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Abstract
Individualized current-flow models are needed for precise targeting of brain structures using

transcranial electrical or magnetic stimulation (TES/TMS). The same is true for current-

source reconstruction in electroencephalography and magnetoencephalography (EEG/

MEG). The first step in generating such models is to obtain an accurate segmentation of in-

dividual head anatomy, including not only brain but also cerebrospinal fluid (CSF), skull and

soft tissues, with a field of view (FOV) that covers the whole head. Currently available auto-

mated segmentation tools only provide results for brain tissues, have a limited FOV, and do

not guarantee continuity and smoothness of tissues, which is crucially important for accu-

rate current-flow estimates. Here we present a tool that addresses these needs. It is based

on a rigorous Bayesian inference framework that combines image intensity model, anatomi-

cal prior (atlas) and morphological constraints using Markov random fields (MRF). The

method is evaluated on 20 simulated and 8 real head volumes acquired with magnetic reso-

nance imaging (MRI) at 1 mm3 resolution. We find improved surface smoothness and conti-

nuity as compared to the segmentation algorithms currently implemented in Statistical

Parametric Mapping (SPM). With this tool, accurate and morphologically correct modeling

of the whole-head anatomy for individual subjects may now be feasible on a routine basis.

Code and data are fully integrated into SPM software tool and are made publicly available.

In addition, a review on the MRI segmentation using atlas and the MRF over the last 20

years is also provided, with the general mathematical framework clearly derived.

Introduction
The increasing availability of magnetic resonance images (MR images, MRI) at 1 mm3 resolu-
tion has made it possible to build realistic high-resolution models of individual human heads.
Accurate segmentations of the whole-head anatomy are important for the “forward modeling”
of current flow in electroencephalography (EEG) and trancranial electric stimulation (TES), as
well as their magnetic equivalents—MEG and TMS [1–8]. It is becoming increasingly clear
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that individual anatomy including complete cerebrospinal fluid (CSF), skull and scalp are key
to obtain meaningful source localization in EEG and targeting of TES for individual subjects
[1, 5, 9–12].

Unfortunately, currently available segmentation tools are of limited utility for this purpose.
Statistical Parametric Mapping version 8 (SPM8, [13]) provides segmentation of the brain,
CSF, skull and scalp using the Unified Segmentation algorithm [14], but its field of view (FOV)
does not cover the whole head. FieldTrip [15] and the Brain Extraction Tool (BET, [16]) in the
FMRIB Software Library (FSL, [17]) can extract the skull and scalp surfaces, but they also only
operate on the standard FOV (the brain area only). The FMRIB Automated Segmentation Tool
(FAST, [18]) and Integrated Registration and Segmentation Tool (FIRST, [19]) are designed,
respectively, only for segmentation of brain tissues and subcortical structures. FreeSurfer [20–
23], the Expectation–Maximization Segmentation tool (EMS, [24]), the Atlas Based Classifica-
tion (ABC) and the EMSegmenter [25–27] in 3D Slicer [28], BrainSuite [29, 30], BrainVISA
Morphologist [31, 32], the CIVET segmentation [33], the Sub-Volume Probabilistic Atlases
Segmentation tool (SVPASEG, [34]), and the segmentation module in BrainVoyager [35, 36]
also only focus on brain tissues. ITK-SNAP [37] and Neuroelectromagnetic Forward Head
Modeling Toolbox (NFT, [38]) are semi-automated tools since they need user-specified seed
point(s) to start. Commercial software tools, such as ASA (ANT Software B.V., Enschede,
Netherlands), Curry (Compumedics NeuroScan, Charlotte, NC), BESA (BESA GmbH, Gräfelf-
ing, Germany) and ScanIP (Simpleware Ltd, Exeter, UK), either are semi-automated or cannot
generate (accurate) segmentation for CSF.

Therefore, researchers have attempted several workarounds for the segmentation of the
whole head for electromagnetic forward modeling, e.g., combination of different segmentation
tools [2, 39], use of computed tomography (CT) images for skull segmentation [40], simple
heuristics using thresholding and morphological operations [10, 38], addition of dummy
model for the lower head and/or the neck [3], or manual segmentation [1]. In short, these ap-
proaches are either too specific, heuristic, or not fully automated for segmenting out CSF, skull,
scalp and air cavities. In our view, the simplest way to adapt current automated segmentation
tools for this purpose is to extend the atlas representing anatomical prior information to in-
clude those non-brain tissues and cover the whole head. This is implemented in SPM8 or in
[41]. However, the resulting segmentations still have morphological errors (gray matter, CSF
and skull layers are fragmented and some tissue voxels erroneously fall inside other tissues)
and the tissue boundaries are unnecessarily rough making subsequent meshing and forward
modeling intractable. An automated post-processing routine based on morphological and
Boolean operations is proposed in [41], but the technique is ad hoc with arbitrary parameters.
Since the morphological constraints can be easily encoded by Markov random field (MRF, [42,
43]), here in this work we further improve the method in [41] by combining the atlas with an
MRF prior.

The goal of this work is to develop an open-source, fully automated segmentation tool for
the purpose of forward modeling. It can separate the whole head into gray matter (GM), white
matter (WM), CSF, skull, scalp and air cavities. The method combines the atlas and the MRF
prior with a finite mixture (FM) model [44, 45] of image intensities into a single rigorous
Bayesian framework. A variational expectation–maximization (EM) algorithm is used with an
asynchronous updating scheme that guarantees convergence [46]. We extend the Potts model
[47] such that its interaction energy encodes all possible combinations of neighboring tissue
types to express strict anatomical constraints. The core algorithm is implemented in the C pro-
graming language and integrated into SPM8, where the image registration and bias-field
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correction are solved using Unified Segmentation [14]. Evaluation is performed on both simu-
lated and real MR images. When comparing to the segmentation tools that are already part of
SPM8, we find smoother and less fragmented tissue segmentations without compromising ac-
curacy. As another contribution, this paper summarizes the research on MRI segmentation
using atlas and the MRF over the last two decades and presents the general framework with
clear mathematical derivations.

Methods
This section only gives an overview of the segmentation algorithm. For detailed mathematical
derivations, the readers are referred to the Appendix, which carefully describes the probabilistic
formalism and derives equations that combine spatial and morphological priors.

The probabilistic approach to automated segmentation aims to fit an FMmodel [45] to the
MR image(s) such that the likelihood of observing the image(s) is maximized. This maximum
likelihood (ML) estimation is usually implemented by the EM algorithm [48, 49]. When mor-
phological constraints are incorporated as MRF prior to probability model, an extension of ML
known as variational EM (VEM) [46, 50, 51] is used. It iterates between estimating the tissue
probability for each voxel (E-step) and updating the model parameters (M-step). The iterative
update equation for the E-step is given by

qðxiÞ ¼
Pðyijxi; θÞ exp
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Here xi is a label indicating the tissue class at voxel i. For mathematical convenience it is ex-
pressed as a K-dimensional unit vector with zeros for all K tissues, except for the tissue present
in that voxel. Eq (1) iterates q(xi), which quantifies the estimated probability of finding label xi.
After convergence of this iteration, the estimated probability gives the desired segmentation.
Variable yi represents the image intensity in voxel i (or several intensities in case of multi-
image segmentation) and P(yi|xi, θ) is the probability of finding this intensity for a given tissue
class. As in many other segmentation algorithms, this probability is assumed to be a Gaussian
and its parameters θ are adjusted to the image during the segmentation process in the M-step
(Eq. 3) of the EM algorithm.Ni is the set of neighbors of voxel i. In this work, we consider only
the 6 immediate face-connected neighbors in 3D space. The two terms in the exponential come
from the prior model, with matrix Jij representing the MRF interaction between neigboring
voxels and vector hi representing the effect of the atlas on single voxels. β is a weighting con-
stant that adjusts the relative contribution of these two terms and will be tuned using training
data (see Evaluation). The quadratic term here can be seen as an extension to the traditional
Potts model [47], whose neighboring interaction coefficients Jij are given by the
identity matrix.

Our implementation distinguishes between tissue class xi and tissue type �xi to allow for sev-
eral classes to belong to the same tissue (e.g. skull bone encompasses cortical and cancellous
bone, each with different image intensities). This results in an FMmodel for each tissue type,
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which is used in many segmentation algorithms [14, 44, 49]. The complete E-step then follows

qðxi; �xiÞ ¼
gx�xPðyijxi; θÞ exp
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qð�x iÞ ¼
X
xi

qðxi; �x iÞ: ð2bÞ

Here we are interested in the probability of tissue type, i.e., qð�x iÞ, since we aim to segment out
six tissue types: GM, WM, CSF, skull, scalp and air. The parameters gx�x are equivalent to the
conventional “mixing proportion”. More strictly, they represent the conditional probability of
a class belonging to a specific tissue type Pðxij�x iÞ (see Appendix B.8). These parameters will
also be adjusted to the image in the M-step. The complete M-step update equations including
the update for the mean, covariance and mixing proportion of the Gaussian FMmodel are
given by

μx ¼

XN
i¼1

qðxi ¼ xÞyi

XN
i¼1

qðxi ¼ xÞ
; ð3aÞ
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: ð3cÞ

Here xi = x is equivalent to xi = x, representing the tissue class at voxel i (see Appendix B.1).
The parameters quantifying morphological and spatial priors, Jij and hi, respectively, can be

obtained from prior data. Suppose we have a dataset of validated segmentations for a group of
subjects, and these truth data are spatially normalized, then we can easily get

Cij ¼ hxix
T
j i; ð4aÞ

mi ¼ hxii; ð4bÞ

where h. . .i refers to the sample average over the subjects, and j 2Ni. Thismi gives the prior
probability of observing a specific tissue type at voxel i and is usually referred as “atlas”, or “tis-
sue probability map (TPM)”. Cij describes the joint probability of co-occurrence of tissues in
neighboring voxels i and j, and will be referred as “tissue correlation map (TCM)” in the sequel.
It is not trivial to compute Jij and hi from Cij andmi. In this work we will use the solution for
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the most simple case of two sites, N = 2 (see Appendix C). Up to a scalar that can be captured
by parameter β it is given by

Jij ¼ log ½Cij � diag�1ðmjÞ�; ð5aÞ

hi ¼ logmi: ð5bÞ

Note that the mean valuemi is simply the sample estimate of P(xi) and the correlation Cij is the
sample estimate of P(xi, xj). Consequently, Cij � diag−1(mj) is the sample estimate of the condi-
tional P(xijxj) and is column-normalized.

Since the TCM Cij is dependent on locations, it may not be practical. First, this local TCM
simply requires too much memory (for a typical 200×200×200-site lattice, each site having a
6×6 matrix with one of its 6 neighbors, that is 2003 × 63 × 4bytes� 6.4GB under 32-bit preci-
sion). Second, unless the database to compute the local TCM is very large, the values will be
poorly estimated. Therefore, we propose a simplified TCM that is independent of locations
with Cij = C. Furthermore, since we have prior knowledge from neuroanatomy that some com-
binations of tissue neigboring are not possible (e.g., WM cannot be neighbor of scalp), we can
directly set the corresponding element in C to 0. Motivated by the solution for 2 sites, we will
also require C to be column-normalized and symmetric. Therefore,

C ¼

GM WM CSF skull scalp air
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d1 C1 C2 0 0 0

C1 d2 C3 0 0 0
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0 0 0 C7 C8 d6

2
666666666666666666666664

3
777777777777777777777775

:
ð6Þ

Each row in C represents the possible tissue type that voxel imay belong to, given that its
neighbor j is one of the six types indicated by the columns of C. Each of the diagonal elements
d1, d2, . . ., d6 is simply 1 minus the sum of other elements in the corresponding column since C
is column-normalized. Then there are only 8 free parameters C1, C2, . . ., C8 (each one between
0 and 1) to be learned from the prior data (see Evaluation for details). This C will be referred as
global TCM.

A global C is a practical solution to the difficulties of estimating and storing a local TCM,
yet it does lose some of the available prior information. For instance, in boundary regions
where different tissue types are likely to co-occur, the values of C should be quite different
from those well inside a tissue (e.g., within scalp, or the air outside of head) where co-occur-
rence of different tissues is all but impossible. For these interior region the identity matrix, C =
I, used in the conventional Potts model [47], is more appropriate as it favors only neighbors
with the same class label. On the boundary, however, co-occurrence of different tissues is likely
and thus a more general C is needed. To balance between the encoding of this locality
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information and the potentially huge memory consumption, we propose a simple variant of
global TCM, called regional TCM, which is simply an identity matrix I inside a specific tissue,
and the same as global TCM elsewhere. To define the inside-tissue regions, we use the TPM as
a reference. For each tissue type, those voxels that have a probability higher than 0.95 in the
TPM are treated as the area inside that tissue. In short,

Cregional ¼

I; voxel i with ðmiÞx > 0:95;

8x 2 f1; 2; � � � ;Kg

Cglobal; other voxels:

ð7Þ

8>>><
>>>:

Note that for global and regional TCM, Eq 5a simply changes to J = logC.

Implementation
The proposed segmentation algorithm is implemented based on the Unified Segmentation al-
gorithm of SPM8 [13]. SPM8 is a software package for Matlab (R2010b, MathWorks, Natick,
MA) that is freely available and widely used to analyze brain signals. It implements an extended
version of the Unified Segmentation (eUS) algorithm [14], which performs bias-field correc-
tion and registration with the atlas as part of the segmentation process. The actual Matlab func-
tion for this—“spm_preproc8.m”—is referred to as “New Segment” in the SPM8 manual. It is
an extended implementation of Unified Segmentation allowing the use of multimodal data,
and a different treatment of the mixing proportions γ that is in agreement with the present
paper. We leverage this capability by initializing the segmentation algorithm with eUS. There-
fore, the value of yi is the intensity after the optimal bias-field correction, and the voxel loca-
tions i of the prior parameters hi and Jij have been optimally registered to the MRI that is to be
segmented, and the initial values of posteriors qðxi; �xiÞ and the Gaussian FMmodel parameters
μx, Sx, gx�x are all initialized by the result of eUS. Note the local TCM is registered to the MRI
using the same algorithm applied by the eUS for TPM registration. This step is used in general
but was omitted in the evaluation of the simulated data from BrainWeb (see Evaluation),
which is already aligned to the TPM/TCM. The implementation is published as a freely avail-
able add-on to SPM8, named Morphologically and Anatomically accuRate Segmentation
(MARS, available to download at http://neuralengr.com/mars/, the TPM and TCM used for
evaluation in this work are also available there). The user can configure all the options (image
data, TPM, TCM, running mode, etc.) in a similar batch editor as that in the eUS. The evalua-
tion of this algorithm is based on six-class segmentation. However, the implementation allows
any number of classes provided by the corresponding TPM and TCM. In fact, the user can
specify any custom TPM/TCM in MARS. With different running modes, the user can select
running the original eUS, the eUS with a subsequent MRF-based clean-up (disabled by default
in the latest update of SPM8, but can be enabled to a specific level by the user), or eUS followed
by the present algorithm.

The E-step (Eq 2a) is implemented in the C programing language for speed and is integrated
with Matlab. Each voxel is accessed and updated sequentially in a checkerboard manner. As
shown by [46], this sequential (or asynchronous) updating scheme guarantees both theoretical
and practical convergence, i.e., the free energy of the system will monotonically decrease to a fi-
nite value, which is not guaranteed using parallel (or synchronous) updating. A similar conver-
gence criterion is employed as the one in [46], i.e., the maximal relative change of tissue
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volumes between consecutive iterations

ε ¼ max
x

jLðtÞx � Lðt�1Þx j
Lðt�1Þx

; ð8Þ

where t is the iteration number, and Lx is the volume of the xth tissue class, defined by

Lx ¼
PN
i¼1

qðxi ¼ xÞ. Convergence is declared once ε falls below 0.01%. The M-step (Eqs 3a, 3b

and 3c) has a same form as that in [14]. Therefore, the same Matlab code is used as the imple-
mentation for M-step (mixture coefficient Eq 3c is different from that in [14], but “spm_pre-
proc8.m” actually implements Eq 3c in this paper).

The total time needed to run the algorithm on a typical T1-weighted MRI of size
256×256×181 and 1 mm3 resolution is about 60–75 min, in which 10–15 min is consumed by
the initialization with eUS. The peak memory load is approximately 50 GB when using local
TCM and 2 GB for the global TCM. Note all processing time and memory usages in this work
were measured on a machine with a 6-core Intel Xeon E5645 CPU at 2.4 GHz, and 96 GB
physical memory.

Evaluation

Datasets
Dataset I consists of 20-subject simulated MRIs from BrainWeb (http://brainweb.bic.mni.
mcgill.ca/brainweb/, [52]). They are T1-weighted images with 256×256×181 matrix and isotro-
pic 1 mm3 voxel size, and simulated for normal brains under a spoiled FLASH sequence with
TR = 22 ms, TE = 9.2 ms and 30° flip angle.

Dataset II includes previously published MRI data from three adult male individuals [5], ob-
tained with permission of the authors (Marom Bikson: bikson@ccny.cuny.edu). Head 1 and 2
were scanned on a 3T Siemens Trio scanner (Erlangen, Germany). The T1-weighted images
were collected using a gradient echo (GRE) sequence with TE = 4.2 ms, TR = 2250 ms,
256×256×176 matrix for Head 1, and with TE = 2.3ms, TR = 1900 ms, 280×320×208 matrix
for Head 2. Head 3 was scanned on a 3T General Electric Signa Excite HD scanner (Fairfield,
CT). The T1-weighted images were acquired using a GRE sequence with TE = 2.2 ms, TR = 7.3
ms, 256×256×252 matrix. All images have an isotropic resolution of 1 mm3. Dataset III consists
of five averaged adult heads from the Neurodevelopmental MRI Database, see [53, 54] for de-
tailed parameters on image acquisition. It was obtained online at http://jerlab.psych.sc.edu/
NeurodevelopmentalMRIDatabase/ with permission of John Richards. All human MRIs were
obtained as de-identified data and had been collected for previous studies [5, 53, 54].

Learning of prior model
Dataset I. BrainWeb also provides for each of the 20 subjects with the hard segmentation,

i.e., each voxel is assigned exclusively to one tissue class. The detailed 12-class hard segmenta-
tion was reduced to 6 classes by combining similar tissues together (e.g., fat and muscle inte-
grated with skin). These segmentation ground truth are registered into the same dimension as
the MRI scans. Small obvious errors in these hard segmentations were corrected manually in
the commercial software ScanIP (version 4.2). The algorithm was evaluated on this dataset
using the leave-one-out scheme. At the evaluation for each subject, the hard segmentations
from other 19 subjects were used as the prior data to generate the local TCM and TPM using
Eqs 4a and 4b, respectively, and then the energy terms were calculated by Eqs 5a and 5b. The
MRF weighting constant β was tuned using the first subject by running the algorithm for
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different β and selecting the value with the smallest difference (least-square sense) from the
known hard segmentation. The optimal value, β = 0.1, was then used for all the evaluations
using the local TCM. As to the global TCM, it was learned also using the first subject. A general
purpose optimization algorithm (Pattern Search [55], available in Matlab) was used to find the
C in Eq 6 that gives the segmentation results closest to the true hard segmentations in a least-
square sense. Reasonable C was obtained after 1000 computations of the objective function
(the mean square error between generated segmentations and true segmentations), which took
approximately 6 days when utilizing the parallel computing ability of Matlab. The resulting C
was then used for the evaluation of the algorithm on the other 19 subjects.

Dataset II and III. The images in Dataset II were first automatically segmented by the
eUS, binarized and then manually improved in ScanIP and used as ground truth. As to Dataset
III, it provides the truth data with 10-class labeling, which was reduced to 6 classes by combin-
ing similar tissues. Since the number of subjects is limited, the local TCM and TPM cannot be
generated from the true segmentation, we only evaluated the algorithm on the global TCM and
used the TPM from our previous work (see [41], the TPM developed by Dr. C. Rorden). The
global TCM C was learned using Head 1 in Dataset II by the same procedure as adopted in
Dataset I, and then used for the evaluation on the other 7 real MRI volumes. Table 1 shows the
learned parameters in the global TCMmatrix as in Eq 6.

For the three datasets, the regional TCM was obtained following Eq 7.

Evaluation metrics
Once the prior model is learned, the algorithm iterates between E-step (Eq. 2) and M-step
(Eq. 3) until convergence. The continuous-valued posterior probabilities at convergence are
the resulting segmentation and its accuracy was assessed by the fuzzy Dice coefficient [46, 56].
For the xth class, it is given by

fDx ¼
2
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxi ¼ xÞqðxi ¼ xÞ

p
XN
i¼1
½pðxi ¼ xÞ þ qðxi ¼ xÞ�

; ð9Þ

where q(xi = x) is the posterior probability for each tissue on each voxel computed from the al-
gorithm, and p(xi = x) is the ground truth. For Dataset I, the soft tissue segmentation for each
head was downloaded from BrainWeb and used as ground truth to calculate the fuzzy Dice.
The detailed 12-class soft segmentation was reduced to 6 classes by combining similar tissue to-
gether, and these ground truth are registered into the same dimension as the MR images. For
Datasets II and III, since the non-binary ground truth is not available, the fuzzy Dice was com-
puted using the binary truth. The fuzzy Dice coefficient measures the overlap between the two
probability maps, and a value close to 1 indicates more overlap and thus higher performance of
the algorithm, while a value close to 0 denotes bad performance.

Table 1. The optimal values for the parameters in Eq 6, learned from prior data.

C1 C2 C3 C4 C5 C6 C7 C8

Simulated dataset 0.31 0.27 0.21 0.16 0.02 0.26 0.17 0.24

Real data 0.40 0.20 0.21 0.10 0.001 0.29 0.05 0.30

doi:10.1371/journal.pone.0125477.t001
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In most, if not all segmentation problems in medical imaging, there is a trade-off between
accuracy and smoothness of the segmented surfaces [57]. In our case smoothness is important
in order to generate efficient 3D mesh model of the anatomy after segmentation [41]. There-
fore the smoothness of the segmentation results was also evaluated. Gaussian curvature, denote
as KG, was used to describe the smoothness of each generated tissue segmentation from the al-
gorithm. Since KG can be either positive or negative depending on the convexity of the surface
of the segmentation, an appropriate measure of smoothness can be obtained by taking square
of KG at each point and integrating over the entire surface, i.e.,

sKG ¼
Z Z

S

K2
Gds; ð10Þ

where S is the tissue surface, approximated by the edge of the segmentation extracted by the
Matlab edge detection function. This integral is implemented as a sum of the squared Gaussian
curvature across all the voxels on the extracted edge. Gaussian curvature KG can be obtained
from the partial derivatives of the surface S [58], which are approximated by the central differ-
ences method [59]. sKG was computed for each generated tissue segmentation, with a smaller
value indicating a more smooth segmentation result.

Another useful figure of merit is the porosity of laminar structures such as CSF and skull
which are expected to be continuous without any “holes” [41]. To quantify how many holes are
there on the surface CSF generated from the segmentation algorithm, we performed a morpho-
logical close operation on the CSF and compared how many voxels are changed before and
after this operation. More formally, the porosity of the surface CSF was evaluated by

� ¼ jðI � BÞ⊻ IjjIj ; ð11Þ

where I is the segmented CSF image from the algorithm, B is the structure element, • denotes
the close operation and ⊻means exclusive or. Since I is non-binary, B is constructed as a non-
flat cubic structure element, with a Gaussian height with mean of 0 and standard deviation of
1, and the ⊻ operation is conducted in a more general sense, i.e., it returns 0 only when the in-
tensities on a specific voxel are exactly the same before and after the close operation. B is set as
11 × 11 × 11 mm3 based on visually checking the size of the holes. Therefore, Eq 11 measures
the porosity of the surface CSF in terms of the ratio of the amount of changed voxels due to the
close operation compared to the total number of voxels in the CSF image. This porosity will
tend to be higher if there are many holes on the CSF surface and lower if the CSF is continuous.
Eq 11 was also used to measure the porosity of the skull.

Results
The proposed algorithm was evaluated on both simulated and real MRI data. For each subject
in the simulated data (Dataset I), we compared the performance of the proposed algorithm
(with three types of TCM: global, local, regional) to the performance of the eUS in SPM8, and
the eUS with an MRF-based clean-up provided by SPM8. For the real data (Datasets II and
III), same evaluations were conducted except for the local TCM due to limited prior data. As
two examples, Figs 1 and 2 exhibit the 3D renderings of the segmentation results from different
methods and for different tissue types. Fig 1 is the results of Subject 3 in Dataset I, and Fig 2 is
of Head 3 in Dataset II. The tissue segmentations appear similar across different methods in
Fig 1. However, the proposed algorithm improves on smoothness (as indicated by those red
circles), especially for CSF and skull. The local TCM is able to remove isolated voxels (indicated
by the red squares) due to its detailed location-specific neighborhood constraints. The
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difference among methods are more obvious in the real MRI (Fig 2), where the proposed algo-
rithm significantly improves smoothness. This head is a good example as the original MRI con-
tains some artifacts in the air outside of the head, leading to large clusters of disconnected
voxels in the CSF and skull when using eUS. This segmentation error is removed by the global
TCM in CSF, because CSF and air cannot be co-located, as dictated by the 0 probability of
CSF–air in the global TCM (Eq 6). However, the probabilities of skull–air and scalp–air are not
zero in Eq 6, leading to enhancement of this error in the skull and scalp. In fact, the skull can
be adjacent with the inner air (air cavities) but not the air outside of the head, and the scalp
only touches outside air at the scalp surface. Fortunately, the regional TCM encodes this local
property of neighborhood information and removes these errors. Another important improve-
ment is the continuity of CSF, which is crucial in applications involving current flow [41]. Fig 3
shows that the proposed algorithm fixes the discontinuity problem in the CSF generated by
eUS, which cannot be corrected by the MRF clean-up. As a matter of fact, the global TCM (Eq
6) guarantees that the CSF is continuous after segmentation, as indicated by the 0 probability
of GM–skull.

Fig 1. The 3D renderings of the results using different methods on Subject 3 in Dataset I. From the first row to the last row: GM, WM, CSF, skull and
scalp. The first column is the results by eUS, the second column is after the MRF-based clean-up, and the third to the last columns are from the proposed
algorithm using different TCMs (global, local, regional). Red circles/squares highlight the areas where improvements can be observed.

doi:10.1371/journal.pone.0125477.g001
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Fig 2. The 3D renderings of the results using different methods on Head 3 in Dataset II. From the first row to the last row: GM, WM, CSF, skull and
scalp. The first column is the results by eUS, the second column is after the MRF-based clean-up, and the third and fourth column corresponds to the
proposed algorithm using different TCMs (global, regional).

doi:10.1371/journal.pone.0125477.g002
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The quantitative assessment of the results is shown in Fig 4. The fuzzy Dice coefficient fD,
the total squared Gaussian curvature sKG, and the porosity ϕ averaged across subjects for dif-
ferent tissues and methods are plotted in the first, second and third row, respectively. The three
columns correspond to Dataset I, II and III, respectively. The red error bars indicate the stan-
dard deviations of the results across different subjects. Note that since the first subject in Data-
sets I and II was used for parameter learning (see Evaluation), it is thus excluded in the first
two columns in Fig 4. The accuracy of each method seems almost the same in the figure (panels
(a), (b), (c)), while the smoothness of the segmentation appears improved by the proposed al-
gorithm (panels (d), (e), (f)). A two-way (tissue, method) repeated measures analysis of vari-
ance (ANOVA) was conducted on the accuracy and smoothness of Dataset I. Results show that
different methods do not significantly change the accuracy (F(4, 72) = 0.55, p = 0.70) but do
have significant effect on the smoothness (F(4, 72) = 1484.83, p = 0). Furthermore, a pairwise t-
test was conducted between different methods on the tissue-averaged values of sKG. Results
show that global, local and regional TCM all significantly improve the smoothness of the seg-
mentation results (p< 0.001, see inset of panel (d)). It is obvious that the proposed algorithm
gives lower porosity for CSF and skull as compared to the methods in SPM8 (panels (g), (h),
(i)). For the porosity results in Dataset I, a one-way (method) repeated measures ANOVA
shows that there is significant difference (CSF: F(4, 72) = 494.57, p = 0, skull: F(4, 72) = 380.93,

Fig 3. Axial slices of the CSF generated by different methods. The first and second row corresponds to Subject 3 in Dataset I and Head 3 in Dataset II,
respectively. Red circles indicate the discontinuities from eUS, which cannot be removed by applying the MRF-based clean-up but can be fixed by the TCM
(global, local, or regional).

doi:10.1371/journal.pone.0125477.g003
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p = 0). The pairwise t-test indicates that our algorithm (global, local and regional) significantly
reduces the porosity of the CSF and the skull (p< 0.001), compared to those obtained from
SPM8 (eUS and eUS with MRF clean-up). See panel (g). For Datasets II and III, no statistical
testing was conducted due to limited number of subjects.

We also note that the accuracy for Dataset III is generally lower than that of Dataset I or II.
It is mainly because the quality of the truth data provided by Dataset III is lower compared to
the ground truth we manually improved in Datasets I and II. For example, Fig 5 shows the
truth images of Head 3 in Dataset II and Head 1 in Dataset III in the first two rows, respective-
ly. It is obvious that the latter has lower quality, as shown in the noisy GM slice, discontinuous
CSF surface, and incomplete skull volume. Qualitatively speaking, the results from the pro-
posed algorithm using global TCM on this head are more accurate and realistic than its truth
data, as shown in the third row of Fig 5. However, we admit that although the ground truth in
Dataset II is obtained by manual improvement, it is by no means a gold standard. In fact, it has
the same origin as the automated results, i.e., initially generated by the eUS in SPM8. Therefore,
it is in some sense biased. Nevertheless, the main argument here is that based on the same
truth, the accuracy is not significantly altered by different methods in Dataset I, and meanwhile
the proposed algorithm can achieve better smoothness and lower porosity of the segmentation.

Fig 4. The accuracy, smoothness and porosity of the segmentation results averaged across subjects for Dataset I (Subject 2–20, left column),
Dataset II (Head 2 and 3, middle column), and Dataset III (Head 1–5, right column). The red error bars indicate standard deviations across subjects. The
inset in (d) shows tissue-averaged quantities. All the colors refer to the legend in (i). (***: significant with p < 0.001)

doi:10.1371/journal.pone.0125477.g004
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Fig 5. The truth data of Head 3 in Dataset II (first row) and Head 1 in Dataset III (second row). As a comparison, the third row shows the results from the
proposed algorithm using global TCM on Head 1 in Dataset III. The columns correspond to axial slices of GM, 3D rederings of the CSF and
skull, respectively.

doi:10.1371/journal.pone.0125477.g005
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Discussion
Automated MRI segmentation combining a probabilistic model for image intensity with an
atlas and MRF regularization was first proposed in the late 1990s [24, 26], with implementa-
tions in many neuroimaging software tools, such as EMS [24], ABC and EMSegmenter [25–27]
in 3D Slicer, FAST [18], Freesurfer volumetric approach [22, 23], the SVPASEG [34], and
Atropos [60]. Unfortunately these tools only focus on brain tissues. Moreover, Freesurfer volu-
metric approach only present a heuristic derivation for its update equations, and does not in-
clude any EM iteration (the Gaussian parameters are obtained from prior data and never
updated). This limits its use to imaging modalities (and scanning parameters) for which cali-
bration data is available. In contrast, the EM algorithm used here estimates the intensity pa-
rameters and can thus be applied to arbitrary image modalities (T1, T2, FLAIR, CT, etc.)
without concern for historical data or even calibration and image intensity artifacts. The algo-
rithm implemented in the Atropos software is conceptually similar to the present work. It is an
open-source segmentation tool that combines user-defined atlas, MRF prior and image model
into the EM iterations. In the present work we have focused in addition on smoothness and po-
rosity of the resulting segmentations, which is crucially important for current-flow modeling
or lead-field calculations.

This paper summarizes the framework of probabilistic automated MRI segmentation devel-
oped over the last two decades and presents it with a systematic mathematical derivation (see
Appendix). When applied to the FM model with an atlas as prior one obtains the update equa-
tions used in SPM8 (“New Segment” function). When including in addition an MRF as part of
the EM update we obtain the algorithm of [24]. To our knowledge the present paper provides
the first systematic and complete derivations of these update equations.

The present paper proposes an extension to the conventional energy function of the MRF,
namely, an extended Potts model that is consistent with the maximum entropy prior that spec-
ifies mean and covariance on historical data. The method is implemented using an updating
scheme that guarantees convergence, and is integrated into SPM8 where the bias field correc-
tion and image registration are handled by the “New Segment” function. Both simulated and
real MRI data are used to evaluate the algorithm. The proposed method is shown to successful-
ly improve the smoothness and porosity without compromising accuracy. More importantly,
since the implementation can segment out 6 tissues including CSF, skull, scalp and air in an
FOV covering the whole head, it can be used for forward modeling for TES/TMS/EEG/MEG.

Smooth segmentations and a CSF without any discontinuity are crucial for current-flow
modeling, in particular modeling of TES [41]. Previously, we achieved this by using morpho-
logical and Boolean operations as a post-processing step to the segmentation results [41]. Such
heuristic algorithms have a number of parameters that have to be selected judiciously. In this
work, we prevent ad hoc procedures with arbitrary parameters by incorporating spatial priors
in the TCM (see Eq 6), which regularizes the segmentation at each iteration. Importantly, by
combining morphological priors into the segmentation algorithm, spatial considerations can
be taken into account while at the same time respecting the intensity information. Post-pro-
cessing operations in contrast typically smooth the segmentation results while entirely ignoring
the original image(s). The proposed algorithm can generate tissue segmentations with signifi-
cantly lower porosity compared to those from SPM8. Therefore, the results from this algorithm
can be used for TES modeling directly without any need of automated clean-up or
manual correction.

We would like to point out some differences in the use of the mixing proportion variable γ
in this work and that of [14]. By enforcing normalization of the mixing proportions gx�x for
each tissue type �x , we are biasing the segmentation to match the relative volume fractions of
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the TPM. This bias may introduce errors. In stroke or geriatric populations, for instance, sub-
jects present typically with substantially larger CSF fraction. Enforcing tissue volume fraction
of the normal TPMmay not be desired in these populations. In such a case, the approach as in
Eq. 27 in [14] may be preferable to our Eq 3c. [14] introduces an additional free parameter
(also denoted as γ in [14], but with different meaning) to globally rescale and re-normalize the
atlas, thus accounting for variation of tissue volumes fractions in different individuals. Interest-
ingly, SPM8 implements Eq 3c and only SPM12 implements as originally proposed in [14]. In
order to stay within a strict probabilistic model yet account for different volume fractions, we
propose instead to construct an atlas that matches the target population.

Except for SPM8, we did not compare our algorithm with the other software tools men-
tioned above, simply because they cannot generate segmentations for non-brain tissues in an
FOV covering the whole head. For this comparison, we would need to extend the FOV and tis-
sue types for all the candidate tools, which is beyond the scope of this work. Similarly, except
BrainWeb, we did not use other public datasets that are commonly adopted for evaluations in
the neuroimaging community (e.g., IBSR, LPBA40 [61], segmentation validation engine [62]),
because these datasets do not provide ground truth for non-brain tissues. We did however pro-
vide results for 8 subjects with non-brain ground truth (3 from our lab and 5 from the Neuro-
developmental MRI Database of John Richards).

Since the TPM provides the anatomical information, and the TCM gives the neighborhood
constraints, the accuracy of this algorithm is strongly dependent on the quality of the two
maps. For reliable estimates, the size of the dataset used to generate these maps may be impor-
tant, in particular for the TCM. In this work, only 19 subjects are available, which is small com-
pared to the 36 × 6 parameters in Cij that are to be estimated for each location (6 stands for 6
face-connected neighbors). Additionally, the exact calculation of the MRF parameters Jij, hi
from the observed correlations Cij and meansmi is an open problem. The analytic solution for
the trivial 2-site lattice which we used here likely overestimates the strength of interaction (as it
ignores the indirect influence of distant neighbors and loops) and thus we had to adjust it by
tuning parameter β. The correct solutions should be obtained from solving Eq 6, which is
known as the “inverse Ising problem” in statistical physics. Exact solutions are known for de-
pendencies with an acyclic graph structure (e.g., tree structure, [63]), and approximate analyti-
cal solution for network with loops (e.g., regular lattice, [64]). However, these solutions are
only available for 2-state variables of the Ising model, where Jij and hi are only scalars. In this
work, we are dealing with a K-state variable xi, for which theoretical solutions are not yet avail-
able. Thus we have taken a pragmatic approach and have made the parameter J independent of
locations ij and tuned it so that we obtain the best possible segmentations on known data. Fi-
nally note that the VEM algorithm we used here to compute approximate posterior probabili-
ties may find improvements with newer techniques for computing probabilities in networks
with loops such as “loopy belief propagation” and “tree-reweighted message passing” [65].

Appendix
The probabilistic formalism for image segmentation has a long history starting in the 1980s, if
not earlier, and encompasses efforts to include spatial priors through an atlas as well as mor-
phological priors using MRF. Parameters of the models are adjusted to the images using the
EM algorithms and variations thereof. The earliest work we found on combining morphologi-
cal and spatial priors in this formalism are [24, 26]. The goal of this appendix is to summarize
this body of work with a consistent notation and provide a complete derivation of the EM up-
date equations, which we have not been able to find elsewhere in the literature. This appendix
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starts with a review of work in this field, introduces notation and formalism, derives the EM
update equations, and discusses a few novel choices of our implementation.

A Review of probabilistic model for image segmentation
Probabilistic inference techniques have been developed for MRI brain segmentation over the
years (e.g., [14, 18, 24, 25, 34, 49, 60]). The key idea is to establish a probabilistic model of the
image intensity distribution using a finite mixture (FM) model [45]. Automated segmentation
is then a process of fitting the FMmodel to maximize the likelihood of observing the MR
image(s). Since the true tissue types of voxels are unknown (“missing data”), this maximum
likelihood (ML) estimation is usually implemented by the expectation–maximization (EM) al-
gorithm [48]. Early work dates back to [49] and was reviewed in [44]. In [25] the EM algorithm
is also used to correct intensity inhomogeneities and segment the MRI iteratively, which was
later implemented as the EMSegmenter. However, such FMmodels only use intensity and ig-
nore available spatial contextual information, as pointed out by [18]. Two approaches have
been independently pursued to incorporate prior knowledges into the ML estimation process.

The first type of prior model is a brain atlas, which quantifies for each voxel location the
prior likelihood of observing a given tissue type. It is built by registering many MRI volumes
into a common standard space, assigning a specific tissue type to each voxel and then averaging
across these volumes [66, 67]. Such an atlas is also known as tissue probability map (TPM) as it
quantifies the anatomical prior probability irrespective of the observed intensity in a given
image. Since the atlas is in a standard space, image registration is required in order to map the
atlas onto the image that is to be segmented. Yet, mapping the image requires an estimate of
what tissue is contained in each voxel, i.e. an estimated segmentation. An integrative approach
to resolve this interdependence is the Unified Segmentation algorithm [14], which is now pub-
licly available in the Statistical Parametric Mapping 8 (SPM8) software [13]. It combines regis-
tration, segmentation as well as bias-field correction into a single optimization problem (bias-
field correction compensates for intensity inhomogeneities often observed in MRI). A similar
approach is taken in [68] and [27] where the EM algorithm is used to optimize segmentation
and registration parameters simultaneously, and registration is achieved in a hierarchical man-
ner such that detailed anatomical structures can be recursively differentiated. An implementa-
tion of this method is made into the EMSegmenter in 3D Slicer [28].

The second type of prior knowledge that has been leveraged for segmentation is neighbor-
hood relationships (e.g., not all tissue types can be adjacent to each other). These relationships
have been quantified using a Markov random field (MRF), which assigns an “energy” to combi-
nations of neighboring tissue types [42, 43]. Such an energy effectively provides (prior) proba-
bilities making some combinations highly likely (low energy) and others very unlikely (high
energy), irrespective of image intensity. MRF has been widely used to regularize the segmenta-
tion to ensure spatial consistency [18, 24, 26, 34, 60, 69–72]. Unfortunately, computing posteri-
or probabilities exactly becomes intractable once the spatial dependencies are introduced into
the prior probabilities with an MRF. Researchers have proposed a variety of solutions to this
problem. Monte Carlo simulation by drawing samples from the MRF [73, 74] is a classical nu-
merical technique to approximate the posterior probability of the voxel label, but it is not com-
putationally efficient. Another classical approach, based on the mean-field theory, is to
approximate the influence of the neighbors onto a voxel using their mean influence. The poste-
rior distribution of voxel labels can then be approximated by the product of voxelwise margin-
als [75]. This has been successfully applied to MRI segmentation [24, 70, 74]. A variant of
mean-field approximation is proposed by [18], where a voxel is affected by the most probable
label of each of its neighbors (the pseudo-likelihood maximization as in [47]). This has been
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used in many segmentation tools incorporating the MRF, such as the FMRIB Automated Seg-
mentation Tool (FAST) in FSL [17], the CIVET segmentation [33], and Atropos [60]. Recently,
[46] pointed out that both [75] and [18] adopt a synchronous updating scheme which is not
guaranteed to converge. If instead voxels are updated sequentially (asynchronous update), con-
vergence of the approximated EM in [75] and [18] is guaranteed. Finally, we note that the in-
teraction energy used in most MRF are based on the Potts model [47] which cannot express
constraints for all possible combinations of neighboring tissue types.

These two types of priors have also been combined into a single inference framework and
implemented in a number of software tools (see Discussion in the main text). However, there is
no publication that summarizes the complete formalism with a consistent notation. This is the
goal of the next few sections.

B Derivation of the variational EM formalism
We start this section by introducing notation, and then we provide an outline of the estimation
process. We will review the ML optimization scheme which is applicable when only an atlas is
used as prior. To incorporate neighborhood priors we will need an extension of ML known as
variational EM (VEM). Then we present the probabilistic model for image intensity and prior
probabilities. With these we can then derive the entire estimation algorithm.

B.1 Notation
Consider an isotropic three-dimensional regular lattice system I with N sites which are indexed
by i 2 {1, . . ., N}. An observed image Y is defined on this lattice, where each site represents a
voxel of intensity yi. Note for multimodal data (T1, T2, proton density images, etc.), Y is a vec-
tor field and thus each site contains a vector of voxels yi = (yi1, yi2, . . ., yiM)

T, whereM is the
total number of observed images and T is transpose. A labeling (or state) of the lattice system,
i.e., the hard segmentation, is denoted by X. Assuming there are K tissue classes, X assigns each
site a specific value x 2 (1, . . ., K), which we denote as xi = x. It will also be convenient to ex-
press the class label as a K-dimensional unit vector x with a 1 in the xth element and 0 else-
where, and the assignment of a specific label in location i is denoted as xi = x. We use these two
equivalent notation styles interchangeably in this paper. A sum over x or a sum over x repre-
sents the same sum over K possible values. The set of all possible labelings is X. The goal of the
segmentation is to estimate the underlying hidden labeling X that generates the observed
image(s) Y.

B.2 Estimation Approach
We will formulate a probabilistic model for the observed image intensity P(Yjθ), where θ are
parameters describing the brightness distribution for each tissue. Note here θ is a general place-
holder, representing mean and standard deviation of the Gaussian distribution for each tissue
class. When the mixture model is introduced for each tissue type (Section B.8), θ also includes
the mixing proportions. In fact, given knowledge of the tissue within each voxel, the intensity
distribution should be more narrowly specified as P(YjX, θ) (see Appendix B.5.1). Of course
we do not know the actual tissue class in each location, but we will specify an a priori probabili-
ty P(X) of observing a specific segmentation X so that the probability of observing the
image(s) is

PðYjθÞ ¼
X
X2X

PðYjX; θÞPðXÞ: ð12Þ
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This expression also defines the likelihood function of the unknown parameters θ. To estimate
these parameters for a given image Y, one often uses ML estimation, i.e., the estimated parame-
ters θ� are those that maximize Eq 12. In principle, once these parameters have been fit to the
data by ML estimation, one can then find the best segmentation by maximum a posteriori
(MAP) estimation, i.e., the segmentation X� that maximizes

PðXjY; θ�Þ ¼ PðYjX; θ�ÞPðXÞX
X2X

PðYjX; θ�ÞPðXÞ ; ð13Þ

Unfortunately, with N = 106 voxels and K = 6 tissue classes, it is not feasible in practice to com-
pute this posterior for all possible KN values of X to select the one with the highest probability.
To make the problem tractable, it is customary to make two important simplifications: 1) as-
sume that intensity is not affected by tissues from neighboring voxels; 2) approximate the pos-
terior by a distribution that factorizes over voxels (known as mean-field approximation [75]).
With these simplifications the posterior factorizes and the sum in Eq 12 has a manageable NK
terms. To make this approximation as tight as possible, the parameters are optimized using a
formalism known as VEM, which is a generalization of the ML formalism [51]. The resulting
posterior represents then the desired segmentation, namely, for every voxel i we will have com-
puted the (approximate) probability that this voxel belongs to a particular tissue class x, given
the observed image intensities: P(xi = xjY, θ�).

Now let us make this overall approach more specific.

B.3 ML optimization for factorial prior (spatial prior)
In ML the parameters θ are selected so as to maximize the likelihood of the observed image(s)
Y, or equivalently, the negative log-likelihood is minimized, i.e.,

θ� ¼ argmax
θ

PðYjθÞ ¼ argmin
θ

� logPðYjθÞ

¼ argmin
θ

� log
X
X2X

PðY;XjθÞ: ð14Þ

The sum over the state space X is tractable under the following two assumptions: 1) the intensi-
ties depend only on the tissue in each voxel,

PðYjX; θÞ ¼
YN
i¼1

Pðyijxi; θÞ; ð15Þ

and 2) the prior probability of finding a specific tissue in a voxel is independent of what tissue
is in other voxels,

PðXÞ ¼
YN
i¼1

PðxiÞ: ð16Þ

We call such a prior an “atlas”, or TPM, since the prior probability of finding a certain tissue
depends only on the location of the voxel. Under these two assumptions the MAP estimation
becomes trivial. One only needs to compute the posterior probability for each voxel

Pðxijyi; θ�Þ ¼
Pðyijxi; θ

�ÞPðxiÞX
xi

Pðyijxi; θ
�ÞPðxiÞ

; ð17Þ
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where the sum over xi implies a sum over the K possible values xi = x, and then pick the most
probable label for each voxel, or simply use this posterior probability as the desired segmenta-
tion. So in the case that only an atlas is used as the prior, one can perform exact Bayesian infer-
ence. However, if one would like to use morphological priors, in which the probability of
observing a certain tissue class depends on the tissues surrounding that voxel, then the prior
can no longer be factorized and Eq 13 becomes intractable.

B.4 Variational EM for Markov random field (neighborhood prior)
To address this problem, the VEM [50, 51] introduces an auxiliary probability distribution Q
(X) and defines an upper bound to the negative log-likelihood in Eq 14, known as the free ener-
gy function F(Q, θ)

� logPðYjθÞ � � logPðYjθÞ

þ
X
X2X

QðXÞ log QðXÞ
PðXjY; θÞ ¼ FðQ; θÞ: ð18Þ

The first term in this expression is the negative log-likelihood as before. The second term is the
Kullback–Leibler (KL) divergence D(QkPX|Y, θ) which is minimal and equals zero for Q(X) = P
(X|Y, θ). For this limiting case, maximizing the likelihood is identical to minimizing the free
energy. More generally, minimizing the free energy F(Q, θ) will (approximately) maximize the
likelihood P(Yjθ) while finding the closest approximation Q(X) for the posterior probability P
(X|Y, θ). In the VEM algorithm one therefore minimizes the free energy, and updates for Q
and θ in alternating steps:

E� step : QðXÞ  argmin
Q

FðQ; θÞ; ð19aÞ

M� step : θ argmin
θ

FðQ; θÞ: ð19bÞ

The key idea in order to simplify the sum over X is to constrain the auxiliary probability distri-
bution to have factorial form

QðXÞ ¼
YN
i¼1

qðxiÞ: ð20Þ

In this scenario, minimizing the KL divergence D(QkPX|Y,θ) aims to find the closest factorial
approximation of the posterior P(X|Y, θ). This approximation is equivalent to the mean-field
approximation [46, 51, 75] where the effects of the neighbors are summarized into a mean ef-
fect on the isolated voxel. Using this approximate posterior in Bayes rule (Eq 13) is known as
approximate Bayesian inference [51]. Detailed equations for this will be given in Appendix B.7
and Appendix B.9 after we parametrize the prior probability and the conditional
intensity distribution.

B.5 Parametrizations
To make further progress we now have to define the prior probability P(X) and the conditional
intensity distribution P(yi|xi) and how these depend on the parameters that are to be fit to a
given MR image Y.
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B.5.1 Image intensity. We will assume that the image intensity is determined, up to the
Gaussian noise, by the tissue class,

Pðyijxi ¼ x; θÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

x

p exp �ðyi � mxÞ2
2s2

x

� �
; ð21aÞ

where of all the parameters θ only the mean (μx) and standard deviation (σx) of the xth tissue
class are relevant. For multimodal data, the Gaussian probability density function has a vector
form as

Pðyijxi ¼ x; θÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞMjSxj

q exp � 1

2
ðyi � μxÞTS�1x ðyi � μxÞ

� �
; ð21bÞ

where μx and Sx are the mean vector and the covariance matrix.
B.5.2 The priors. Generally speaking, both the atlas information and the neighborhood

relationships can be expressed as prior probability within the formalism of the MRF. First note
that, like any other probability, the prior can be defined in terms of a “potential” function U(X)
as [47]

PðXÞ ¼ 1

Z
exp ð�UðXÞÞ; ð22Þ

where Z ¼ P
X2X

expð�UðXÞÞ, known as the partition function, is a constant that ensures the

probability is properly normalized. This potential, known as Gibbs potential in the context of
statistical mechanics, takes on a particularly simple form if we can assume, as in the MRF, that
variables are affected only by a set of neighbors. The Gibbs potential can be written as the sum
over individual voxels and all neighbor pairs [43]

UðXÞ ¼
XN
i¼1

ViðxiÞ þ
1

2

XN
i¼1

X
j2N i

Vijðxi;xjÞ; ð23Þ

Ni denotes the set of neigbors of voxel i and the factor of 1/2 compensates for the double-
counting of pairs. In this work, we consider only the 6 immediate face-connected neighbors in
3D space. In statistical mechanics [42], Vi(xi) is known as the energy of an “external field” act-
ing on individual voxels i, and Vij(xi, xj) is the energy of the pairwise interaction between neigh-
boring voxels i and j. The essence of Eq 23 is that the joint prior probability factorizes over
voxels and pairs of voxels.

In the previous section we have seen that the spatial prior can be factorized over voxels (see
Eq 16). If only the external field is acting on the voxels (i.e., Vij(xi, xj) = 0), then we can identify
the first order potential as Vi(xi) = −logP(xi). Here P(xi) is just the prior probability determined
by the atlas (or TPM). In order not to confuse the notation in the sequel, we denote the external
field with a new symbol (hi)x such that (hi)x = log P(xi = x), or expressed as a vector for voxel i

hi ¼ logPðxiÞ: ð24Þ

Then we can write the first order potential as

ViðxiÞ ¼ �hT
i xi: ð25Þ

Eq 25 tells us that the external energy is simply the negative logarithm of the TPM (when only
the external field is presented), such that assignments with low probability in the TPM are en-
ergetically costly. As to the interaction energy Vij, it is often defined in terms of Kronecker
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delta, Vij(xi, xj) = −δ(xi, xj), i.e., the potential is zero unless both voxels have the same class
label. Thus, neighbors with the same class label have a lower energy and are a priorimore like-
ly. An MRF with this interaction energy is also known as a Potts model [47]. Sometimes there
is also a distance weight included to account for anisotropic images [46, 60]. However, the stan-
dard Potts model does not provide enough flexibility to account for different cases of neighbor-
ing tissues. For example, a voxel with gray matter may be neighbor to a voxel with white matter
but it cannot be a neighbor to air, yet in the Potts model all neighboring tissues are given the
same energetic cost. We can incorporate more flexible prior information with an interaction
matrix J of size K × K, whose element Jxx0 represents the negative interaction energy between

tissue class x and x0. With this we can define the second order potential Vij as

Vijðxi;xjÞ ¼ �xT
i Jijxj: ð26Þ

In conclusion, the two types of priors can be combined into a single joint prior probability

PðXÞ ¼ 1

Z
exp

1

2

XN
i¼1

X
j2N i

xT
i Jijxj þ

XN
i¼1

hT
i xi

 !
: ð27Þ

Eq 27 can be thought of as an extended Potts model. All prior information is now captured by
hi and Jij. In next section we will discuss how these parameters can be set based on truth data
from existing segmentations: hi will be determined by the probability of observing a tissue in a
given location, i.e., the “tissue probability map (TPM)”; Jij will be determined by measuring the
co-occurrence of tissues in neigboring locations; we will refer to this as “tissue correlation map
(TCM)”.

B.6 Model parameters set based on prior segmentations
We have argued that the first and second order potentials can be used to define location prior
and neighborhood prior. Here we will discuss how one should select the corresponding param-
eters hi and Jij to express this prior knowledge. Prior knowledge is typically available as a set of
validated segmentations on historical data. In the context of brain segmentation, with fairly re-
producible anatomy across subjects, it is customary to warp individual heads into a single
model head, so that specific locations can be identified across different heads. This process is
known as “normalization” and is crucial if we want to use prior information on location for
segmentation of a given image [66, 67]. A popular standard for such a reference today is MNI-
152 head which represents an average over 152 heads compiled by the Montreal Neurological
Institute [67, 76]. To explain how these data can serve as prior information to determine hi and
Jij, we turn to the concept of maximum entropy.

Assume we are given the mean and correlation of states X across such a “normalized” data-
set, i.e., the first and second order moment

mi ¼ hxii; ð28aÞ

Cij ¼ hxix
T
j i; ð28bÞ

where h. . .i refers to the sample average over the observed (validated) segmentations, and j 2
Ni. Note that thismi and Cij is in fact the TPM and TCMmentioned before. To specify this
prior information—and nothing else—we are interested in the least informative (maximum
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entropy) joint probability P(X) that matches these first and second order momentsX
X2X

PðXÞxi ¼mi; ð29aÞ

X
X2X

PðXÞxix
T
j ¼ Cij: ð29bÞ

It turns out that this maximum entropy probability distribution has exactly the form of the
prior we have selected here as in Eq 27 (following the procedure in [77, 78]). More generally,
the maximum entropy distribution that constrains first and second order moments does not re-
quire any particular Markov property. The parameters hi and Jij of the extended Potts model
are in fact the Lagrange multipliers to the first and second order constraints for any neighbor-
hood arrangement, including a fully connected lattice.

Givenmi and Cij for all i, which we can obtain from prior segmentations, in principle Eq 6
can fully specify the values of hi and Jij. The problem is that these equations cannot be solved in
closed form, except for a few special cases (e.g., [78]). In most instances one has to rely on nu-
merical techniques instead and these are only tractable for small systems consist of up to
N = 100 sites [79]. At present we have an analytical solution for the inversion from Cij to Jij
only for the most simple case of two sites, N = 2 (see Appendix C)

Jij ¼ log ½Cij � diag�1ðmjÞ�; ð30aÞ

hi ¼
1

2
logmi: ð30bÞ

Here diag−1(mj) is the inverse of the diagonal matrix made from vectormj. We have seen that,
when interaction between sites is taken into account, the relation between hi andmi is not just
a logarithm, but scaled by 0.5. We can imagine for an N-site lattice, the relation would be even
more complicated. Since it is intractable to obtain the analytical solutions for the general N-site
case, here in this work we take a pragmatic approach by keeping hi = logmi, but using a free pa-
rameter β before interaction energy Jij to balance the relative contribution of the neighborhood
prior versus the atlas. Therefore, we get Eq. 5 in the main text, and the prior model Eq 27 has a
scalar β

PðXÞ ¼ 1

Z
exp

1

2
b
XN
i¼1

X
j2N i

xT
i Jijxj þ

XN
i¼1

hT
i xi

 !
: ð31Þ

Other parameter settings for the prior model are given by Eqs 6 and 7 in the main text.

B.7 VEM updating equations: The E-step
With MRI intensity distribution and prior model fully parametrized, we are ready to derive the
updating equations of the VEM algorithm. Plugging Eq 20 into Eq 18, it can be shown (see Ap-
pendix D) that the free energy function can be written as

FðQ; θÞ ¼
XN
i¼1

X
xi

qðxiÞ
�
log qðxiÞ � logPðyijxi; θÞ

� 1

2
b
X
j2N i

X
xj

qðxjÞxT
i Jijxj � hT

i xi

�
þ logZ:

ð32Þ
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The E-step requires minimization of Eq 32 with respect to Q at fixed θ. As pointed out by [46],
the mean-field approximation (Eq 20) suggests an incremental way of implementing this mini-
mization, where the free energy is successively minimized for each voxel i, with respect to its
corresponding posterior probability q(xi) and with all other q(xj), j 6¼ i held fixed. Therefore,
the estimate of the approximate posterior is updated one voxel at a time with the following op-
timization

qðxiÞ  argmin
qðxiÞ

FðQ; θÞ; s:t:
X
xi

qðxiÞ ¼ 1: ð33Þ

In contrast to parallel update, where all q(xi) are updated at once, this sequential update is
guaranteed to converge [46]. The normalization constraint on this optimization ensures that q
(xi) remains a valid probability function. The solution to this constrained optimization prob-
lem can be obtained using Lagrange multipliers (see Appendix E) as

qðxiÞ ¼
Pðyijxi; θÞ exp

1

2
b
X
j2N i

X
xj

qðxjÞxT
i Jijxj þ hT

i xi

2
4

3
5

X
xi

Pðyijxi; θÞ exp
1

2
b
X
j2N i

X
xj

qðxjÞxT
i Jijxj þ hT

i xi

2
4

3
5
: ð34Þ

This is Eq 1 in the main text. It combines three sources of information: 1) the voxel intensities
through the conditional (P(yi|xi, θ)), 2) the neighborhood prior (Jij) obtained from TCM (Eq
30a), and 3) the anatomical prior (hi) computed from TPM (Eq 24). β will be tuned using the
data from one subject (Evaluation in the main text). Note that when Jij = 0, i.e., no interaction
between voxels is assumed, Eq 34 is reduced to Eq 17 by using Eq 24, which is the updating
equation only applying the atlas information [14]. On the other hand, when hi = 0, i.e., no ana-
tomical prior is used, Eq 34 is the updating equation in most segmentation work involving
MRF (but no atlas) to ensure spatial consistency (e.g., [18, 33, 46, 70, 71, 74]).

B.8 Tissue mixtures
A practical difficulty in MRI brain segmentation is the partial volume effect, i.e., a voxel may
contain signals from a number of different tissues. Most segmentation algorithms account for
this effect by explicitly modeling the distribution of the voxel intensities containing multiple
tissue fractions [29, 33, 73, 80]. In this paper we adopt the approach as in [14], where the partial
volume effect is modelled by assuming that a tissue type consists of several similar tissue classes
with different MR intensities. For example, the skull can contain cancellous and cortical bone,
and the soft tissue may contain fat and muscle. The atlas usually only provides prior informa-
tion for the tissue type (e.g., skull), but not for those detailed tissue classes (e.g., different layers
of bone). For electromagnetic forward modeling, we only aim to label tissue types. We will use
variable �x i to refer to such a tissue type, and distinguish this from variable xi, which still refers
to individual tissue class as before. The model for the intensity for a given tissue type becomes
then

Pðyij�xi; θÞ ¼
X
xi

Pðyi;xij�xi; θÞ ¼
X
xi

gx�xPðyijxi; θÞ: ð35Þ

This can be thought of as Gaussian FMmodel [18, 45] where the mixing proportion—matrix
gx�x—represents a parametrization of the conditional probability Pðxij�xiÞ ¼ gx�x , which is inde-
pendent of location. This model is quite conventional in segmentation and is also used in
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SPM8. However, it deviates from the one presented in [14], where the mixing proportion is put
before the atlas prior. With this distinction between tissue class labels X for which no prior in-
formation is available and tissue type labels �X for which we have a prior Pð �XÞ we can redefine
the free energy as

FðQ; θÞ ¼
X
X2X

X
�X2 �X

QðX; �XÞ log QðX; �XÞ
PðX; �X;YjθÞ : ð36Þ

In the same manner as above this simplifies to

FðQ; θÞ ¼
XN
i¼1

X
xi

X
�x i

qðxi; �xiÞ
�
log qðxi; �x iÞ � logPðyi;xij�xi; θÞ

� 1

2
b
X
j2N i

X
xj

X
�x j

qðxj; �x jÞ�xT
i Jij�x j � hT

i �x i

�
þ logZ:

ð37Þ

The estimate of the posterior is now

qðxi; �x iÞ ¼
gx�xPðyijxi; θÞ exp

1

2
b
X
j2N i

X
�x j

qð�x jÞ�xT
i Jij�x j þ hT

i �x i

2
4

3
5

X
�x i

Pðyij�xi; θÞ exp
1

2
b
X
j2N i

X
�x j

qð�x jÞ�xT
i Jij�x j þ hT

i �x i

2
4

3
5
: ð38Þ

Note here Eq 35 is used when deriving the above equation. The desired estimate for the proba-
bility of tissue type �xi is then

qð�xiÞ ¼
X
xi

qðxi; �x iÞ: ð39Þ

Eqs 38 and 39 are the Eq 2 in the main text.

B.9 VEM updating equations: The M-step
The M-step in VEM is to minimize the free energy function Eq 32 (or Eq 37 if using tissue mix-
tures) with respect to θ at fixed Q.

θ argmin
θ

FðQ; θÞ; s:t:
X
x

gx�x ¼ 1: ð40Þ

Here θ is the mean, variance and mixing proportion in the Gaussian mixture, as shown in Eqs
1 and 35. The only constraint is that all the mixing proportions sum to 1 for each tissue type, as
dictated by the definition of FMmodel. Using Lagrange multipliers (see Appendix F), we get

μx ¼

XN
i¼1

qðxi ¼ xÞyi

XN
i¼1

qðxi ¼ xÞ
; ð41aÞ
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Sx ¼

XN
i¼1

qðxi ¼ xÞðyi � μxÞðyi � μxÞT

XN
i¼1

qðxi ¼ xÞ
; ð41bÞ

gx�x ¼

XN
i¼1

qðxi ¼ x; �xi ¼ �xÞ
XN
i¼1

qð�xi ¼ �xÞ
: ð41cÞ

These are the Eq 1 in the main text. For the sake of generality we have given the Gaussian pa-
rameters here for multimodal data. The approximate posteriors qðxi ¼ x; �xi ¼ �xÞ for specific
tissue type �x and unspecified tissue class x are given by Eqs 38 and 39. Note that with update
Eq 41c any parameter of matrix gx�x that is initialized with 0 remains 0 during update. Thus, by
initializing matrix gx�x with only one non-zero entry for each value x, each hidden tissue class x
can only belong to a single specific tissue type �x . This gives the conventional mixture model
where the mixture elements only belong to a single mixture.

C 2-site problem
Consider a trivial 2-site lattice. x1 and x2 are the class vectors for the two sites. According to the
prior model Eq 27, we can write the distribution of the lattice configuration as

PðXÞ ¼ 1

Z
exp

1

2
xT

1J12x2 þ
1

2
xT

2J21x1 þ hT
1x1 þ hT

2x2

� �
: ð42Þ

To get the expression of Jij and hi in terms of Cij andmi, we need to solveX
X2X
½PðXÞxix

T
j � ¼ Cij; ð43aÞ

X
X2X
½PðXÞxi� ¼mi: ð43bÞ

For this 2-site lattice, the sum
P
X2X

can be expanded and thus the partition function Z can be an-

alytically expressed. When i = 1, j = 2, plugging the P(X) in Eq 42 into Eq. 43, we have

X
x1

X
x2

exp
1

2
xT

1J12x2 þ
1

2
xT

2J21x1 þ hT
1x1 þ hT

2x2

� �
x1x

T
2X

x1

X
x2

exp
1

2
xT

1J12x2 þ
1

2
xT

2J21x1 þ hT
1x1 þ hT

2x2

� � ¼ C12; ð44aÞ

X
x1

X
x2

exp
1

2
xT

1J12x2 þ
1

2
xT

2J21x1 þ hT
1x1 þ hT

2x2

� �
x1X

x1

X
x2

exp
1

2
xT

1J12x2 þ
1

2
xT

2J21x1 þ hT
1x1 þ hT

2x2

� � ¼m1: ð44bÞ

Note the denominator in Eq. 44 is the expanded partition function Z. These two equations can
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be simplified by using matrix subscripts k and l (1� k� K, 1� l� K),

exp
1

2
ðJ12Þkl þ

1

2
ðJ21Þlk þ ðh1Þk þ ðh2Þl

� �
X
k

X
l

exp
1

2
ðJ12Þkl þ

1

2
ðJ21Þlk þ ðh1Þk þ ðh2Þl

� � ¼ ðC12Þkl; ð45aÞ

X
l

exp
1

2
ðJ12Þkl þ

1

2
ðJ21Þlk þ ðh1Þk þ ðh2Þl

� �
X
k

X
l

exp
1

2
ðJ12Þkl þ

1

2
ðJ21Þlk þ ðh1Þk þ ðh2Þl

� � ¼ ðm1Þk: ð45bÞ

By observation, we can immediately get

X
l

ðC12Þkl ¼ ðm1Þk; ð46Þ

and similarly,

X
k

ðC12Þkl ¼ ðm2Þl: ð47Þ

In order to satisfy Eq 45a, we can guess

ðh1Þk ¼
1

2
log ðm1Þk; ð48aÞ

ðh2Þl ¼
1

2
log ðm2Þl; ð48bÞ

ðJ12Þkl ¼ log
ðC12ÞklX
k

ðC12Þkl
¼ log

ðC12Þkl
ðm2Þl

; ð48cÞ

ðJ21Þlk ¼ log
ðC21ÞlkX
l

ðC21Þlk
¼ log

ðC12ÞklX
l

ðC12Þkl
¼ log

ðC12Þkl
ðm1Þk

: ð48dÞ

Eqs 48c and 48d use the relations in Eqs 46 and 47, and also the fact that (C12)kl = (C21)lk. Plug-
ging Eq. 48 into the left hand side of Eq 45a, combining the sum of logarithms into logarithm
of the products, and noticing that the terms (m1)k, (m2)l are cancelled out, we finally get

ðC12ÞklX
k

X
l

ðC12Þkl
; ð49Þ

which is equal to the right hand side of Eq 45a, because
P
k

P
l

ðC12Þkl ¼ 1 by definition.
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Therefore, Eq. 48 satisfies Eq 45a, and thus the solution to the 2-site problem is

ðJijÞkl ¼ log
ðCijÞkl
ðmjÞl

; ð50aÞ

ðhiÞk ¼
1

2
log ðmiÞk: ð50bÞ

These give Eqs 30a and 30b.

D Derivation of the free energy function
Noticing the fact that the probability distribution Q(X) sums to 1, i.e.,

P
X2X

QðXÞ ¼ 1, we can

write the free energy function F(Q, θ) in Eq 18 as

FðQ; θÞ ¼
X
X2X

QðXÞ log QðXÞ
PðX;YjθÞ : ð51Þ

Expanding the complete data likelihood P(X, Y|θ) into the product of the intensity distribution
P(Y|X, θ) and the prior P(X), and plugging Eq 15, Eq 20 and Eq 31 into Eq 51, we get

FðQ; θÞ ¼
X
X2X

Y
m

qðxmÞ
�X

i

log qðxiÞ �
X

i

logPðyijxi; θÞ

� 1

2
b
X

i

X
j2N i

xT
i Jijxj �

X
i

hT
i xi þ logZ

�
:

ð52Þ

The above equation can be simplified, for example,X
X2X

Y
m

qðxmÞ
X

i

log qðxiÞ

¼
X
x1

X
x2

� � �
X
xi

� � �
X
xN

Y
m

qðxmÞ
X

i

log qðxiÞ

¼
X

i

X
x1

X
x2

� � �
X
xi

� � �
X
xN

Y
m

qðxmÞ log qðxiÞ

¼
X

i

X
x1

X
x2

� � �
X
xi�1

X
xiþ1

� � �
X
xN

Y
m6¼i

qðxmÞ
X
xi

qðxiÞ log qðxiÞ

¼
X

i

Y
m 6¼i

X
xm

qðxmÞ
X
xi

qðxiÞ log qðxiÞ

ð53Þ

¼
X

i

X
xi

qðxiÞ log qðxiÞ: ð54Þ

The fact that
P
xm

qðxmÞ ¼ 1 is used from Eq 53 to Eq 54. Similarly, we have

�
X
X2X

Y
m

qðxmÞ
X

i

logPðyijxi; θÞ

¼ �
X

i

X
xi

qðxiÞ logPðyijxi; θÞ;
ð55aÞ
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�
X
X2X

Y
m

qðxmÞ
X

i

hT
i xi ¼ �

X
i

X
xi

qðxiÞhT
i xi;

� 1

2
b
X
X2X

Y
m

qðxmÞ
X

i

X
j2N i

xT
i Jijxj

ð55bÞ

¼ � 1

2
b
X

i

X
xi

qðxiÞ
X
j2N i

X
xj

qðxjÞxT
i Jijxj: ð55cÞ

Plugging Eqs 54 and 55 into Eq 52, we get Eq 32.

E Derivation of the updating equation in the E-step
With the objective function F(Q, θ) as in Eq 32 and the constraint

P
xi

qðxiÞ ¼ 1, we introduce a

generalized function using the Lagrange multipliers λi

F ¼ FðQ; θÞ þ
X

i

li
X
xi

qðxiÞ � 1

 !
: ð56Þ

Then we need to minimize F with respect to q(xi). To avoid notation confusion, we take deriv-
ative of F with respect to q(zn)

@F
@qðznÞ

¼ @FðQ; θÞ
@qðznÞ

þ
X

i

li
X
xi

dðxi; znÞ

¼
X

i

X
xi

½dðxi; znÞ log qðxiÞ þ dðxi; znÞ�

þ
X

i

X
xi

dðxi; znÞ
�
� logPðyijxi; θÞ

� 1

2
b
X
j2N i

X
xj

qðxjÞxT
i Jijxj � hT

i xi

�
þ ln:

ð57Þ

Note that q(xj) is treated as a constant when the above derivative is taken. Simplifying Eq 57
and setting it to 0, we can solve q(zn) as

qðznÞ ¼ Pðynjzn; θÞ exp
1

2
b
X
j2N n

X
xj

qðxjÞzT
nJnjxj þ hT

nzn

2
4

3
5

	 exp ð�ln � 1Þ:
ð58Þ

Plugging the above solution into
P
zn

qðznÞ ¼ 1 to enforce normalization, and substituting zn

with xi, we can get the Eq 34.

F Derivation of the updating equation in the M-step
The M-step is to optimize the free energy function F(Q, θ) with respect to the parameters θ
subject to the constraint

P
x

gx�x ¼ 1. For generality, we need to use the one involving tissue
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mixtures (Eq 37). To enforce the constraint we use again the Lagrange multipliers l�x

F ¼ FðQ; θÞ þ
X
�x

l�x

X
x

gx�x � 1

 !
: ð59Þ

For generality, we consider the case of multimodal data, and thus we need to minimize F with
respect to μx, Sx and gx�x . To avoid confusion, we take derivative with respect to μz

@F
@μz

¼ �
X

i

X
x

X
�x

qðxi ¼ x; �xi ¼ �xÞS�1x ðyi � μxÞdxz

¼ �
X

i

X
�x

qðxi ¼ z; �xi ¼ �xÞS�1z ðyi � μzÞ:
ð60Þ

Setting this to 0, solving for μz, replacing z with x and using the fact that
qðxi ¼ xÞ ¼P

�x

qðxi ¼ x; �xi ¼ �xÞ, we get Eq 41a. Similarly, we can obtain the Sx as in Eq 41b.

To get gx�x , we take derivative of Eq 59 with respect to gz�z

@F
@gz�z

¼ �
X

i

X
x

X
�x

qðxi ¼ x; �xi ¼ �xÞ dxzd�x�z

gx�x

þ
X
�x

l�x

X
x

dxzd�x�z

¼ � 1

gz�z

X
i

qðxi ¼ z; �xi ¼ �zÞ þ l�z:

ð61Þ

Set this to 0, solve for gz�z and replace z with x. Using the normalization condition
P
x

gx�x ¼ 1,

we find l�x ¼
P
i

P
x

qðxi ¼ x; �xi ¼ �xÞ. Inserting this into gx�x and using Eq 39, one obtains
Eq 41c.
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