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Abstract
This study examines the distributional equity of urban tree canopy (UTC) cover for Balti-

more, MD, Los Angeles, CA, New York, NY, Philadelphia, PA, Raleigh, NC, Sacramento,

CA, andWashington, D.C. using high spatial resolution land cover data and census data.

Data are analyzed at the Census Block Group levels using Spearman’s correlation, ordinary

least squares regression (OLS), and a spatial autoregressive model (SAR). Across all cities

there is a strong positive correlation between UTC cover and median household income.

Negative correlations between race and UTC cover exist in bivariate models for some cities,

but they are generally not observed using multivariate regressions that include additional

variables on income, education, and housing age. SAR models result in higher r-square val-

ues compared to the OLS models across all cities, suggesting that spatial autocorrelation is

an important feature of our data. Similarities among cities can be found based on shared

characteristics of climate, race/ethnicity, and size. Our findings suggest that a suite of vari-

ables, including income, contribute to the distribution of UTC cover. These findings can help

target simultaneous strategies for UTC goals and environmental justice concerns.
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Introduction
The environmental justice (EJ) community, including activists, academics, and policy makers,
has long been concerned with recognized patterns of low-income and minority communities
disproportionately burdened by environmental hazards [1,2]. Recently, the scope of environ-
mental equity has been broadened from a sole focus on burdens to include the distribution of
environmental goods or amenities [3]. To date, studies on the allocation of amenities across ur-
banizing landscapes have focused mostly on the placement of parks and open spaces [4–7], as
well as vegetation cover [8–10]. Generally these studies report uneven distribution of environ-
mental amenities that disfavor racial and ethnic minority and low income neighborhoods.

Environmental justice studies typically focus on single case studies. This reflects the grass-
roots and local nature of environmental justice struggles that have informed analytical ap-
proaches [11]. However, comparative analyses of multiple cities using the same methodology
can reveal whether there are consistent and significant patterns across cities of different sizes,
morphologies, biophysical contexts, ages of development, and histories. Although comparative
ecological methodologies have been promoted in the field of urban ecology, comparative urban
environmental justice studies are relatively few [12–15] and tend to focus on measuring envi-
ronmental burdens rather than benefits [16,17]. Such analyses on generalizable patterns of envi-
ronmental inequity should ideally lead to investigations of processes responsible for common
and differing patterns observed, including the role of historic, place-specific drivers of urbaniza-
tion and environmental change [11,18]. Before such process-based studies can be undertaken,
however, investigators should carefully examine the distributive equity of benefits or burdens.

Urban Tree Canopy (UTC) cover is widely regarded as an environmental good or amenity.
UTC cover as an environmental amenity stems from the direct flow of perceived benefits, or
ecosystem services, to people and neighborhoods where UTC cover is found. UTC cover has
been linked to the provisioning of multiple ecosystem services, including regulation of regional
climate and water cycles [19–26]. In addition to UTC, “greenness”, as an indicator of vegeta-
tion cover, has been associated with reductions in childhood obesity rates [27]. Presence of veg-
etation can also decrease cognitive fatigue, improve worker attitudes on the job, and reduce
stress as well as feelings of anger, depression, or anxiety [28,29]. UTC cover has been associated
with improved aesthetics, noise reduction, and stronger social cohesion and community
empowerment [19,30–32]. It is important to note, however, that UTC can also create disame-
nities such as increased water demand, maintenance costs, allergies, and perceived safety con-
cerns [33,34]. Some street tree campaigns have been met with resistance from residents who
simply do not want trees in front of their houses. The potential costs or burdens of UTC cover
depend on a number of factors, including climate, vulnerability and price of water supply in a
changing climate, socio-demographic preferences, built environment characteristics, and fiscal
capacity to maintain UTC cover [35]. While benefits from and support for UTC are not univer-
sally positive, for the purposes of this analysis, we treat UTC as an environmental amenity.

Fairness of public investment in the distribution, delivery, and maintenance of services de-
rived from urban tree canopies is a basic environmental justice concern [19,27,30,31,33,36].
Equity assessments must take into account existing distributions of benefits as they relate to so-
cial groups, especially ethnic/racial minorities and lower-income groups who have been tradi-
tionally disadvantaged and marginalized, or lack the resources or capacity to overcome a
scarcity of environmental benefits [37]. These considerations point to the need for UTC assess-
ments at a scale smaller than municipal jurisdictions because distributional patterns likely vary
depending on the scale of analysis [38]. Research must match the scale of analysis to the social
processes that drives the distribution of amenities in order to examine patterns at scales mean-
ingful to environmental justice inquiries. Important social processes may occur at the scale of a
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neighborhood, a defined territory that reflects and reinforces group belonging. In general, stud-
ies relating UTC cover to demographics and race use census tracts as a proxy for neighbor-
hood. For this paper, we use the census block group (CBG), a subset of the census tract, as the
unit of analysis. We tested for scale differences using the census tract and census block group
as analytical units but did not find meaningful differences between the two.

The spatial resolution of biogeophysical datasets, similar to census data, is predicted to affect
UTC assessments, a phenomenon that is referred in spatial sciences as the Modifiable Areal
Unit Problem [39]. Individual trees or lines of street trees—both common in urban areas—are
not captured by moderate-resolution imagery [40]. Historically, moderate-resolution data de-
rived from 30 meter resolution Landsat Thematic Mapper imagery has been used to classify
tree canopy cover. These moderate resolution datasets, such as the National Land Cover Data-
set (NLCD) [41], have allowed for nation-wide comparisons, but their usefulness is limited in
urban systems that exhibit fine spatial heterogeneity [42]. The advancement of high resolution
imagery and adoption of geographic information systems (GIS) by government entities has re-
sulted in an abundance of high resolution geospatial data that can be used to derive very high
(< 1m) spatial resolution vegetation data [43] including individual tree canopies. Accurate
land cover data from high resolution imagery may help uncover patterns in UTC cover masked
by the NLCD. Still, even with higher spatial resolution, important issues such as tree species ap-
propriateness for different climate zones remains difficult to ascertain [44].

High spatial resolution of social and biogeophysical datasets matter little if the appropriate
statistical analyses are not used. Some statistical methodologies used in ecology do not account
for the spatial structure of data. For example, ordinary least squares (OLS) regression is a com-
mon technique to assess relationships between dependent and predictor variables, yet it fails to
account for spatial autocorrelation, which may violate the assumption of independence of the
errors in the regression. Failure to account for spatial autocorrelation can result in biased re-
gression estimates due to a lack of accounting of spatial dependence in variables; or it can lead
to higher standard errors in the regression estimators affecting statistical inference [45]. Alter-
natively, spatial autoregression (SAR) models account for spatial autocorrelation and therefore
correct for violations of the assumptions in the classic linear regression models. The impor-
tance of SAR models has been widely demonstrated in various social and natural science fields
and at their intersection [46,47].

In this study we examine potential inequities associated with the distribution of urban tree
cover in relationship to race/ethnicity and income, in seven cities across the US: Baltimore,
MD, Los Angeles, CA, New York, NY, Philadelphia, PA, Raleigh, NC, Sacramento, CA, and
Washington, DC. This work is the product of a NCEAS (National Center for Ecological Analy-
sis and Synthesis) working group on the urban ecology of environmental justice. NCEAS work-
ing groups focus on discovering novel patterns in existing datasets rather than creation of new
datasets. The NCEAS participants chose these cities based on their expert knowledge and avail-
ability of high spatial resolution UTC cover. We hypothesized that urban tree cover would be
positively correlated with increasing income and negatively correlated with minority popula-
tions in all cities. In particular, we anticipated that bivariate analyses would indicate a statisti-
cally significant and strong negative relationship between tree cover and minority populations,
but the use of multivariate regressions incorporating control variables such as population den-
sity, housing age, education, and income would change that relationship. As all of our results
can also be influenced by moderate and fine resolution biogeophysical and social data, we ana-
lyzed these relationships using high resolution land cover classifications (1 m) as well as census
tracts and census block groups. We hypothesized higher spatial resolution data would indicate
stronger relationships among tree cover, income, and race/ethnicity due to increased accuracy
in describing the heterogeneity of urban systems. Many studies have examined the
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relationships associated with UTC and demographics, using ordinary least squares regression
(OLS), but because these variables are not randomly distributed across the landscape, we hy-
pothesized that spatial autoregression (SAR) would provide more robust results.

Materials and Methods

City Site Descriptions
The seven case study cities vary in social (Table 1) and biogeophysical (Table 2) characteristics.
Although high spatial resolution remotely sensed imagery is now freely available nationwide
through the National Agriculture Imagery Program (NAIP), land cover classifications for cities
using this imagery are still rare because they are expensive and time consuming to complete.
The seven cities in our study were not randomly selected but based on the pooling of data from
the NCEAS working group. Even though the cities are not stratified by social or biogeophysical
characteristics, there are important differences among cities. Average annual temperatures fall
within a band of 12.6 to 19°C (Table 2), and Los Angeles and Sacramento experience higher
mean temperatures and receive less rainfall compared to the other cities. The arid cities of Los
Angeles and Sacramento also have longer growing seasons and were not forested historically.
In these regions, trees grew in and around riparian corridors along with oak forests in the sur-
rounding foothills. For these California cities, water is a more important limiting factor to
plant growth than the length of the growing season. In addition, with a predicted drying cli-
mate, Sacramento and Los Angeles are expected to experience declines in water supply. Al-
though the East Coast cities (Baltimore, Raleigh, Philadelphia, New York City and
Washington, D.C.) have longer winters and more freeze days annually, growing season in-
creases slightly at the more southern locations, permitting higher growth rates and faster re-
growth after removal of UTC. Existing UTC cover varies considerably across the case study
cities, with the highest mean tree canopy percentage by CBG in Raleigh, NC (55%) and the
lowest in Philadelphia, PA (13%) (Table 2).

The cities represent a range of sizes, from New York City and Los Angeles (population
8,008,278 and 3,694,820 in 2000) to much smaller cities such as Raleigh, North Carolina (popu-
lation of 276,093 in 2000) (Table 1). The racial and ethnic makeup of the cities varies (Table 1).
Over 88% of the population in Baltimore, Philadelphia, Raleigh, and Washington D.C. self-
identify as either Black or White, and not Hispanic. In contrast, Los Angeles, Sacramento and
New York City are more racially and ethnically diverse. Differences in median household in-
come range from $30,078 in Baltimore to $46,612 in Raleigh. Populations vary in educational

Table 1. Site Descriptions—Social variables for the seven study cities.

Population
(2000)

Percent
Asian (2000)

Percent
Black (2000)

Percent
White (2000)

Percent
Hispanic (2000)

Median
Income (1999)

No HS
Diploma (%)

BA Degree or
Higher (%)

Baltimore, MD 651,154 1.5 64.3 31.6 1.7 30,078 31.6 19.1

Los Angeles, CA 3,694,820 10.0 11.2 46.9 46.5 36,687 33.4 25.5

New York, NY 8,008,278 9.8 26.6 44.7 27.0 38,293 27.7 27.4

Philadelphia, PA 1,517,550 4.5 43.2 45.0 8.5 30,746 28.8 17.8

Raleigh, NC 276,093 3.4 27.8 63.3 7.0 46,612 11.5 44.8

Sacramento, CA 407,018 16.6 15.5 48.3 21.6 37,049 22.7 23.9

Washington, D.C. 572,059 2.7 60.0 30.8 7.9 40,127 22.2 39.1

Please note that not all race categories are included and that respondents can select more than one race for the 2000 Census. Race and Hispanic origin

are considered separate. Median income refers to household income.

doi:10.1371/journal.pone.0122051.t001
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attainment (Table 1). For example, 33.4% of residents in the city of Los Angeles do not have a
high school diploma, while only 11.5% do not in Raleigh. Raleigh has the highest percentage
(44.8%) of residents with a Bachelor’s degree or higher compared to Philadelphia, which has
the lowest percentage of residents with a Bachelor’s degree or higher (17.8%).

Social Data
GIS data layers of census block groups (CBG) for the seven cities were derived from the 2000
US Census TIGER (Topographically Integrated Geographic Encoding and Referencing System)
dataset. Only census block groups that were completely within the boundary of the cities were
used in this study (census boundaries do not always align with municipal boundaries). The
same boundary data layers were used as the common boundary for all geospatial operations.
The number of block groups included in the analyses for each city are listed in Table 3. The so-
cial variables used in this study were calculated at the CBG level using data from the 2000 US
Census. Social variables include indicators of race, ethnicity, income, and educational attain-
ment. For race variables we used percent White, Black, and Asian and, for ethnicity, percent
Hispanic. For income, we used median household income. For educational attainment (age 25
+) we used percent with no high school diploma and percent with a bachelor’s degree or higher.
Percent of houses occupied by renters, median housing age, the percent of the CBG classified as
residential, and population density were also included in the analyses. Because our study focuses
on environmental justice we highlight results for race, ethnicity, and income; the remaining var-
iables act as controls in our regression analysis and are typical in empirical environmental jus-
tice research. In addition, the variables may further explain UTC cover density and distribution.

Biogeophysical Data—High Resolution Tree Canopy
The percent of tree canopy cover for each CBG was calculated based on tree canopy data de-
rived from high spatial resolution imagery. The imagery used included 0.6 m resolution pan-
sharpened QuickBird satellite imagery, 1 m resolution NAIP (National Agriculture Imagery
Program) near-infrared aerial imagery, and 0.15 m resolution natural color aerial imagery.
LiDAR (light detection and ranging) data with 0.5 m or 1 m resolution were also used to aid in
classification. Object-based classification approaches were used for tree canopy classification
for all cities, except Los Angeles, where a pixel-based approach was used. Overall accuracy for

Table 2. Site Descriptions—Biogeophysical variables for the seven study cities.

Mean Tree
Canopy % by
CBG

Mean
Annual
Precip

Mean Annual
Temp (°C)

Cooling
Degree Days

Heating
Degree
Days

Median Spring
Freeze Day
(-2.2°C)

Median Fall
Freeze Day
(-2.2°C)

Growing
Season
Days*

Baltimore, MD 22.34 41.94 12.6 4720 1147 3/30 11/10 226

Los Angeles, CA 17.61 15.14 19 1506 928 0/00 0/00 365

New York, NY 16.35 49.69 12.6 4754 1151 3/25 11/28 249

Philadelphia, PA 12.65 42.05 12.9 4759 1235 3/26 11/19 239

Raleigh, NC 54.64 46.49 15.3 3431 1456 3/15 11/22 253

Sacramento, CA 23.66 17.93 16.2 2666 1248 1/7 12/24 352

Washington, D.C. 27.52 41.94 12.6 4720 1147 3/30 11/10 226

Population and demographics from American FactFinder (factfinder.census.gov). Climate data from NOAA 1980–2010 Climate Normals: http://cdo.ncdc.

noaa.gov/cgi-bin/climatenormals/climatenormals.pl http://www.ncdc.noaa.gov/oa/climate/normals/usnormals.html

*Calculated as the number of days in between the median freeze days in fall and spring for each location.

doi:10.1371/journal.pone.0122051.t002
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the New York City classification was 96%, Sacramento was 92%, Philadelphia was 95%, and
Baltimore was 94%. The accuracy of the Los Angeles tree cover classification was assessed
using a stratified random sample of 100 parcels across the city, with an overall classification ac-
curacy of 88.6% based on pixel-by-pixel comparison [48]. Although overall accuracy was not
calculated for the remaining cities, similar data and procedures were used and we assume high
accuracy for those classifications as well.

Statistical Analyses
Bivariate and multivariate techniques were used in the analyses. Spearman’s correlation, ordi-
nary least squares (OLS) regressions, and spatial autoregressive (SAR) techniques were used to
investigate the relationship between key environmental justice variables (race, ethnicity, and
income) and UTC cover. The CBG served as the unit of analysis. The percent of UTC cover
was used as the response variable in subsequent statistical analyses.

Bivariate analysis and correlations between major variables has been a primary analytical
tool in EJ studies. It is used to establish a baseline incidence of disparities in the distribution of
environmental bads (or goods) and particular race, income and demographic characteristics.
In our analysis, we use the Spearman correlation measure as a simple indicator of association
between two variables (e.g. high values in one matching high values in another). We employ
this type of analysis in our paper in order to formulate a baseline “picture” that is comparable
across all cities in our analysis.

We next employ OLS in order to correct some of the obvious disadvantages that emerge
from bivariate analysis. Regression allows us to examine the effect of a change in one variable
on the value of another variable, controlling for other factors in the system under study. Empir-
ically, the correlation coefficient between two variables can be different from a multiple regres-
sion coefficient when one of the variables is the dependent variable and the other, the
independent variable. There is a theoretical possibility that a correlation coefficient between
two variables is the same with the one you would get in regression analysis, but that happens
only in the case of simple regression (one dependent and one independent variable) and only if
the standard deviations of the two variables coincide. In multiple regression, the researcher
captures the effects of other covariates (beyond the two that are included in the bivariate analy-
sis) with the result of different correlation and regression coefficients. Thus, results from bivari-
ate and multivariate (regression) analysis are expected to be different and not directly
comparable. Moving away from simple co-variation, the latter is a methodology that tries to
get closer to causation (but still is not causation).

Table 3. Spearman’s Correlation Results.

Baltimore Los Angeles New York Philadelphia Raleigh Sacramento Washington DC

CBG Tract CBG Tract CBG Tract CBG Tract CBG Tract CBG Tract CBG Tract

Percent Asian -0.01 -0.09 0.21** 0.17** 0.03** -0.02 0.03 0.05 0.06 0.09 -0.21** -0.35** 0.11* 0.06

Percent Black -0.4 0.04 -0.32** -0.33** 0.02 0.04 0.09** 0.08 -0.18* -0.35** -0.39** -0.57** -0.19** -0.02

Percent Hispanic -0.00 -0.09 -0.42** -0.48** -0.26** -0.25** -0.12** -0.16** -0.14 -0.17 -0.23** -0.27* -0.06 -0.08

Income 0.36** 0.38** 0.65** 0.67** 0.28** 0.23** 0.31** 0.45** 0.35** 0.38** 0.36** 0.31** 0.46** 0.32**

n 710 200 2449 839 5732 2216 1816 381 123 60 289 85 433 188

Note:

** p <. 01.

* p <. 05.

doi:10.1371/journal.pone.0122051.t003
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The OLS method assumes that the error terms are independent. From a spatially-explicit
perspective, this is an unrealistic assumption since according to Tobler’s Law [49], “everything
is related to everything else, but near things are more related than distant things.”Many studies
employing spatial data are typically hindered by the problem of spatial autocorrelation, which
biases coefficient estimates of the variables employed in OLS regressions—typically described
as providing best linear unbiased estimators [45].

Identification of spatial autocorrelation patterns requires the use of spatial autoregression
modeling and the comparison of the results from the two regression approaches. Anselin [45]
classifies spatial econometric models in two broad categories: models of spatial dependence
(capturing auto-correlative effects of distance in spatial processes) and spatial heterogeneity
(capturing the lack of stability or relationships across space). Spatial autoregression methods
bring the spatial interrelationship structure of the units of analysis into the standard multiple
regression in order to correct for problems of spatial autocorrelation. They quantify the spatial
relationship of a (dependent) variable by a n×n matrix of spatial weights with each element of
the matrix representing the strength of the interaction of two locations based on a proximity
measure such as contiguity or distance. Spatial regression models have become increasingly
popular in a variety of fields such as geography, economics, and political science [50], demog-
raphy [51], ecology [52], and other fields that rely on spatially explicit data.

There are two spatial autoregressive techniques that have foundations in theoretical and
practical considerations: the spatial lag (SLAG) model and spatial error (SEM) model [45]. The
SLAG assumes that the imposed spatial structure affects the dependent variable, introducing a
spatially lagged dependent variable. Typical theoretical explanations of the importance of the
SLAG include issues of externalities and spill-over effects. In our study, socioeconomic condi-
tions, local climatology, and ecological processes could account for such effects. A first order
mixed regressive-spatial autoregressive SLAG model takes the matrix algebra model form of:

y ¼ rWy þ Xbþ � ð1Þ

whereWy is a n×1 vector of the spatially lagged response variable, ρ is the spatial autoregressive
coefficient, X is a n×k vector of explanatory variables, β is the k×1 vector of regression coeffi-
cients and � is a n×1 vector of independently and identically distributed (iid) errors.

The SEMmodel incorporates the spatial effects into the error terms capturing the spatial
structure of unobserved variation e.g. from missing variables that are spatially autocorrelated.
This model is essentially capturing a spatial form of the problem of heteroscedasticity. The
SEMmodel takes the mixed regressive—autoregressive form of

y ¼ Xbþ ðI � lWÞ�1
� ð2Þ

where λ is the spatial autoregressive coefficient, W is the n×n spatial weight matrix, I is the n×n
identity matrix and ε is a n×1 vector of iid errors. This paper reports the first type of spatial
modelling (spatial dependence) using spatial autoregression methods.

We use a queen contiguity-based spatial weight matrixW (in the order of one) for all cities
in our study. This approach in creating spatial weight matrices imposes a spatial structure in
the units of observation that takes into account the topology of shared borders or vertices of
the irregular polygon data. All regression models and spatial statistics used for measuring spa-
tial autocorrelation are estimated using maximum likelihood estimation and are run on GeoDa
0.9.5-i software platform [53].

The spatial models are compared through the Akaike Information Criterion (AIC) and log-
likelihood statistic [45]. A higher value of log-likelihood and a lower value of AIC point to a

Trees Grow on Money: Urban Tree Canopy Cover and Environmental Justice

PLOS ONE | DOI:10.1371/journal.pone.0122051 April 1, 2015 7 / 17



model with a better fit. Only the model with the best fit (using spatial lag or spatial error) is re-
ported in the results. The model with the best fit is indicated in table 4.

Results

Bivariate Analysis
In some cities, the bivariate analyses reveal negative and significant relationships among race,
ethnicity, and UTC cover. However, the signs of the estimated coefficients are not consistent
across all cities. Specifically, the relationship between UTC cover and percent Asian is positive
and significant for Los Angeles and negative and significant for Sacramento (Table 3). The rela-
tionship between UTC cover and percent Black is negative and significant for Los Angeles, Ra-
leigh, Sacramento, and Washington D.C. (Table 3, Figs. 1 and 2). The relationship between
UTC cover and percent Hispanic is negative and significant for Los Angeles, New York City,
Philadelphia, and Sacramento (Table 3). Consistent across all cities is a positive and significant
relationship between UTC cover and median household income (Table 3).

Multivariate Analyses
In general, the multivariate regressions reveal that with the addition of other control variables
the relationships between race or ethnicity and UTC are not as strong likely due to collineari-
ty among the variables included in the regression. Negative and statistically significant associ-
ations between percent Asian and UTC cover are observed in Los Angeles and New York City
although the regression coefficients are very small (Table 4). In Baltimore, Philadelphia, and
New York City, there is a significant and positive association between percent Black and UTC
cover but regression coefficients are very small (Table 4). Relationships between percent
Black and UTC are significant and weakly positive in Raleigh and negative in Los Angeles but
only using OLS models; they are not significant using SAR models. Finally, there is a signifi-
cant and positive association between percent Hispanic and UTC cover in Los Angeles (OLS),
Philadelphia (OLS & SAR), and Washington D.C. (OLS) although the regression coefficients
are very small (Table 4).

Income, which was positively correlated with UTC and highly significant across all cities in
the bivariate analyses, shows positive and statistically significant in most cities for the multi-
variate regressions but the magnitude of the coefficients is not large (Table 4). We estimate
that an increase of median household income by $1,000 (in 2000 dollars) brings about a range
of 0.05–0.20 point increase in the percent of UTC for the majority of our cities. Philadelphia
and Washington D.C. present the highest positive income coefficients. New York and Raleigh
are the only two cities with a negative effect of income; the magnitude of that effect is very
close to zero for New York—even if statistically significant—while it is more substantial in the
case of Raleigh.

We also examine the effects of income through the use of SAR models. The SAR models
that account for the spatial structure of the data consistently provide more robust results com-
pared to the OLS models, as evidenced by higher r-square values across all cities (Table 4).
Overall, while the SAR models do not substantially alter our findings about the signs of income
coefficients, differences occur in terms of magnitude and statistical significance. In the case of
Los Angeles, the statistical significance of the estimated positive income coefficient is reduced.
The SAR models also reduce the size of the positive income coefficient for Philadelphia and
Washington, D.C. In the case of Raleigh, the difference between the estimated income coeffi-
cients for OLS models and the SAR models are minimal. Our findings suggest collectively that
in addition to our variables exhibiting collinearity they are also spatially clustered.
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Discussion
Correlations between the distribution of benefits and socio-economic variables can vary across
cities. Baltimore is not the same as Philadelphia, but the cities may share policies and regula-
tions that have the potential to create environmental injustice. However, factors such as cli-
mate, demographics, and city size may filter the outcome that shared processes have on the
distribution of environmental amenities and burdens. Demographics or, more specifically, ra-
cial and ethnic diversity differs among the represented cities and may represent an alternative
explanation to climate. Along with an arid climate, Sacramento and Los Angeles have greater
racial and ethnic diversity compared to the other cities with a larger portion of the population
self-identifying as Asian or Hispanic. The only city in the Northeast with comparable racial
and ethnic diversity is New York City, which demonstrates negative correlations between UTC
cover and ethnicity, but not race. We have approached our analyses using various statistical

Fig 1. A spatially-explicit map depicting the percent of the population that self-identifies as black (left
panel) and the percent of UTC cover for Sacramento City, CA (right panel).

doi:10.1371/journal.pone.0122051.g001

Fig 2. A spatially-explicit map depicting the percent of the population that self-identifies as black (left
panel) and the percent of UTC cover for Baltimore, MD (right panel).

doi:10.1371/journal.pone.0122051.g002
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methods, each one revealing something new about our data. The most significant finding from
each method is listed in Table 5.

Cities are patchy landscapes, and this unevenness can lead to inequitable distribution of en-
vironmental benefits and burdens [54,55]. We expected all of the seven cities to show that
neighborhoods with lower-income, less education, and high percentages of people of color
would have low UTC cover. Overall, our results confirm that UTC cover is related to social
characteristics of neighborhoods but not consistently across cities that vary in climate, size, and
racial and ethnic composition. We also found that the ability to detect patterns in the data is af-
fected by statistical method (OLS vs. SAR). Accounting for spatial autocorrelation produces
more robust models and in certain cases corrects the aspatial specification bias of regular OLS
estimation (Table 4).

The most striking pattern in the data comes from the bivariate analyses which reveal a
strong positive relationship between UTC cover and income across all cities. Our multivariate
regression analysis, controlling for other factors, reveals a positive relationship between UTC
cover and income for most cities in our study (with the exception of New York and Raleigh).
As our methodology section explains, it is theoretically possible to have two variables with pos-
itive correlations through bivariate analysis that become negatively related in a multiple regres-
sion context; controlling for other variables adjusts for the potential bias in the coefficient of
the income variable, with the resulting sign reversal in the case of two cities in our study. The
relationship between UTC cover and income may be the result of a feedback loop where high
amounts of UTC cover increase property values and further attract households with high in-
comes. This positive feedback loop may support the continued maintenance of UTC cover in
neighborhoods with high-income households and high levels of homeownership. Similarly,
areas with low UTC cover have low property values, and residents may have less access to re-
sources or incentive to increase property values because they are renters or on fixed incomes.
Residents in low income neighborhoods might reasonably resist increases in UTC cover to
avoid gentrification and rising rents [56]. The cost of tree maintenance, such as leaf clean-up,
watering, and pruning, is another disincentive that can be particularly acute in low-income
neighborhoods [33].

Table 5. Statistical Methods Used.

Question Statistical Method Finding Implication

Is UTC cover
distributed equally
in the cities
examined?

Spearman’s
Correlation

Positive correlation with
income across all cities.
Strongest correlations among
UTC and race occur in arid
cities.

Regardless of what drives the
pattern, the pattern exists—
UTC cover is not equally
distributed in regards to
income, and in some cases,
race.

What other
variables drive the
distribution of UTC
cover?

Ordinary Least
Squares
Regression

There are no strong
consistent drivers across all
cities.

This is likely due to
collinearity among the
variables included in the
regression providing less
explanatory power.

Do the data have
significant spatial
structure?

Spatial
Autoregressive
Model

SAR models result in a better
fit, evidenced by higher r-
square values.

This suggests that in addition
to our variables exhibiting
collinearity, they are also
spatially clustered.
Accounting for the spatial
structure improves fit.

doi:10.1371/journal.pone.0122051.t005
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Income is so strongly associated with UTC cover that it must be controlled for in the analy-
ses in order to detect additional drivers. Race/ethnicity was not consistently a significant factor
in the bivariate analyses (Table 3) and few factors in addition to income were significant in the
multivariate analyses (Table 4). However, in the bivariate analyses of our California cities, we
did see evidence of a link between race/ethnicity and UTC (Table 3). For Sacramento and Los
Angeles, percent black and percent Hispanic are strongly and negatively correlated with UTC
cover, but the relationships are weak or insignificant for the other cities. A distinguishing char-
acteristic of the California cities is their arid climate. Trees planted in more arid climates re-
quire irrigation in order to survive, while in temperate regions of the United States, trees can
grow without water subsidies on unmanaged lands. Given the high water resource require-
ments in arid cities, the dominant role of income in driving UTC cover likely creates a greater
potential for environmental injustice in cities receiving little precipitation. Natural growth and
regeneration of trees in cities with greater precipitation could dampen any effects of different
levels of resources allocated towards growing and maintaining UTC cover.

In arid climates, trees place a direct demand on limited resources, such as water, and an in-
direct demand on additional resources, such as energy used to transport that water, making
trees more costly from an environmental, social, and economic perspective. In arid climates,
treeless areas may represent less investment in UTC cover and/or management, while in tem-
perate areas, treeless areas may not be a reliable indicator of low investment. In contrast, tree-
less areas may represent areas of greater economic and/or community investment, such as the
costs of maintaining grassy areas. Nevertheless, the results of this study cannot be interpreted
without consideration of some important caveats, which we outline below.

Other variables may be better predictors of tree canopy cover
This study was framed by environmental justice, which focuses on race and ethnicity as well as
other social status characteristics (e.g., income, education, homeownership) as the variables of
concern. While the models included population density and housing density as proxies for
building density, other variables such as urban morphology [57], impervious surface, land
rents, past tree canopy cover, water budgets, tree planting policies, and dominant tree species
might generate more robust models.

Examining patterns between race and amenities does not capture intent
Identifying patterns of inequity are important and bring attention to the inequitable distribu-
tion of environmental goods or bads but it is equally important to understand the processes
driving the inequitable distribution. Consideration of both distributional and procedural equity
can help explain why the expected patterns predicted by environmental justice theory are not
always present [15,58,59]. For instance, the high amount of green vegetation in predominantly
African American neighborhoods in Baltimore may be reflective of the increased number of
vacant lots in those neighborhoods, which resulted in part from decades of deliberate disinvest-
ment and discrimination [6,60].

Vegetation structure and social structure may be mismatched
Our study is a comparison of current vegetation structure and how it relates to current social
structure. However, trees are long-lived organisms that can take a very long time to establish
and grow. In contrast, the social structure of cities can change more rapidly. Recent studies
have highlighted this phenomenon describing the current landscapes we observe as legacies of
past consumption patterns [11]. Specifically Boone et al. [11] found that vegetation operating
at short time scales (i.e. lawns) reflect current lifestyle characteristics, while vegetation that
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takes longer to establish (i.e. trees) are reflections of the characteristics of past residents. Re-
search that does not include a historical analysis is still valuable as it represents current patterns
and potential inequities associated with environmental amenities, but it is also important to
keep in mind that present day patterns could be the result of inherited landscapes. This may be
especially true for systems where trees are not part of the native landscape and are typically
planted at the time of development. A more complete picture of the correlations between tree
canopy cover and social characteristics could be obtained from analyzing multiple time periods
that correspond to the life expectancy of dominant species of trees in the study area. However,
incorporating the importance of legacies and inherited landscapes into studies such as these re-
quires multiple and compatible datasets.

Tree cover canopy is treated as homogeneous across the unit of
analysis
In reality, tree canopy cover may be clustered with some residents in census block groups
experiencing greater coverage and others experiencing less. In addition, our analysis does not
distinguish between tree canopy cover on public versus private lands or residential versus non-
residential lands. This may be important as management regimes likely differ on public versus
private and residential versus non-residential lands [43]. This distinction may also speak to the
total plantable surfaces that are available for increasing UTC cover. In addition, by not distin-
guishing between residential and non-residential we may be inflating or decreasing tree canopy
cover. For a CBG that contains a small residential area and a large park, the sum of all the trees
within the tract will be correlated with the social characteristics that correspond to only the res-
idential area of the CBG.

Trees are not always an environmental amenity
While trees are generally accepted as an environmental amenity, evidenced by the many public
and private investments supporting increased tree canopy cover; trees are sometimes consid-
ered a disamenity, especially in places of disinvestment [9]. Trees may place a direct demand
on limited resources, such as water, and an indirect demand on additional resources, such as
energy used to transport water. In addition, there is the perception that increased vegetation fa-
cilitates crime [36,61] although recent research in Baltimore has shown a decrease in crime
with increasing UTC cover [62]. Residents may also incur maintenance costs [36]. Trees can
also be a source of allergens and pollution precursors (VOCs). While some of the benefits at-
tributed to increased tree canopy cover are well supported in the scientific literature, others,
such as the removal of atmospheric pollutants, are more tenuous [34]. For many of the pur-
ported ecosystem services attributed to increased tree cover the data simply do not exist in
order to adequately evaluate and quantify the service provided [34]. More research is needed in
order to accurately evaluate the ecosystem services provided by increased tree canopy cover
and evaluate the tradeoffs.

Conclusion
Money may not grow on trees, but this study suggests that in a way, trees grow on money. Our
findings show that high-income neighborhoods in our selected cities are more likely than low-
income neighborhoods to have high tree canopy cover. We did not find, however, the expected
pattern of low tree canopy cover in neighborhoods with a high percentage of racial and ethnic
minorities for all cities; only in the California cities of Sacramento and Los Angeles did we see
such a result. Since these cities depend on irrigation to maintain tree canopy cover, this distin-
guishing factor of aridity may amplify socioeconomic differences in neighborhood tree cover
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more than in the humid temperate cities we analyzed. In-depth analyses of the costs and bene-
fits of maintaining tree cover in arid and humid environments along with qualitative analyses
of residential land management practices could provide some explanation for these differences.

Increasing UTC has become a widespread goal, often incorporated into municipal sustain-
ability plans. It has been proposed as a way to mitigate impacts from human-dominated sys-
tems on the immediate (e.g. shade and cooling) and global (e.g. carbon capture) environment.
Sacramento Tree Foundation has pledged to plant five million trees by the year 2025, an effort
that would double the region’s tree canopy cover. Philadelphia has established a goal of increas-
ing tree canopy cover to 30% by the year 2025 (www.phila.gov/green/trees). New York City,
Baltimore, and Los Angeles have also announced extensive tree planting initiatives (www.
milliontreesnyc.org, www.baltimorecity.gov, www.milliontreesla.org). In addition to regional
efforts, there are national and global efforts to bring more awareness to the benefits of UTC
cover (Urban Environmental Accord 2005, www.sfenvironment.org/downloads/library/
accords.pdf; http://www.plant-for-the-planet-billiontreecampaign.org/Partners/
VariousPartners/TreePlanting.aspx). One of the implications of embedding tree canopy goals
in sustainability plans is that environmental justice is frequently included as an objective of the
plans, and sometimes explicitly linked to UTC. For example, Philadelphia’s 2009 GreenWorks
Plan includes goals of increasing tree canopy cover in all neighborhoods highlighting the desire
for the equitable distribution of UTC cover (www.phila.gov/green/greenworks/
2009-greenworks-report.html).

If the equity dimensions of sustainability are put into practice, UTC goals can help to re-
dress environmental injustices. However, it is important to note that tree planting schemes are
not a panacea for environmental justice. Often overlooked is that the presence of trees can gen-
erate disservices, and in some cases costs may exceed local benefits or local desire and capacity
to care for trees and other green infrastructure [33,34,63]. Benefits from tree canopy cover
must therefore be assessed in spatially explicit ways, since in some circumstances tree cover
will provide strong positive services while in others tree cover may provide negligible benefits
or disservices.

The association between income and tree canopy cover has important implications for
urban sustainability plans, many of which include increased UTC cover as a goal. If UTC and
income are positively reinforced (through property values, investments, or other mechanisms)
any public or private interventions to increase tree canopies might first consider the needs of
low income communities, provided that the economic and ecological benefits do not outweigh
the costs and that the initiatives are supported by local residents. In addition to considering
distributional equity, urban sustainability goals need to be supported by stronger science on
perceived ecosystem services provided by UTC cover so that justice can be considered in terms
of the distribution of ecosystem services, not just the equitable distribution of trees.
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