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Abstract
Virtual screening is an important step in early-phase of drug discovery process. Since there

are thousands of compounds, this step should be both fast and effective in order to distin-

guish drug-like and nondrug-like molecules. Statistical machine learning methods are wide-

ly used in drug discovery studies for classification purpose. Here, we aim to develop a new

tool, which can classify molecules as drug-like and nondrug-like based on various machine

learning methods, including discriminant, tree-based, kernel-based, ensemble and other al-

gorithms. To construct this tool, first, performances of twenty-three different machine learn-

ing algorithms are compared by ten different measures, then, ten best performing

algorithms have been selected based on principal component and hierarchical cluster anal-

ysis results. Besides classification, this application has also ability to create heat map and

dendrogram for visual inspection of the molecules through hierarchical cluster analysis.

Moreover, users can connect the PubChem database to download molecular information

and to create two-dimensional structures of compounds. This application is freely available

through www.biosoft.hacettepe.edu.tr/MLViS/.

Introduction
Discovery and development of a new drug can be simply divided into four steps: (i) target iden-
tification, (ii) lead finding and optimization, (iii) pre-clinical studies and (iv) clinical studies.
Discovery of new drug candidates is becoming increasingly hard, costly and time-consuming.
This process can take between 12–15 years and cost over one billion dollars. Many efforts have
been made to decrease the cost and time, and increase the effectiveness of this process [1,2]. In
the early-phase of this process, there are thousands of compounds in the chemical libraries.
Virtual screening methods, which are fast, effective and comparatively cheap, can be used to
evaluate these compounds in the early step of drug discovery and development studies. These
methods can be divided into two parts as structure-based and ligand-based approaches. Struc-
ture based approaches predict conformation of the ligands within the active site of target mac-
romolecule, while ligand-based approaches predict active molecules in a database with using
information about a set of ligands that are known to be active for a given target [3].
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Statistical machine learning methods are fast and effective algorithms and widely used in
various fields, including drug discovery, structural biology and cheminformatics. Since these
methods can deal with high-dimensional data, they are suitable for virtual screening of large
compound libraries to classify molecules as active or inactive or to rank based on their activity
levels. In the literature, there are many studies that explore the performances of these methods
in the early-phase of drug discovery and development. These studies mainly focused on two
parts: classification and activity prediction of molecules. For classification task, Korkmaz et al.
[4] used support vector machines (SVM) incorporating with several feature selection methods
to classify molecules as drug-like and nondrug-like whereas Garcia-Sosa et al. [5] performed a
logistic regression on the same set of data. Byvatov et al. (2003) [6] and Zernov et al. [7] com-
pared performances of SVM and neural networks (NN) on drug-like/nondrug-like classifica-
tion problem and they both concluded that SVM outperformed NN. Moreover, SVM used to
classify certain kind of inhibitors, such as butyrylcholinesterase [8], lymphocyte-specific pro-
tein tyrosine kinase [9] and cytochrome P450 [10]. Other machine learning methods, such as
NN [11,12], naïve Bayes (NB) [8,13] and k-nearest neighbor (KNN) [14], have been also ap-
plied to distinguish active molecules from inactive ones. For activity prediction, Gertrudes
et al. [15] compared performances of various machine learning methods in prediction of bio-
logical activity of molecules. Jorissen and Gilson [16], Wassermann et al. [17], Agarwal et al.
[18] and Rathke et al. [19] used the SVM algorithm to rank molecules based on their activity.
Other methods, such as Bayesian neural networks (BNN) [20] and random forest (RF) [21,22],
are also used for activity prediction.

In this study, we mainly focused on classification task and our aim was to develop a new
tool, which can classify the compounds as drug-like and nondrug-like, for virtual screening of
small molecules. For this purpose, we trained a number of machine learning methods and com-
pared their performances based on ten different measures. To find the best performing algo-
rithms, we have made use of principal component (PC) and hierarchical cluster (HC) analyses.
Finally, we have developed our application using the best performing machine learning algo-
rithms. Besides supervised methods, such as classification and regression, unsupervised meth-
ods, like clustering, are also used in drug discovery studies. Since similar compounds have
similar properties, it should be adequate to understand structure-activity relationships of the
entire compound set with analyzing the representative compounds from each cluster instead of
performing the time-consuming complete set of experiments [23]. Hence, this tool has ability
to perform hierarchical cluster analysis and to create heat map and dendrogram for visual in-
spection of the molecules. Furthermore, researchers can connect the PubChem, which is a da-
tabase of small molecules and provides information on the biological activities of them, via this
tool. It allows users to download structure data file (SDF) of compounds, which contains mo-
lecular information about compounds, and to plot two-dimensional structures of molecules.
All analyses conducted in R software [24], version 3.1.1, using Rcpi [23], caret [25], shiny [26],
gplots [27] and ChemmineR [28] packages.

Materials and Methods

Data sets
The data sets (training and test) used in this study are collected from a two recent publication
[4,5]. The original data sets retrieved from Garcia-Sosa et al. [5], in which the training set con-
tained 631 compounds (311 drug-like and 320 nondrug-like compounds, S1 Table) and an in-
dependent test set contained 216 compounds (98 drug-like and 118 nondrug-like compounds,
S2 Table). Korkmaz et al. [4] used these data sets and applied different feature selection meth-
ods, including recursive feature elimination, wrapper method and subset selection, before
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performing SVM. They found that feature selection methods improved the discrimination abil-
ity of the SVM classifier and subset selection outperformed other methods. According to their
results, the subset selection method selected six molecular descriptors as the best features, in-
cluding logP, polar surface area (PSA), donor count (DC), aliphatic ring count (AlRC), aromat-
ic ring count (ArRC) and Balaban index (BI). Here, all descriptors are obtained by a calculation
method. The atom-additive XLOGP method is used to calculate the logP and other descriptors
are calculated by using Marvin Beans version 5.3.8 [5]. The authors obtained 81% accuracy
rate, 88% sensitivity, 75% specificity and 88% area under the curve using SVM algorithm. For
our purposes, we used these data sets with the best six features to train and test various ma-
chine-learning methods.

Statistical machine learning methods
To classify compounds in a fast and effective way, we made use of the utility of different statisti-
cal machine learning algorithms. Within this scope, we trained various discriminant, tree-
based, kernel-based and ensemble classifiers, and some other models including NB, NN, KNN
and learning vector quantization (LVQ). In this section, we give a brief overview of these statis-
tical learning models.

Linear discriminant analysis (LDA) is among the most popular classification technique
in statistics and pattern recognition. It aims to estimate the posterior probabilities of clas-
ses using the density and prior probabilities of the data classes. There are a number of
ways to motivate LDA classifier. Bayesian rule is a widely used method for this purpose.
Let X and Y refer to random variables for molecular descriptors and the class label of
compounds, and let fk(x) be the class-conditional density function and πk be the prior
probability for class k. Using Bayes’ theorem, posterior probability of a compound for
class k is:

PrðC ¼ kjX ¼ xÞ ¼ fkðxÞpk

Xk
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LDA uses multivariate normal distribution as a density function:
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where p is the number of molecular descriptors, μk is the sample mean vector, Sk is the sample
variance-covariance matrix for class k. This matrix contains the pooled variances and covari-
ances of descriptors. Organizing Eq (1) with multivariate normal distribution and performing

some algebra, we obtain the linear discriminant function as dkðx�Þ ¼ xTS�1mk � 1
2
mT
kS

�1mk þ
logpk and assign a new test compound to the class that maximizes this function.

Other discriminant classifiers are extensions of LDA. In quadratic discriminant analysis
(QDA), each class uses their own covariance matrices rather than using a common one. Ro-
bust linear and robust quadratic discriminant analyses (RLDA, RQDA) use robust estimators
to estimate mean vectors μk and variance-covariance matrices Sk. Flexible discriminant anal-
ysis (FDA) uses a nonparametric form of linear regression to handle LDA problem. Mixture
discriminant analysis (MDA) models the density of each class from two or more Gaussian
functions with different centroids. Nearest shrunken centroids (NSC) is a sparse classifier,
which is originally developed for microarray data classification. This algorithm shrinks class
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means to the overall mean for feature selection purpose, and classifies the data with the se-
lected features using diagonal discriminant analysis, which ignores correlations among fea-
tures [29–31].

Decision trees aim to build a model to extract decision rules to predict the response variable
(compound classes) based on features (molecular descriptors). Each interior node represents a
descriptor and there are edges to children for each possible descriptor value. Leaf nodes corre-
spond to compound classes for the values of descriptors by the path from the root to the leaf.
Classification and regression trees (CART) and J48 (also known as C4.5) are widely used deci-
sion tree algorithms that grow the whole tree first and then prune it back to control over-fitting.
Even these two algorithms have similar methodologies; there are some considerable differences
between them: first, CART allows binary testing while C4.5 allows two or more outcomes, sec-
ond, CART uses gini index, while C4.5 uses information gain as splitting criteria and third,
CART uses cross-validation based cost-complexity model, while C4.5 uses binomial confidence
limits based single pass algorithm to prune trees. C5.0 is an extension of J48 algorithm. It is
faster, more memory efficient, provides smaller decision trees, allows user to weight cases, win-
nows the useless features automatically and supports boosting to improve the performance
compared to J48. Conditional inference trees (CIT) conducts a significance testing rather than
maximizing the splitting criteria (e.g. gini coefficient, information gain), and avoids feature se-
lection bias [31–33].

When the data is linearly non-separable, kernel-based classifiers can be a good choice. Ker-
nel functions, which are used with these classifiers, transform the data to higher dimensions
and make linear models work in nonlinear settings. SVM is known among the most popular
kernel-based classifiers due to its strong mathematical background, accurate performance and
ability for high-dimensional classification. The main objective of SVM is to find the optimal
function that maximizes the distance (known as margin) among closest data points in different
classes (known as support vectors) to separate the data. SVM use quadratic programming and
Lagrange multipliers for this purpose. SVM applies kernel functions including radial-basis
function (RBF) and polynomial functions for nonlinear classification problems. Another ker-
nel-based classifier least squares support vector machines (lsSVM) are special cases of SVM,
which solves a linear system rather than using quadratic programming in optimizing the
model parameters. In both SVM and lsSVMmodels, we considered linear and radial-basis
function as kernels. Partial least squares (PLS) uses principal factors for classification instead of
applying original descriptors. These principal factors are the projected lower dimensional ver-
sions of descriptors, which explain the maximum variance of the data. PLS applies linear classi-
fiers after the projection process [31,32,34].

Another algorithm that has similar properties with discriminant classifiers is NB. Howev-
er, unlike discriminant methods, it considers each descriptor independently contribute to
class prediction. It also uses Bayes’ theorem to predict the posterior probabilities in order
to identify the class label, which the compounds to be assigned. KNN is a lazy learner classifi-
er, where a compound is classified to the class, which is most common in its k-nearest neigh-
bors. Here, input can be considered as k closest training data points and output is the class
labels. NN is inspired by the brain central nervous system and similarly contains the inter-
connected neurons in its algorithm structure. It takes the input data, weights and transforms
it with activation functions. Activation is passed from one neuron to other until an output
neuron is activated. LVQ is a special case of NN algorithm, which is also related with KNN.
It applies a winner-take-all approach and the winner prototype moves close to training sam-
ples in its class if it correctly classifies the compound, or moved away if it misclassifies the
compound [31].
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Instead of fitting a single model, multiple models applied by ensemble algorithms are
used to improve the classification accuracy, reduce variance and avoid over-fitting. Bagging
is one of the widely used ensemble algorithms. Given a training data set, bagging (also called
as bootstrap aggregating) method firstly generates multiple datasets using bootstrap tech-
nique, then trains each bootstrap data using a specific classification algorithm and finally ag-
gregates the results of each model with a suitable technique, such as majority voting. RF is
the most famous bagging ensemble algorithm, which combines single decision tree models
to achieve higher classification accuracy. Accordingly, bagged support vector machines
(bagSVM) and bagged k-nearest neighbors (bagKNN) are bagging ensembles of SVM and
KNN classifiers [31,32,35,36]. Readers can find further details about these classifiers in
referenced papers.

Model building
Since several classifiers used in this study require the predictor variables centered and scaled
[37], first, the training set is centered and scaled using z-score transformation. Then, the
test set is centered and scaled based on the parameters (i.e. mean and standard deviation)
of the training set. Most of the machine learning methods, which are introduced in the previ-
ous section, except LDA, RLDA, QDA and RQDA from discriminant classifiers and
lsSVMlin from kernel-based classifiers, include at least one tuning parameter in order to
avoid either overfitting or underfitting. Hence, in the training set, we made a grid search
and used 10-fold cross-validation to select optimal tuning parameters. We repeated this
procedure 10 times to stabilize the test errors and provide more reliable model estimates.
All model building steps are applied in caret package version 6.0–35 [25] of R version
3.1.1 [24].

In discriminant classifiers; number of subclasses is set as 6 for MDA, product degree and
number of terms are selected as 1 and 14, respectively, for FDA and shrinkage threshold is opti-
mized as 5.89 for NSC. In decision tree classifiers; a rule-based model is used whereas predictor
winnowing is not and number of boosting iterations is determined as 50 for C5.0, confidence
threshold is set as 0.25 for J48 and complexity parameter is specified as 0 for CART. In kernel-
based classifiers; cost parameter is determined as 1 for SVMlin, sigma and cost parameter are
set as 0.25 and 4, respectively, for SVMrbf, sigma parameter is set as 0.22 for lsSVMrbf and
number of components is identified as 6 for PLS. In ensemble classifiers; number of randomly
selected predictors is founded as 2 and 500 trees are used for RF, number of bootstraps is set as
100 for bagSVM and bagKNN, and radial basis function used as kernel for bagSVM. In other
classifiers; Laplace correction is selected as 0 and normal density is estimated for NB, number
of hidden units and weight decay are optimized as 13 and 0.1, respectively, for NN, number of
neighbors are determined as 7 for KNN, and codebook size and number of prototypes are de-
termined as 3 and 1, respectively, for LVQ. We, then, fit the methods to the training set with
the selected value of the tuning parameters.

Performance assessment
To compare the performance of the methods, we calculated various diagnostic measures, in-
cluding; accuracy rate (AR), sensitivity (SE), specificity (SP), positive predictive value (PPV),
negative predictive value (NPV), detection rate (DR), balanced accuracy rate (bAR), F-score
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(FS), Matthews correlation coefficient (MCC) and Kappa statistic (κ) as follows:

AR ¼ TP þ TN
TP þ TN þ FP þ FN

SE ¼ TP
TP þ FN

SP ¼ TN
TN þ FP

PPV ¼ TP
TP þ FP

NPV ¼ TN
TN þ FN

DR ¼ TP
TP þ TN þ FP þ FN

bAR ¼ SE þ SP
2

FS ¼ 2
SE � PPV
SE þ PPV

MCC ¼ 2
TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp

k ¼ AR� pe
1� pe

where, pe = ((TP + FN)(TP + FP) + (FP + TN)(FN + TN))/ n2, TP = true positives, TN = true
negatives, FP = false positives and FP = false negatives.

To reveal the best performing methods in a more advanced way, we applied PC and HC
analyses using performance measures results. For PC analysis, we extracted two components
that explain the 99.90% of the total variation, and used varimax rotation to more explicitly dif-
ferentiate the factor loadings of each variable on a given component. For HC analysis, Euclide-
an distance metric and Ward method are used to cluster the algorithms used in this study
based on their classification successes.

Results and Discussion
We compared the performances of twenty-three different machine-learning methods based on
performance measures and the results are summarized in Table 1. According to these mea-
sures, all methods have comparable results. AR obtained between 68%-79%, and lsSVMrbf,
FDA and C5.0 were the best performing algorithms among others. SE and SP values were be-
tween 81%-92% and 51%-71% respectively, and LDA, NSC and SVMrbf were outperformed
other algorithms regarding SE, and SVMrbf, FDA and C5.0 were the top three algorithms
based on SP. PPV and NPV results were between 60%-72% and 81%-90% respectively, and
lsSVMrbf, C5.0 and FDA were the best performing algorithms for PPV measure, and RLDA,
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NSC, SVMrbf and PLS had the highest NPV values. DR values were between 37%-42%, RLDA,
NSC and PLS showed better performances than other algorithms. bAR, FS, and κ were between
70%-79%, 72%-79% and 0.38–0.58 respectively, and FDA, C5.0 and lsSVMrbf were the top
three algorithms based on these three measures. MCC values were between 0.42–0.59, and
FDA, C5.0 and SVMrbf outperformed other methods. Finally, the number of FN was between
8 and 19, and NSC, PLS and RLDA had the lowest false negative rates among others with 8
molecules. Conversely, RQDA had the highest false negative rate with 19 molecules. On the
other hand, the number of FP obtained between 28 and 48, and lsSVMrbf, NN, C5.0 and FDA
had the lowest false positive rates with 28, 30, 31 and 31 molecules, respectively. On the con-
trary, NB had the highest false positive rate with 48 molecules (FN and FP results not shown in
the Table 1). These results showed that FDA from discriminant classifiers, C5.0 from

Table 1. Performance assessment of various statistical learning algorithms in virtual screening of compounds.

Classification Model AR
(%)

SE
(%)

SP
(%)

PPV
(%)

NPV
(%)

DR
(%)

bAR
(%)

FS
(%)

MCC
(%)

κ

Discriminant Classifiers

Linear discriminant analysis 72.69 89.80 58.47 64.23 87.34 40.74 74.14 74.89 49.90 0.467

Robust linear discriminant analysis 75.93 91.84 62.71 67.16 90.24 41.67 77.27 77.59 55.96 0.529

Quadratic discriminant analysis 69.91 87.76 55.08 61.87 84.42 39.81 71.42 72.57 44.53 0.414

Robust quadratic discriminant analysis 73.61 80.61 67.80 67.52 80.81 36.57 74.20 73.49 48.37 0.476

Mixture discriminant analysis 75.93 90.82 63.56 67.42 89.29 41.20 77.19 77.39 55.53 0.528

Flexible discriminant analysis 78.24 89.80 68.64 70.40 89.01 40.74 79.22 78.92 58.92 0.571

Nearest shrunken centroids 74.07 91.84 59.32 65.22 89.74 41.67 75.58 76.27 53.03 0.494

Decision Tree Classifiers

Classification and regression trees 72.22 88.78 58.47 63.97 86.25 40.28 73.63 74.36 48.71 0.457

C5.0 78.24 89.80 68.64 70.40 89.01 40.74 79.22 78.92 58.92 0.571

J48 77.31 89.80 66.95 69.29 88.76 40.74 78.37 78.22 57.40 0.554

Conditional inference tree 73.61 86.73 62.71 65.89 85.06 39.35 74.72 74.89 50.19 0.482

Kernel-based Classifiers

Support vector machines with linear kernel 76.39 87.76 66.95 68.80 86.81 39.81 77.35 77.13 55.16 0.535

Support vector machines with radial basis function
kernel

77.78 90.82 66.95 69.53 89.77 41.20 78.88 78.76 58.53 0.563

Partial least squares 74.07 91.84 59.32 65.22 89.74 41.67 75.58 76.27 53.03 0.494

Least squares support vector machines with linear
kernel

73.15 90.82 58.47 64.49 88.46 41.20 74.65 75.42 51.09 0.476

Least squares support vector machines with radial
basis function kernel

78.70 87.76 71.19 71.67 87.50 39.81 79.47 78.90 59.05 0.578

Ensemble Classifiers

Random forests 76.85 88.78 66.95 69.05 87.78 40.28 77.86 77.68 56.27 0.544

Bagged support vector machines 76.39 88.78 66.10 68.50 87.64 40.28 77.44 77.33 55.51 0.535

Bagged k-nearest neighbors 75.46 90.82 62.71 66.92 89.16 41.20 76.76 77.06 54.79 0.520

Other Classifiers

Naïve bayes 68.06 88.78 50.85 60.00 84.51 40.28 69.81 71.60 41.99 0.381

Neural networks 77.31 86.73 69.49 70.25 86.32 39.35 78.11 77.63 56.39 0.551

k-Nearest neighbors 76.85 90.82 65.25 68.46 89.53 41.20 78.04 78.07 57.03 0.546

Learning vector quantization 74.07 87.76 62.71 66.15 86.05 39.81 75.23 75.44 51.33 0.491

AR: Accuracy rate, SE: Sensitivity, SP: Specificity, PPV: Positive predictive value, NPV: Negative predictive value, DR: Detection rate, bAR: Balanced

accuracy rate,

FS: F score, MCC: Matthews correlation coefficient, κ: Kappa statistic. Bold values indicate the top three winner algorithms in each performance measure

doi:10.1371/journal.pone.0124600.t001
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tree-based classifiers and lsSVMrbf from kernel-based classifiers were the best performing al-
gorithms among twenty-tree different statistical machine learning algorithms.

Based on the PCA, there were two components and the first principal component (PC1) ex-
plained 71.50% of the variance while the second principal component (PC2) explained 28.40%
of the variance. Hence, they explained almost all of the variability in the performance measures
set. As can be seen from Fig 1, seven measures, AR, SP, PPV, bAR, FS, MCC and κ, loaded on
the first component, whereas only three measures, SE, NPV and DR, loaded on the second
component. Since the PC1 explains majority of the variability, we can crudely split the methods
into two parts as the positive side of the PC1, including RLDA, MDA, bagKNN, KNN, SVMrbf,
J48, FDA, C5.0, bagSVM, RF, SVMlin, NN and lsSVMrbf, and the negative side of the PC1, in-
volving PLS, NSC, lsSVMlin, LDA, CART, LVQ, CIT, RQDA, QDA and NB. Moreover, the
methods located in the positive side of the PC1 perform above average on all measures that
loaded on PC1, which means they are performed well than the algorithms placed in the nega-
tive side of the PC1.

We can also benefit from HC analysis results to support PC analysis results and to get more
information about best performing algorithms. According to the dendrogram in Fig 2, which is
derived by clustering analysis, the methods used in this study are clustered into five clusters.

Fig 1. Principal component scores with loading biplot. Two principal components are explained almost
all of the variability in the performance measures set. The first principal component accounted for 71.50%
while the second principal component accounted for 28.40% of the variance of the performance measures
data. Seven variables are loaded on the first principal component (AR: Accuracy rate, SP: Specificity, PPV:
Positive predictive value, bAR: Balanced accuracy rate, FS: F score, MCC: Matthews correlation coefficient,
κ: Kappa) whereas three variables (SE: Sensitivity, NPV: Negative predictive value, DR: Detection rate) are
loaded on the second principal component.

doi:10.1371/journal.pone.0124600.g001
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Cluster 1 and 2 contain the methods, which are fall into in the positive side of the PC1 whereas
cluster 3 to 5 involve methods that are located in the negative side of the PC1. Therefore, we
can conclude that cluster 1 and 2 include the best performing algorithms based on the results
from the PC analysis. As seen from Fig 1, although the methods in the cluster 1 are taken part
in the positive side of the both PCs, their loadings are very close to the origin of the PC1 and
they are only explained by three performance measures, including SE, NPV and DR. On the
other hand, the majority of the performance measures explain the methods in the cluster 2 and
they are also situated in the positive side of the PC1. This means that the methods in the cluster
2 represent better performance than the methods in the cluster 1. Hence, we have determined
to use the methods in the cluster 2 for our web-tool application: one discriminant classifier;

Fig 2. Hierarchical cluster dendrogram. The algorithms used in the study are clustered into five clusters.
Cluster 1 and 2 involve the algorithms (RLDA: Robust linear discriminant analysis, bagKNN: Bagged k-
nearest neighbors, MDA: Mixture discriminant analysis, KNN: k-Nearest neighbors, SVMrbf: Support vector
machines with radial basis function kernel, FDA: Flexible discriminant analysis, J48, C5.0, NN: Neural
networks, SVMlin: Support vector machines with linear kernel, lsSVMrbf: Least squares support vector
machines with radial basis function kernel, RF: Random forests, bagSVM: Bagged support vector machines),
which are loaded on the positive side of the first principal component, and cluster 3 to 5 include the algorithms
(LDA: Linear discriminant analysis, lsSVMlin: Least squares support vector machines with linear kernel,
NSC: Nearest shrunken centroids, PLS: Partial least squares, QDA: Quadratic discriminant analysis, RQDA:
Robust quadratic discriminant analysis, CIT: Conditional inference tree, NB: Naïve bayes, LVQ: Learning
vector quantization, CART: Classification and regression trees) that are loaded on the negative side of the
first principal component.

doi:10.1371/journal.pone.0124600.g002
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FDA, two decision tree classifiers; C5.0 and J48, three kernel-based classifiers; lsSVMrbf,
SVMrbf and SVMlin, two ensemble classifiers; RF and bagSVM, and two other classifiers;
KNN and NN.

After selecting best-performed algorithms, to construct our web-tool, the training and the
test sets, which are used for performance comparison of the methods in the statistical machine
learning methods section, are combined in order to increase the sample size. Thus, we obtained
a single training set, which contained 847 compounds (409 drug-like and 438 nondrug-like
compounds). Then, we applied the same training procedure, as explained in themodel building
section, to this new training set. First, a z-score transformation is applied to center and scale
the training set, then, tuning parameters are optimized using a 10 fold cross-validation with a
10 repeat.

The optimization results were as follows: for FDA, product degree and number of terms are
acquired as 1 and 7, respectively, for C5.0, number of boosting iterations are selected as 10, a
tree-based model is used whereas predictor winnowing is not used, for J48, confidence thresh-
old is set as 0.25, for lsSVMrbf, optimal sigma parameter is obtained as 0.27, for SVMrbf, sigma
and cost parameters are determined as 0.30 and 1, respectively, for SVMlin, cost parameter se-
lected as 1, for RF, number of randomly selected predictors set as 2 and 500 trees are used, for
bagSVM, number of bootstraps are set as 100 and radial basis function used as kernel, for NN,
number of hidden units and weight decay are optimized as 19 and 0.1, respectively, and for
KNN, number of neighbors are selected as 11. Finally, all best performing methods are fitted to
the training set with the optimized value of the tuning parameters.

To build our web-tool, we have benefited from shiny package version 0.10.1 [26], which al-
lows building interactive web applications with R software. The first step of using this web ap-
plication is to upload a data file, which must have following six descriptors in precise order:
logP, PSA DC, AlRC, ArRC and BI. As shown in Fig 3, users can either upload a file, which

Fig 3. Data upload tab of the MLViS web-tool. Users can upload their files using upload file, paste data or single molecule options.

doi:10.1371/journal.pone.0124600.g003
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contain the data matrix, from their personal computers or directly paste their data set to the
box in the tool.

If there is only one molecule, then the six descriptors of this molecule can be entered manu-
ally using single molecule option. There are two example data sets in the web-tool in order to
help users to test the applicability of this application. After uploading the data set, one can
move on to analyze this data set with these suggested statistical machine learning methods, as
shown in Fig 4. As explained earlier, there are ten algorithms, which can classify compounds as
drug-like and nondrug-like and users can select one of them, several of them or all of them at
once. After selection of the method(s), the web-tool will be performed the analysis and showed
the classification results immediately as drug-like or nondrug-like for each compound. More-
over, users can download the classification results to their personal computers by using down-
load button in the page.

In the web-tool, hierarchical clustering analysis is used to cluster the compounds based on
their similarity between molecular fingerprints and maximum common substructure search.
To visualize the clustering results, a dendrogram and a heat map can be created, as shown in
Fig 5, by using Rcpi package version 1.0.2 [23] and gplots package version 2.14.2 [27]. There
are number of options for both dendrogram and heat map, such as method, metric, style, etc.
For plotting, the data set must have compound identification (CID) number from PubChem. If
the data have PubChem CID numbers, this must be placed in the first column of the data ma-
trix. Alternatively, to create a dendrogram, users can upload an SDF file, which can be

Fig 4. Analyze tab of the MLViS web-tool. A classification task can be performed using the statistical machine learning predictions.

doi:10.1371/journal.pone.0124600.g004
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downloaded form PubChem database. There are also options in the web-tool for downloading
both dendrogram and heat map as PDF file.

We have also benefited from ChemmineR package version 2.16.9 [28] to help users to plot
two dimensional compound structure(s) of molecule(s) using PubChem CID number(s), as
shown in Fig 6. Likewise, users can import compounds from PubChem and download the re-
sults as SDF file to their personal computers using CID numbers.

This application designed as a comprehensive machine learning-based virtual screening tool,
which can perform both supervised (classification) and unsupervised (clustering) analysis. Al-
though, machine learning algorithms have been extensively used in the early-phase of drug dis-
covery studies, they are all diverse and applied on different data sets which makes them
incomparable. Hence, we tested performances of numerous machine learning algorithms, which
are widely used in the literature, on the same data set and selected best performing ones based
on their performance measures. Rather than applying single classifiers, our work is more com-
prehensive than the other studies with testing the performance of twenty-three different statisti-
cal machine learning algorithms with different mathematical backgrounds for classification
purpose. Providing the applicability of best performing algorithms in an easy-to-use web-tool is
another originality of this study. Our classification performances were comparable with [5,7,12]
and lower than [6,11]. We obtained 68–79% accuracy, while it was 70–78% in [5], 80–82% in
[6], 70–75% in [7], 80–90% in [11] and 77–83% in [12]. Nevertheless, our models include only
six descriptors as identified with various feature selection methods in [4], and these models are
less complex as compared to classification models in [6,7,11,12]. However, we used the data
from [4,5] where the number of compounds was 847 and relatively lower than the number of
compounds (>5000) used in [6,7,11,12]. To our knowledge, there are two web tools available
for screening small molecules. MolClass makes use of several machine learning algorithms and
generates computational models from small molecule data sets using structural features identi-
fied in hit and non-hit molecules [38], and CHARMMing (Chemistry at Harvard Macromolec-
ular Mechanics Interface and Graphics) performs quantitative structure activity relationship
modeling using fifteen different machine learning algorithms [39]. Both tools benefit from the
PubChem bioassay data sets. In practice, the number of molecules is significantly larger than

Fig 5. Plot tab of the MLViS web-tool. A dendrogram and a heat map can be created based on the compounds’molecular similarity.

doi:10.1371/journal.pone.0124600.g005
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that of active molecules. Although, the quite balanced data sets used in this study seem to be a
shortage, it is well known that the machine learning algorithms, which are used in this study, re-
quire a balanced data set [40–42]. Therefore, before applying such algorithms, it is suggested to
create a balanced data set from an imbalanced data set by using oversampling or undersampling
methods, such as SMOTE [43], SMOTEBoost [44] and RUSBoost [45]. This web-tool includes
best performing classification algorithms, plots derived from clustering methods and a link to
the PubChem database, for researchers in the field. As a further research, we will improve the
training performances by increasing the number of compounds and the number of features, and
update MLViS based on the changes on optimal classification parameters.

Availability and Future Directions
This application is freely available through http://www.biosoft.hacettepe.edu.tr/MLViS/ and it
will be updated periodically upon the updated R packages, which are used in the tool, including
Rcpi [23], caret [25], shiny [26], gplots [27] and ChemmineR [28].

Supporting Information
S1 Table. Training data set used in the study. This data set contains 631 compounds and six
molecular descriptors.
(DOCX)

S2 Table. Validation data set used in the study. This data set contains 216 compounds and
six molecular descriptors.
(DOCX)
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