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Abstract

Background

Water Sensitive Urban Design (WSUD) systems are frequently used as part of a stormwater

harvesting treatment trains (e.g. biofilters (bio-retentions and rain-gardens) and wetlands).

However, validation frameworks for such systems do not exist, limiting their adoption for

end-uses such as drinking water. The first stage in the validation framework is pre-valida-

tion, which prepares information for further validation monitoring.

Objectives

A pre-validation roadmap, consisting of five steps, is suggested in this paper. Detailed meth-

ods for investigating target micropollutants in stormwater, and determining challenge condi-

tions for biofilters and wetlands, are provided.

Methods

A literature review was undertaken to identify and quantify micropollutants in stormwater.

MUSIC V5.1 was utilized to simulate the behaviour of the systems based on 30-year rainfall

data in three distinct climate zones; outputs were evaluated to identify the threshold of oper-

ational variables, including length of dry periods (LDPs) and volume of water treated

per event.

Results

The paper highlights that a number of micropollutants were found in stormwater at levels

above various worldwide drinking water guidelines (eight pesticides, benzene, benzo(a)pyr-

ene, pentachlorophenol, di-(2-ethylhexyl)-phthalate and a total of polychlorinated biphe-

nyls). The 95th percentile LDPs was exponentially related to system design area while the

5th percentile length of dry periods remained within short durations (i.e. 2–8 hours). 95th

PLOS ONE | DOI:10.1371/journal.pone.0125979 May 8, 2015 1 / 21

OPEN ACCESS

Citation: Zhang K, Randelovic A, Aguiar LM, Page
D, McCarthy DT, Deletic A (2015) Methodologies
for Pre-Validation of Biofilters and Wetlands for
Stormwater Treatment. PLoS ONE 10(5): e0125979.
doi:10.1371/journal.pone.0125979

Academic Editor: Andrew C Singer, NERC Centre
for Ecology & Hydrology, UNITED KINGDOM

Received: November 25, 2014

Accepted: March 27, 2015

Published: May 8, 2015

Copyright: © 2015 Zhang et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This research was funded by The
Cooperative Research Centre for Water Sensitive
Cities (E04105)(http://watersensitivecities.org.au/).
Zhang is also supported by Chinese Scholarship
Council (No.2011609012)(http://www.csc.edu.cn/).
The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0125979&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://watersensitivecities.org.au/
http://www.csc.edu.cn/


percentile volume of water treated per event was exponentially related to system design

area as a percentage of an impervious catchment area.

Conclusions

The out-comings of this study show that pre-validation could be completed through a road-

map consisting of a series of steps; this will help in the validation of stormwater

treatment systems.

Introduction
Stormwater is increasingly recognized as a valuable alternative water resource [1]. In Australia,
treated stormwater is applied mainly to outdoor non-potable uses (e.g. irrigation) and indoor
non-potable uses (e.g. toilet flushing and laundry) [2]. Furthermore, stormwater has been used
for outdoor, domestic and municipal irrigation purposes in USA, UK and Sweden [1, 3, 4]. In
Singapore, there are also examples of harvesting stormwater for potable use via drinking water
reservoirs [5]. Indeed, the potential for harvesting stormwater to potable water use is consider-
able; for example, it is estimated that in Melbourne, Australia, around 400 GL/yr of stormwater
runs off the urban catchment, which is roughly equivalent to the amount of potable water cur-
rently consumed in the same city [6].

Water Sensitive Urban Design (WSUD) technologies, such as biofilters (rain-gardens and
bioretentions) and wetlands, are promising stormwater treatment systems that can reduce the
high level of stormwater variability to predictable, manageable levels [7]. They are both soil-
based natural systems that provide treatment through a combination of physical (sedimenta-
tion, mechanical straining), chemical (sorption) and biological process (plants and microbial
uptake) [8]. The filter media, the plants and the configuration of these systems could be care-
fully chosen to enhance the treatment of pollutants in stormwater [9]. They have been proven
to efficiently treat sediments, metals, and nutrients [10, 11], microorganisms [12], and micro-
pollutants [13]. However, these systems are not given any credit for their removal performance
when used for stormwater harvesting schemes for almost any end-use. This is mainly due to
lack of any methodology on how these systems should be validated before they are allowed to
become an integral part of a stormwater treatment train for human consumption.

Water treatment validation is the process of ensuring that (i) a treatment system can pro-
duce water of the required quality under a defined range of operational conditions, and (ii) it
can be monitored in real time to provide assurance that water quality objectives are being con-
tinuously met [14]. There are validation frameworks developed for highly engineered water
treatment systems for pathogen removal, such as membrane filtration [15], ultraviolet (UV)
disinfection [16], activated sludge process and media filtration [14]. However, there are no
published guidelines for the validation of WSUD stormwater harvesting systems. The direct
application of frameworks developed for highly engineered systems to WSUD stormwater har-
vesting systems is not possible, because in-situ style challenge tests are usually not applicable to
big WSUD systems.

This study presents development of a framework for validation of WSUD systems for
stormwater harvesting. As with other validation methodology, (e.g. the one proposed by the
Department of Health, Victoria (DHV) [14]), the proposed framework contains three stages:
(i) Pre-validation, (ii) Validation monitoring, and (iii) Operational monitoring. While parallel
work is progressing on development of Stages 2 and 3 (Validation monitoring and Operational
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monitoring [13]), this paper focuses on Stage 1: Pre-validation. It is the first and very important
stage in which the following should be identified: (1) target pollutants, (2) treatment targets,
(3) potential removal mechanisms, (4) potential surrogates and (5) operational/challenge con-
ditions. The parameters are directly linked to the end-use of the treated stormwater and treat-
ment system design; for example while for restricted irrigation only sediments and some heavy
metals should be considered [17], for treatment to potable standards all pollutants should be
considered with a strong emphasis on removal of pathogens and micropollutants. However,
while general stormwater quality has been extensively reported in literature [18–20], the
knowledge on both pathogens and organic micropollutants in stormwater is limited. In addi-
tion, the complex operational conditions of WSUD systems, which are crucial for validation
monitoring, have never been examined.

The aim of this paper is to describe the development of the Pre-validation stage of the Vali-
dation Framework for stormwater treatment systems by providing: (i) the roadmap of pre-vali-
dation procedure, and (ii) methodologies for completing the pre-validation procedure for
micropollutant removal by stormwater biofilters and wetlands, when used in treatment to po-
table water standards. Specific focus is given to the key research gaps: the identification of the
target micropollutants and development of the methodologies for identifying the operational
and challenge conditions for the selected WSUD systems. While this study focuses only on bio-
filter and wetlands, micropollutants as the target pollutant, and treatment to potable standards,
the developed pre-validation methodologies are general and could be extended to encompass
other WSUD systems, pollutants (e.g. metals and pathogens) and end-uses (e.g. in-door non-
potable uses). It is the first attempt in literature to provide a robust framework for the valida-
tion of natural treatment systems engaged in stormwater harvesting which, if adopted in prac-
tice, could support widespread implementation of stormwater harvesting.

Proposed validation framework for WSUD systems
Table 1 outlines the proposed validation framework for WSUD stormwater treatment systems.
The main concepts have been derived from the procedures applied to validation of wastewater
recycling systems for non-potable uses [14].

Stage 1: Pre-Validation
Stage 1: Pre-Validation pertains to gathering necessary information for the next two stages, i.e.
Validation monitoring and Operational monitoring. It initially includes selection of target pol-
lutants, corresponding treatment mechanisms and targets. Additionally, the challenge condi-
tions need to be determined, such as maximum loading rates, inflow pollutant levels and
challenge hydrological regimes (e.g. challenge treatment flow-rate, event volume, duration of
dry-wet periods, etc.). Table 2 outlines the proposed roadmap of the Pre-validation stage, con-
sisting of five steps.

Stage 2: Validation Monitoring
Stage 2: Validation Monitoring determines the system performance under challenge conditions
in order to prove that it can cope in extreme situations. Both hydraulics and treatment perfor-
mance must be validated, which is conducted using in-situ challenge tests. During this step, it
is essential that selected surrogates are confirmed using both laboratory and field studies, so
that they can be used successfully during operational monitoring. See more details on this stage
in Zhang et al [13].
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Stage 3: Operational Monitoring
Stage 3: Operational Monitoring ensures that defined treatment targets are being continuously
met during normal operation, by either monitoring pollutants directly or using suitable surro-
gates. This stage is still to be developed.

Methods
As already outlined, this study focuses on the Pre-validation stage, with specific focuses on
identification of target micropollutants in stormwater (Step 1; Table 2) and identification of
operational and challenge conditions for stormwater biofilters and wetlands (Step 5; Table 2)
based on the current knowledge gaps in literature. As the operational conditions are system

Table 1. Proposed validation framework for WSUD stormwater harvesting systems.

Aims and objectives

• The system can produce water of required quality
under a defined set of operational conditions

• The water quality objectives are being continuously
met under a defined set of operational conditions

• Applicable to a wide range of WSUD
systems and sizes

Pre-validation Validation Monitoring Operational Monitoring

• Identification of target pollutants in stormwater • Validation of hydraulics • Monitoring of the verified surrogates (or
directly measuring target hazards)

• Specification of treatment targets ✓ In-situ tracer tests • Identification of the need for re-
validation

• Identification of the potential removal mechanisms
and influential factors

✓ Modelling

• Identification of surrogates and for operational
monitoring

• Validation of treatment performance (i.e. removal
processes)

• Establishment of the operational and challenge
conditions for systems

✓ Challenge tests—if possible

✓ Modelling/lab/in-situ measurements

• Verifying relationships between surrogates and
pollutants for operational conditions

doi:10.1371/journal.pone.0125979.t001

Table 2. Roadmap for Stage 1: Pre-validation.

Steps Description General methods

1. Identify target pollutants in
stormwater

Target pollutants is the subject of validation study, and
their operational and challenge concentrations in
stormwater need to be identified

Catchment audit, monitoring of actual stormwater, and
available data on quality of stormwater. Basic statistical
analysis of the collected data. 95th percentile concentrations
of the data collected should be used as challenge
concentrations.

2. Specify the treatment target The treatment target defines the treatment target that a
validated system must provide

Depending on the end use the treatment target will be
derived as per relevant guidelines values.

3. Identify removal
mechanisms and the
influential factors

Successful validation of a treatment process relies upon
an understanding of the mechanisms (including
influential factors)

Literature review on the properties of the target pollutants,
including the treatment process to be validated and the
factors that influence the processes.

4. Identify potential surrogate
parameters

Continuous monitoring of reliable surrogate is important
to provide assurance that the system is under control.

Literature review on potential surrogates of the target
pollutants for different processes.

5. Identify operational and
challenge conditions for the
systems

Operational condition sets the boundaries for which the
validation will be accepted, including

Collect local climate data and then determine the operational/
challenge conditions based on hydrological modelling and
statistical analyses.- Treated volume per event

- Environmental conditions, including temperature,
length of dry period

- Flow-rate

doi:10.1371/journal.pone.0125979.t002
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and site specific, the paper selects wetlands and biofilters of different designs and three differ-
ent climates as examples. While Step 1 and 5 are the main focus of this study, other three steps
are also discussed to provide a complete pre-validation roadmap. Step 2 (treatment target) is
based on Step 1, whereas Step 3 entails potential removal mechanisms of micropollutants that
have been studied extensively in relative natural systems [21–30]. Although there are also
knowledge gaps regarding surrogate parameters in natural systems, this study identifies only
the potential surrogate parameters for further testing during the later validation monitoring
stage.

Step 1: Identification of target micropollutant in stormwater
A literature review was performed to identify micropollutants in stormwater published over
last 30 years. Literature search was undertaken through Monash Library that includes key re-
sources (e.g. Scopus, Web of Science, etc.). The following keywords were utilized: stormwater,
micropollutant, pesticide, hydrocarbon, phthalate, polychlorinated biphenyl, phenol, haloge-
nated aliphatic, as well as some specific organic compounds based upon the first search. Refer-
ence lists of all included articles were manually searched to identify additional sources of data,
missing articles, or meeting abstracts. A primary search yielded 562 studies underwent initial
abstract review (Fig 1), of which 445 studies were excluded. Of the remaining 114 studies, only
50 reported the micropollutant concentrations in stormwater and were included in the analysis
(Table 3).

Various types of micropollutant concentration statistics were presented. Event Mean Con-
centrations (EMC), representing the flow-weighted average concentration of a single runoff
event, are the most representative values for characterisation of stormwater, and thus most
commonly reported (Table 3). All EMC values that were found in literature were included in
our statistical analysis, even a single value for a given site. If statistics of EMC values were given
(e.g. maximum, minimum, medium, etc.), these values were taken. It should be noted that the
distribution of EMC values in each piece of literature is seldom indicated. Maximum and mini-
mum concentrations of discrete samples recorded in a single catchment were also considered,
since extremes are important for determination of challenge conditions. Only studies which
contained greater than 5 rainfall events per site were included; in these cases, the minimum,
median and maximum values of the concentrations were estimated. If only the range of dis-
crete concentrations was available (and based on a measurement campaign that had more than
5 events per site), minimum and maximum concentrations were assumed to correspond with
the range.

The reviewed papers indicated that>100 micropollutants were identified in stormwater. A
micropollutant was selected only if it was measured at more than three catchments. After the
screening, data on 37 stormwater micropollutants (Table 3) was used to create the data set.

Due to the scarcity and variability (gathered from various catchments and climates around
the world), a triangular distribution was developed for each selected micropollutant. The trian-
gular distribution is a continuous probability distribution with a probability density function
shaped like a triangle. It is defined by three values: the minimum value, the maximum value
and a mode value (most likely value). This distribution has also been adopted in other studies
due to data scarcity [31, 32]. Catchment specific concentrations were not discussed due to the
relative limited studies on the micropollutants in stormwater. The absolute minimum and
maximum concentrations within the data set were selected as minimum and maximum values
for each micropollutant. In cases when the minimum is below detection limit, zero was used;
the mode value was determined by establishing the median value among all the median values
collected, hence equates with the median of the triangular distribution. The 5th, 50th and 95th
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percentile concentrations were then established based on the triangular distribution developed.
The 95th percentile concentration was selected as challenge concentration, since it is recom-
mended as challenge concentrations in validation monitoring of other water types [14].
The raw data underlying the statistics of micropollutants in stormwater could be found in S1
Table.

Fig 1. Flow diagram depicting systematic review search results.

doi:10.1371/journal.pone.0125979.g001
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Table 3. 5th, 50th and 95th percentile concentrations of micropollutant interpolated from literature and the corresponding drinking water guide-
lines: Australia [33]; USEPA [35], WHO [34] and EU[36].

Parameters n* 5th 50th 95th Australia USEPA WHO EU

Pesticides (μg/L) [18, 53–70]

Glyphosate 34 6 70 200 1000 700

AMPA 26 0.6 3 7 0.1 for

Simazine 32 0.1 0.5 1 20 4 2 each

Atrazine 27 0.3 1 3 20 3 100 pesticide

Diuron 30 0.5 3 8 20 and

Isoproturon 20 < LOD 0.1 0.1 9 0.5 for total

Aldrin 21 0.1 0.6 2 0.3 total 0.3 total

Dieldrin 19 0.1 0.4 1

Phthalates (μg/L) [18, 54, 56, 65, 67–75]
Di-(2-ethylhexyl)-phthalate 60 4 20 50 10 6 8

Dibutyl phthalate 27 0.5 4 10

Benzyl butyl phthalate 18 0.7 6 20

Di-n-octyl phthalate 26 0.3 3 8

Phenols (μg/L) [18, 53, 54, 56, 67–71, 73–81]
Phenol 16 6 50 100

Pentachlorophenol 19 3 30 90 10 1 9

Nonylphenol 36 0.5 3 7

Polychlorinated biphenyls (PCBs) (μg/L) [18, 56, 68–70, 77, 82, 83]
Total PCBs 34 0.1 0.4 0.9 0.5

Halogenated aliphatics (μg/L) [18, 54, 56, 62, 70, 74, 84, 85]
Chloroform 23 0.5 4 9 80 300 100

Monocyclic aromatics (μg/L) [18, 54, 56, 62, 70, 73, 74, 84, 86–88]
Benzene 30 0.5 4 10 1 5 10 1

Ethylbenzene 21 0.4 2 6 300 700 300

Toluene 23 0.5 4 10 800 1000 700

Polycyclic aromatic hydrocarbons (PAHs) (μg/L) [18–20, 54, 56, 61, 67–70, 73–76, 87–98]
Total PAHs 117 40 400 1000

Naphthalene 60 0.2 2 4

Acenaphthylene 39 0.01 0.05 0.1

Acenaphthene 36 0.02 0.06 0.1

Fluorene 42 0.05 0.3 0.8

Phenanthrene 48 0.7 8 20

Anthracene 39 0.3 3 8

Fluoranthene 58 5 60 100

Pyrene 56 4 40 100

Benzo(a)anthracene 52 0.3 3 8

Chrysene 46 0.6 5 10

Benzo(a)pyrene 43 0.3 3 8 0.01 0.2 0.7 0.01

Dibenz(a,h)anthracene 43 0.1 1 4

Benzo(b)fluoranthene 40 0.6 5 10

Benzo(k)flouranthene 40 0.3 3 8

Benzo(g,h,i)perylene 44 0.1 0.5 1

Indeno(1,2,3-cd)pyrene 43 0.4 4 10

Stormwater parameters (mg/L)*From NRMMC-EPHC-NHMRC [8]
pH 5 6 7.3

(Continued)
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Step 2: Specification of the treatment targets
Worldwide drinking water guidelines values [33–36] were sourced to set the treatment targets;
these guidelines were used as only drinking water guidelines define specific values for a wide
range of micropollutants for human safety protection, while other standards (e.g. irrigation
guidelines, [37]) do not indicate values for micropollutants or they report higher values that
may not pose a threat to humans. The targets set by the Australian Guidelines for Water Recy-
cling: Stormwater Harvesting and Reuse [8] were also used in the study (Table 3).

Step 3: Identification of removal mechanisms and the influential factors
A literature review was carried out to identify potential micropollutants removal mechanisms
for different micropollutants groups identified in Step 1. Removal mechanisms of micropollu-
tant have been extensively reported in wetlands [21–26] stormwater bioretention systems [27,
28] and related soil-based systems such as aquifers [29, 30]. These removal processes are largely
dependent on the physical-chemical properties of the micropollutants, therefore the latter were
also reviewed [38].

Step 4: Identification potential surrogate parameters
Identification of potential surrogates parameters was conducted by reviewing the current litera-
ture on the surrogates for micropollutants during different treatment systems, such as aquifer
recharge systems [39], chemical oxidation [40, 41] and ozonation [42], as no studies on surro-
gates have been reported for stormwater biofilters and wetlands.

Step 5: Determination of operational and challenge conditions for
biofilters and wetlands in three different climates
The following parameters were considered to be the key operational variables to be considered
in defining the boundaries of validation:

1. Temperature, which is important for biodegradation in both biofilters [43] and wetlands
[44], and

2. Length of dry periods (LDPs) between two events—e.g. it is reported that long dry periods
are detrimental for nitrogen removal by biofilters [45], while very short dry periods are not
desirable for pathogen removal [12] and micropollutant removal [13],

3. Volume of water that needs to be treated per event (along with the flow-rate this determines
total detention time) is of importance for both wetlands [46] and biofilters [9],

Table 3. (Continued)

Parameters n* 5th 50th 95th Australia USEPA WHO EU

Suspend solids 19 77 254

Total nitrogen 0.6 3 7

Total phosphorus 0.1 0.4 1

Biochemical oxygen demand 7 43 141

Chemical oxygen demand 33 56 9

* Number of data points used for estimation.

Data reported in [54, 60, 80, 89, 90] are based on discrete/grab samples, while the rest are based on event mean concentration (EMC).

doi:10.1371/journal.pone.0125979.t003
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4. Extreme wet conditions—it has been found that occurrence of two or more large consecu-
tive events within short period can lead to breaking of the system function during the later
events in which the system cannot provide reliable treatment [13],

5. Flow velocity through the wetland (or infiltration rate through the biofilter) is also crucial
for any WSUD treatment system [46].

It should be noted that other variables, such as soil characteristics, are also important, but
they are very system specific and their implications should be tested in Stage 2: Validation
monitoring (Table 1).

The challenging values of the selected operational parameters, which are clearly dependent
on climatic conditions, were determined for three different regions: humid sub-tropical (Bris-
bane, annual rainfall 1,000 mm); Mediterranean climate (Perth, annual rainfall 850 mm); and
mild oceanic climate (Melbourne, annual rainfall 650 mm). They also had to be determined in
relation to size and design of the WSUD systems (i.e. surface area, extended detention depth,
permanent pool depth and outlet equivalent pipe diameter). The study followed the Australian
standard design practice: i.e. biofilters are designed as per FAWB [47] guidelines (key design
parameters are surface area, hydraulic conductivity, extended detention depth, filter depth and
submerged zone) and wetlands as per current Melbourne Water design manual [48].

To determine (1) Challenge temperature, 30 years minimum and maximum daily tempera-
ture data from Bureau of Meteorology (BOM) (station No. 9225 in Perth, No.40245 in Brisbane
and No. 86232 in Melbourne) were analysed by creating cumulative distribution curves. The
extreme values (5th percentiles of the minimum daily data as well the 95th percentiles of the
maximum daily data) were determined for each of the three climatic regions. 5th/95th percentile
is selected since it is usually acquired as the cut off in other validation procedures [14].

To determine the challenge values of (2) LDPs, (3) Volume per event, and (4) Extreme wet
condition, the MUSIC V5.1 software package [49]—widely applied in Australian design prac-
tice [50]—was used. MUSIC was run for 384 selected designs of biofilters and 30 designs of
wetlands for continuous 6 minute rainfall and monthly evaporation data measured between
1980 and 2010 in the three climatic regions. All these designs have covered the potential biofil-
ter and wetland designs in real-life so that the work could be broadly applied. The detailed vari-
able specifications for biofilter and wetland configurations in MUSIC are presented in S2 and
S3 Tables, while the model parameters are summarized in S4 and S5 Tables. Properties of the
catchment, and the link between catchment and treatment systems, are presented in S6 and S7
Tables.

All modelled events that produced outflows (over 30 years of continuous simulations) were
used to construct probability cumulative curves of (i) LDPs and (ii) outflow volume per event
for each examined design and climate type. These probability distribution functions (log-nor-
mal) were then applied to estimate the 95th percentiles of the LDPs and volume of outflows, to
determine their challenge values. The LDPs were determined as the duration between end and
start of the outflow of two continuous events, which differs from the normal determination of
LDPs (also called the Antecedent Dry Weather Period) that is based on the inflow. Statistics
were formulated on outflows in this study because: (i) many events were either too small (hav-
ing no outflow) or too large (leading to overflow), hence the inclusion of these events very like-
ly resulting in significant errors if inflow was used in statistical analysis; and (ii) in terms of
stormwater harvesting, treated water is more important; therefore to be on the safe side, the
use of outflows for estimations was favoured. 1% of the maximum outflow-rate of the system
(as a function of hydraulic conductivity, surface area, extended detention depth and filter
depth; exclude overflow) was used as a cut-off to determine when outflow begins or ends. This
cut-off value was determined with reference to experience from previous biofilter field
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experiments [13], in which it was established that when the flow-rate of outflow dropped to
<1% of maximum flow-rate (i.e. 8.×10–6 m3/s), the measurement instrument could still pro-
vide the flow-rate value but no outflow could be observed at the outlet.

The fourth operational parameter, (4) Extreme wet condition, was defined as two consecu-
tive events which are separated by a short dry weather period (i.e. a short LDP). There were
two parameters that characterise such an event: (i) the LDP between the two consecutive events
and (ii) the volume of stormwater treated in each consecutive event. To determine these pa-
rameters, a number of steps were followed:

• The LDP between every consecutive events which occurred in the 30 year rainfall period
were calculated;

• All consecutive events which had LDPs greater than the 5th percentile LDP were then re-
moved from further analysis. This was to select only those pairs of consecutive events which
were separated by small dry weather periods; and,

• The average volume of all remaining pairs of events was then calculated, and the 95th percen-
tile value was used as the challenge volume.

Biofilters and wetlands are designed to treat a certain capacity of rainfall event and a maxi-
mum design flow-rate above which inflow water is bypassed. Therefore the fifth operational
parameter—(5) Maximum designed flow-rate—is always specified in the detailed system de-
sign for both biofilters and wetlands, hence should be directly adopted as the challenge flow-
rate.

It should be acknowledged that the method presented here is quite flexible and subject to
change. For example, other models could be used to simulate the hydraulic performance of the
‘to-be-validated’ system, such as StormWater Management Model (SWMM), which is a dy-
namic hydrology-hydraulic water quantity and quality simulation model developed by USEPA
[51] and the storage treatment overflow and runoff model (STORM) that is used to simulate
the flow volume from watersheds, the bypass flow volume and the flow volume that passes
through stormwater treatment systems [52]. Moreover, input data is not restricted to a 6 min-
ute interval over 30 years; a minimum of 10 years of rainfall data, with relatively longer inter-
vals, could be collected for statistical analysis.

Results and Discussions

Step 1: Target micropollutant in stormwater
Table 3 presents the estimated 5th, 50th and 95th percentile concentrations of 37 micropollu-
tants in stormwater. The 95th percentile concentrations of many micropollutants exceed drink-
ing water guideline (DWG) values (Table 3). The estimated 95th percentile concentrations of
benzene (10μg/L) and benzo(a)pyrene (BaP) (8μg/L) were above all DWG values (i.e. 1 μg/L
for benzene and 0.01 μg/L for BaP according to the most lenient guideline value in Australia).
The 95th percentile concentrations of di-(2-ethylhexyl)-phthalate (50μg/L) and pentachloro-
phenol (90μg/L) exceeded all DWG values except those for the EU which has not defined any
guideline values for them. The estimated 95th percentile concentrations of Aldrin and Dieldrin
(2 μg/L and 0.2 μg/L respectively) were above Australian andWHO values (i.e. 0.3 μg/L for the
sum of these two pesticides). EU DWGs has a maximum value of 0.1μg/L for an individual pes-
ticide and 0.5μg/L for the sum of all pesticides. Hence, all 95th percentile values for pesticides in
Table 3 exceeded EU DWG values. Estimated 95th percentile concentration of total PCB was
0.9μg/L, which is above the limit of USEPA guideline value (0.5μg/L). All such micropollutants
detected above guideline values should be considered target micropollutants in stormwater. It
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is also recommended that site specific micropollutant data be used where available in prefer-
ence to the adopted 95th percentile values estimated in this study.

Step 2: Treatment targets
The DWG values are considered as treatment targets: e.g. the challenge concentration of di-
(2-ethylhexyl)-phthalate (DEHP) in stormwater was found to be 50 μg/L (Table 3); for
potable reuse in Australia, the treatment system should be able to reduce the concentration to
<10 μg/L, and this should be confirmed during validation monitoring in the second stage of
the proposed validation framework (Table 1).

Step 3: Potential removal mechanisms of micropollutants and the
influential factors
Table 4 summarizes the physical-chemical properties of various micropollutant groups, poten-
tial dominating removal mechanisms, and the influential factors, which are based mainly on
the study by Mackay et al. [38], Cottin et al. [23], Imfeld et al. [21], Abira M.A. et al. [24],
Alvord et al. [25], DiBlasi et al. [27], V.H. Popov et al. [28],Larsen et al. [29] and Pavelic et al.
[30]. In validation monitoring, identified potential mechanisms for a specific micropollutant or
range of micropollutants will need to be validated separately.

Step 4: Potential surrogate parameters for micropollutant
A suite of readily measurable surrogates for organic micropollutants during wastewater treat-
ment systems, such as aquifer recharge systems, chemical oxidation, and ozonation, was identi-
fied by Drewes et al. [39], Dickenson et al. [40] and Gerrity et al. [42]. Surrogates, such as the
change of ultraviolet absorbance (delta-UVA), dissolved organic carbon (delta-DOC), delta-
ammonia, and delta-nitrate, were suitable for monitoring biodegradation while delta-UVA and
3-D fluorescence are effective surrogates for adsorption [39]. These can be considered potential

Table 4. Physical-chemical properties of different micropollutant groups and their potential removal mechanisms and influential factors.

Micropollutants Physical-chemical properties# Potential dominating Major influential factors

Solubility [μg/L] LogKoc KHenry [Pa�m3/
mol]

mechanisms

Herbicides 5.7×103

~9.0×105
1.3–
2.6

1.1×10–5

~9.2×10–4
Adsorption*, biodegradation*,
hydrolysis, photolysis

soil characteristics (organic content, nutrients),
temperature, redox condition, etc

Phthalates 29~1.2×104 2.7–
5.0

0.004~3.2 Adsorption*, biodegradation pH, temperature, soil characteristics, redox
condition, etc.

Phenols 7.6×107~9.3×107 1.2–
2.2

0.03~1.3 Biodegradation*, adsorption,
volatilization

temperature, inflow concentration, retention
time, redox condition, etc

Polychlorinated
biphenyls

1.0×103~1.6×105 4.6–
6.9

0.8~240 Adsorption*, biodegradation soil characteristics, retention time, redox
condition, etc

Halogenated
aliphatics

1.4×105~1.7×107 1.5–
2.7

7.7~540 Biodegradation*, volatilization*,
adsorption

retention time, temperature, redox condition,
etc

Monocyclic
aromatics

1.3×105–2.1×106 1.1–
3.0

270–1300 Biodegradation*, volatilization*,
adsorption

retention time, temperature, redox condition,
etc

PAHs 1.0~3.2×104 3.1–
7.4

0.009–43 Biodegradation*, adsorption*,
volatilization

retention time, temperature, soil
characteristics, etc

# Data from Mackay et al. [38]

* the major removal process for the group

doi:10.1371/journal.pone.0125979.t004
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surrogates and should be verified by monitoring. It should be acknowledged that the surrogates
suitable for micropollutants in chemical oxidation and ozonation may not be transferable to
natural systems, however at this pre-validation stage it is better to form a bigger list of potential
surrogates to be identified in later stages. Moreover, a wider range of readily measurable storm-
water parameters, e.g. phosphorus, turbidity and electric conductivity, are also recommended
to be tested in the second stage of the proposed validation framework (Table 1), where the cor-
relation between a surrogate and corresponding pollutants needs to be elaborated. The suitable
surrogate needs to be removed by the same mechanisms, and the surrogates concentration has
to be highly correlated to the change in micropollutant concentration.

Step 5: Operational and challenge conditions for biofilters and wetlands
in three different climates

Challenge temperature. The estimated challenge low temperature (5th percentile) and
challenge high temperatures (95th percentile) are shown in Table 5. As it is difficult to control
the exact temperature during a field challenge test, it is recommended that field challenge tests
be performed both in winter at a temperature no higher than the 5th percentile value (e.g. 1.8°C
in Brisbane) and summer at a temperature no less than the 95th percentile value (e.g. 34.3°C in
Brisbane) to cover the extremes.

The length of dry periods (LDPs). Fig 2 shows example plots of the estimated LDPs as
functions of the percentage of an impervious catchment area for biofilters and wetlands in Oce-
anic climate (Melbourne). The 95th percentile LDPs are exponentially related to the system
area (R2>0.90) for both systems and all climates. Other wetland design parameters had no ob-
served relationship to LDPs (R2<0.05). For biofilters, LDPs increased with the increase of bio-
filter depth, and decreased with the increase in hydraulic conductivity. Extended detention
depth of biofilters had no influence on the LDPs. Generally, if the system is larger in either size
or depth, then smaller events would have no outflows and would be regarded as ‘dry’, hence
the 95th percentile of the LDPs of a larger system became higher. However, as for the 5th per-
centile LDPs, the values decreased slightly alongside the increase of system size, whereas the
difference between different system designs and types was relatively small, i.e. the 5th percentile
dry periods of all biofilters configurations were around 2 hours, whereas those of all wetland
were 4–8 hours.

To further examine these results in relation to climate and size, for each systems size, the av-
erage 95th and 5th percentile of LDPs across all other system design parameters were calculated
and presented in Table 6; this was undertaken since system size exerted the strongest impact
on results. For the same design of biofilter or wetland area, the 95th percentile LDP follows the
order of Mediterranean (Perth)>Subtropical (Brisbane)>Oceanic (Melbourne) with an excep-
tion of Oceanic (Melbourne) being the longest at the largest biofilter area (10% of impervious
catchment area).

Table 5. Estimated temperature percentile values in different climates.

Climate Temperature (°C)

5th 95th

Subtropical (Brisbane) 1.8 34

Mediterranean (Perth) -2.7 32

Oceanic (Melbourne) 5.0 33

doi:10.1371/journal.pone.0125979.t005
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Volume of water treated per event. The 95th percentile volumes per event were plotted
against the system surface areas, and the exponential curves fitted are shown in Fig 3 for biofil-
ters located in Mediterranean climate (Perth) and in Fig 4 for wetlands located in Subtropical
(Brisbane) and Oceanic (Melbourne) climates.

Biofilters: Volume per area decreased with surface areas, filter depth and extended detention
depth. The systems of equivalent total filter depth, but with and without submerged zone, had
different treatment volumes; the systems without submerged zones were able to treat more
water since they had higher hydraulic gradients. However, the depth of submerged zone had
little relationship to the volumes, probably because the dry periods simulated were not long
enough to dry the submerged zone.

The average volume for both single events and consecutive events was calculated for each
system size and summarized in Table 6. Volumes for consecutive events were lower than that
of one single event; the reason might be that the incidents of rainfall during consecutive events
are more expansively spread. For a Mediterranean climate (Perth), the total average 95th per-
centile volumes of consecutive events are about 74% of one single event, while percentages for
oceanic (Melbourne) and subtropical (Brisbane) climates are 70% and 80% respectively. The
95th percentile volume of either single event or consecutive events for biofilter follows the
order of subtropical (Brisbane, 1008.2 mm/y)>Mediterranean (Perth, 850.0 mm/y)> oceanic
(Melbourne, 649.6 mm/y) with an exception of Perth being the highest at the smallest biofilter
design (1% of impervious catchment area) (Table 6).

Fig 2. Plots of LDPs as a function of system area as percent of impervious catchment for mild oceanic climate (Melbourne): a) 95th percentile and
b) 5th percentile dry period for biofilters at the designed hydraulic conductivity 100 mm/h and extended detention depth 200 mm. c) 95th percentile
and d) 5th percentile dry periods for wetlands at permanent pool depth of 250mm. SZ: submerged zone.

doi:10.1371/journal.pone.0125979.g002
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Wetlands: The volume per unit area decreased with increasing surface area (Fig 4). In the
majority of cases, the greater the extended detention depth, the greater the volume per area of
water treated with the greatest difference in the smallest wetland areas. Permanent pool depth
(PPD) had very little effect upon the volume treated per event.

The average 95th percentile volume for both a single event and consecutive events for each
wetland size appears in Table 6. Volumes for consecutive events are generally lower than that
of a single event, with a few exceptions in small surface areas. Perth had the largest 95th percen-
tile volume of either single event or consecutive event, while Brisbane showed the smallest 95th

percentile volumes, except for the large surface areas, i.e. 5% and 10% of the impervious
catchment area.

Implications for the design of testings as Validation Monitoring
By applying the roadmap into the ‘to-be-validated’ system, all necessary information could be
gathered through the five steps, and then proper validation monitoring testings can be de-
signed. For example, the validation monitoring tests shall be performed in both winter (at

Table 6. Estimated average values (±standard deviation) of different operational variable at different system areas.

System City Parameter Unit Biofilter/wetland area as % of catchment area

1.0% 2.0% 3.0% (wetland only) 5.0% 10.0%

Biofilter Melbourne Dry 95th d 17±1.7 20±1.7 N/A 28±4.7 50±11

period 5th h 2.1±1.5 1.9±1.3 N/A 1.5±1.1 1.3±1.0

95th Single event m3/m2 1.7±0.22 1.1±0.15 N/A 0.52±0.080 0.29±0.040

volume Consecutive event 1.2±0.29 0.75±0.18 N/A 0.40±0.12 0.17±0.060

Perth Dry 95th d 26±6.9 28±7.1 N/A 34±11 41±13

period 5th h 1.8±1.6 1.7±1.4 N/A 1.3±1.1 1.0±0.80

95th Single event m3/m2 2.8±0.53 1.7±0.42 N/A 0.77±0.24 0.38±0.12

volume Consecutive event 2.3±0.59 1.3±0.44 N/A 0.55±0.15 0.24±0.070

Brisbane Dry 95th d 23±3.8 26±4.0 N/A 34±5.0 47±11

period 5th h 2.2±1.6 2.0±1.4 N/A 1.7±1.2 1.6±1.0

95th Single event m3/m2 2.6±0.43 1.7±0.22 N/A 0.93±0.16 0.56±0.11

volume Consecutive event 2.2±0.96 1.4±0.61 N/A 0.72±0.22 0.41±0.11

Wetland Melbourne Dry 95th d 18±0.14 19±0.16 20±0.20 22±0.75 26±0.61

period 5th h 5.3±1.2 5.8±0.86 4.5±0.31 4.8±0.64 4.5±0.46

95th Single event m3/m2 1.8±0.59 1.4±0.36 1.0±0.17 0.71±0.080 0.38±0.040

volume Consecutive event 1.8±0.84 1.3±0.37 0.81±0.16 0.50±0.040 0.28±0.050

Perth Dry 95th d 61±3.3 79±0.52 77±4.3 92±5.1 117±21

period 5th h 6.8±0.50 6.7±2.2 7.3±0.38 6.1±1.8 4.2±1.2

95th Single event m3/m2 3.2±1.3 2.7±0.81 2.3±0.59 1.8±0.32 1.1±0.060

volume Consecutive event 3.1±1.8 2.6±0.43 2.4±0.96 1.5±0.25 0.94±0.16

Brisbane Dry 95th d 31±0.65 35±0.39 36±0.26 37±0.12 48±35

(HRT = 72h) period 5th h 7.4±0.96 7.6±1.2 6.3±0.35 6.6±0.60 5.6±0.13

95th Single event m3/m2 1.4±0.56 1.2±0.46 1.0±0.31 0.84±0.24 0.63±0.13

volume Consecutive event 1.2±0.68 0.96±0.41 0.92±0.42 0.59±0.19 0.51±0.20

Brisbane Dry 95th d 30±0.27 32±0.25 33±0.58 37±0.18 47±0.53

(HRT = 48h) period 5th h 8.0±0.37 6.4±0.72 6.1±1.1 4.8±0.63 4.9±0.91

95th Single event m3/m2 1.3±0.44 1.1±0.39 0.99±0.31 0.81±0.23 0.60±0.13

volume Consecutive event 0.77±0.20 0.88±0.26 0.75±0.20 0.60±0.13 0.43±0.10

doi:10.1371/journal.pone.0125979.t006
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temperature�5th percentile value; Table 5) and summer time (at�95th percentile value;
Table 5) from Step 5; with determined 95th percentile challenge volumes (Fig 3 for biofilter and
Fig 4 for wetland; Step 5) of inflow water containing 95th percentile challenge concentrations of
target micropollutants (Table 3; Step 1) dosed into the ‘to-be-validated’ stormwater treatment
systems. A series of testings is to be conducted to cover both challenge wet (5th LDPs; Fig 2)
and dry conditions (95th LDPs; Fig 2; Step 5) to check if the treated water meets the treatment
target (Step 2). Meanwhile, removal mechanisms of target micropollutants in Step 3 should be
validated during in-situ tests (if possible) or laboratory studies. The identified potential surro-
gates (step 4) should be tested during validation monitoring to identify the most suitable surro-
gate parameters to be used in operational monitoring.

Conclusions
If stormwater is to be treated for potable uses, Water Sensitive Urban Design (WSUD) should
be used for preliminary treatment, and followed by advance treatment technologies to ensure

Fig 3. Plots of volume of water treated per area of biofilter as a function of biofilter area as percent of impervious catchment for Mediterranean
climate (Perth) at the designed hydraulic conductivity 100 mm/h and extended detention depth 200mm: a) 95th percentile volume for single events
and b) 95th percentile volume for two consecutive events. SZ: submerged zone.

doi:10.1371/journal.pone.0125979.g003

Fig 4. Plot of volume of water treated per unit area of wetland as a function of wetland area as percent of impervious catchment for: a) Brisbane
wetland at the designed hydraulic resident time (HRT = 48 h) and permanent pool depth (PPD = 250mm), and b) Melbourne wetland at the
designed hydraulic resident time (HRT = 72 h) and permanent pool depth (PPD = 250mm).

doi:10.1371/journal.pone.0125979.g004
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required water standards are met. However, WSUD systems are the crucial step in such treat-
ment trains, since they will reduce the high variability in stormwater quality and therefore en-
sure that the advance technologies perform well. One of the critical steps for using WSUD
systems for safe stormwater harvesting is treatment validation. The successful validation of
these systems will provide confidence to water regulators and the community at large, so that
the treated stormwater can go directly to drinking water supplies.

The world’s first validation framework, consisting of three stages (i.e. pre-validation, valida-
tion monitoring and operational monitoring) for WSUD systems, was proposed. This paper
focused on the pre-validation stage and developed a specific roadmap consisting of five steps
with detailed methodologies: (1) identification of target micropollutants, (2) specification of
treatment targets, (3) identification of potential removal mechanisms and influential factors,
(4) identification of potential surrogates and (5) determination of operational and challenge
conditions.

A literature search was undertaken to identify and quantify micropollutants in stormwater.
Statistical analysis revealed that challenge concentrations of 8 pesticides, benzene, benzo(a)pyr-
ene, pentachlorophenol (PCP), di-(2-ethylhexyl)-phthalate (DEHP) and total polychlorinated
biphenyls (PCBs), were above different worldwide drinking water guideline limits, and hence
set the treatment targets. Potential removal mechanisms (e.g. adsorption and biodegradation)
for different micropollutant groups, as well as potential surrogates (e.g. delta-UV and delta-
DOC), were identified through a literature review for further Validation monitoring and
Operational monitoring.

A method that utilises MUSIC is suggested in this paper as a means of determining chal-
lenge conditions of stormwater treatment systems of varying design, using historical climate
data. Results showed that 95th percentile length of dry periods was exponentially related to sys-
tem design area—as a percentage of an impervious catchment area—while the 5th percentile
length of dry periods remained within short durations (i.e. 2–8 hours). 95th percentile volume
of water treated per event was exponentially related to system design area as a percentage of an
impervious catchment area.
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