] with the HF-6-31G� basis set [59,60]. MD simulations were per-
formed using Gromacs v4.5.5 package [61] on JUROPA supercomputer. The Particle Mesh
Ewald method [62] was used to treat the long-range electrostatic interaction with a real space
cutoff of 1.2 nm. A 1.2 nm cutoff was used for the short-range non-bonded interaction. A time-
step of 2 fs was set. The LINCS algorithm [63] was applied to constrain all bonds involving hy-
drogen atoms. Constant temperature and pressure conditions were achieved via independently
coupling protein, lipids, solvent and ions to Nosè-Hoover thermostat [64] at 310 K and Ander-
sen-Parrinello-Rahman Barostat [65] at 1 atm. For each system, the receptor in the free state
underwent minimization, 1-ns simulated annealing and 10-ns equilibration with positional re-
straint using a force constant of 1000 kJ mol-1 nm-2 on the heavy atoms of the protein. 40-ns
equilibration was further carried out with positional restraint on the side chains of the residues
within the binding cavity (residues within 7.0 Å of CFF on backbone alignment to 3RFM [27]).
This allowed water molecules to diffuse into the ligand-binding cavity. Next, CFF was inserted
so as to fit the conformation it has in the X-ray structure [27] using backbone alignment in
Pymol [66]. Energy minimization, annealing, 20-ns equilibration with positional restraint on
the side chains of the residues belonging to the binding cavity and the CFF were performed be-
fore removing all the restraints. Then 0.8 μs MD at 310 K and 1 atm was performed for I, II,
III, with one frame collected every 20 ps. The starting binding pose of CFF resembled fairly
that in the X-ray counterpart (RMSD = 1.4 Å, 0.8 Å, 2.3 Å for I, II, III).

Trajectory Analysis
The RMSD, pairwise RMSD matrices [28] and secondary structure content are calculated over
the entire trajectory with g_rms, do_dssp of the Gromacs v4.6.5 package [61]. The CFF orienta-
tional flipping angle is defined as arccos(μτ�μι), where μι is the vector in the plane of the bicyclic
core of CFF, chosen so that it faces toward the extracellular side in the initial frame ι of the tra-
jectory; μτ is the vector at each frame τ of the trajectory. Also this quantity is calculated over
the entire trajectory.

The following properties are calculated over the last 400 ns of the three MD simulations: (i)
The PAD flexibility index, using a in house code [67,68]. (ii) The density profile of lipid phos-
phate groups along the z axis, using g_density in Gromacs v4.6.5 package [61]. (iii) The CFF
binding poses, identified using the Gromos cluster algorithm [69] with a 2-Å RMSD cutoff on
alignment of protein backbone. The g_cluster module of Gromacs v4.6.5 [61] has been used.
(iv) CFF center of mass is defined by the vector ri of the coordinates of CFF center of mass at a
frame i, upon protein backbone alignment. (v) The average number of water molecules in the
ligand binding cavity of hA2AR is calculated by following the similar procedure in [33,70].
Namely, for each system, the number of water molecules in a rectangular box, centered in the
binding site and incorporating residues A63, T88, F168, M177, W246, L249, H250, N253, I274,
H278 (i.e. residue within 4.5 Å from CFF in 3RFM [27]), is averaged over the trajectory’s
frames. (vi) The average hydrogen bond occupancies are calculated as average number of hy-

drogen bonds formed between the receptor and lipids (rprt�lip
HB ), within lipids (rlip�lip

HB ), and be-

tween lipids and solvent molecules (rlip�sol
HB ), divided by the total number of acceptor oxygen
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atoms. (vii) The average area per lipid (APL) is calculated with the GridMat-MD program [71].
(viii) The PN vector of one lipid molecule is defined as the vector from the phosphorous atom
to the nitrogen atom of its polar headgroup, as defined in [72]. The FPN of one lipid molecule
is the angle between its PN vector and the z-axis. This is the axis perpendicular to the lipid bi-
layer surface. For each system, FPN of each lipid molecule is sampled over the entire MD simu-
lation for the normalized FPN distributions of POPC and POPE lipids. (ix) the lateral diffusion
coefficients of cholesterol molecules in III are calculated using the Einstein relation [73] for a
60 ns simulation of III in the NVT ensemble (see S2 Text for details). Cholesterol molecules
are classified as molecules in close proximity of the protein if they have atoms within 0.35 nm
of the receptor during the dynamics. The other molecules are classified as 'free'.

Molecular graphics are drawn using Pymol [66], VMD [74] and Ligplot+ [75].
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