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Abstract

Objective

Social media exhibit rich yet distinct temporal dynamics which cover a wide range of differ-

ent scales. In order to study this complex dynamics, two fundamental questions revolve

around (1) the signatures of social dynamics at different time scales, and (2) the way in

which these signatures interact and form higher-level meanings.

Method

In this paper, we propose the Recursive Convolutional Bayesian Model (RCBM) to address

both of these fundamental questions. The key idea behind our approach consists of con-

structing a deep-learning framework using specialized convolution operators that are de-

signed to exploit the inherent heterogeneity of social dynamics. RCBM’s runtime and

convergence properties are guaranteed by formal analyses.

Results

Experimental results show that the proposed method outperforms the state-of-the-art ap-

proaches both in terms of solution quality and computational efficiency. Indeed, by applying

the proposed method on two social network datasets, Twitter and Yelp, we are able to iden-

tify the compositional structures that can accurately characterize the complex social dynam-

ics from these two social media. We further show that identifying these patterns can enable

new applications such as anomaly detection and improved social dynamics forecasting. Fi-

nally, our analysis offers new insights on understanding and engineering social media dy-

namics, with direct applications to opinion spreading and online content promotion.
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Introduction
All activities in social networks evolve over time. Consequently, understanding the structures
behind social dynamics represents a central question in social networks research, with many
important applications including political campaigning [1], viral marketing [2], and disaster
response [3]. While several recent works have investigated methods to identify patterns of so-
cial dynamics [4–7], in this paper, we study a new, unexplored perspective of social dynamics,
namely,multi-scale compositionality.

Studying multi-scale compositionality consists of identifying the compositional structures of
social media dynamics, which generally covers two tasks:

T1. Identification of multi-scale signatures, which consists of identifying distinct signatures
across a range of time scales, as opposed to sticking with a single one;

T2.Mining of compositional interactions, which requires discovering the interaction among
multiple such signatures that produce higher-level meanings.

To illustrate these ideas, consider the case of human face recognition, where the first task in-
cludes recognizing the eyebrows, the cheeks, or the overall head shape. In contrast, the second
task includes gauging the distance between the eyebrows, measuring the angle between the jaw
and the ears, or recognizing the polygon formed by the lips, cheeks, and eyebrows. To recog-
nize a human face, both tasks are equally important: one could make a mistake by either recog-
nizing the wrong shape of an eyebrow, or by over/underestimating the distance between
the eyebrows.

In the context of social dynamics, we find the same two tasks as being equally relevant. In-
deed, social media exhibit distinct signatures at various time scales that range from seconds to
days, whereas different combinations of such signatures can have totally different meanings
and consequences. For example, an intense popularity of some keywords followed by a vibrant
discussion may indicate a trendy event; however, the same popularity without any follow-up
discussion can, on the contrary, indicate an internet scam. Clearly, being able to distinguish be-
tween the two cases can make a big difference.

In this paper, we propose a new model, namely, the Recursive Convolutional Bayesian
Model (RCBM), which is capable of addressing both tasks. The idea of RCBM is building a lay-
ered structure of signature detectors, where each layer is responsible for a specific time scale.
Moreover, a higher-level layer is capable of detecting the interactions of various signatures (as
they come from its immediate lower layer), and hence can identify compositional structures.

To the best of our knowledge, this work brings the following new contributions:

1. Design and Analysis of RCBM: We propose RCBM, a new deep learning framework based
on specialized convolution operators. While the formulation of RCBM is general enough to
consider the heterogeneity of social signals, its runtime performance and solution quality
are analyzed formally and confirmed experimentally. Of note, this is the first time when
deep learning is used in the context of social dynamics.

2. Identifying the Compositional Structures of Social Dynamics: Using RCBM, we discover that
the social dynamics in Twitter are characterized by signatures representing the dynamics’
popularity, contagiousness, stickiness, and interactivity. On the other hand, the social dy-
namics in Yelp are characterized by signatures representing how different groups of review-
ers rate individual businesses. Further, we find the patterns where theses signatures interact
by generating, enhancing, or dominating one another.
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3. RCBM-Enabled Applications: We investigate new applications enabled by RCBM, including
the detection of abnormal social dynamics and the forecasting of social dynamics with fea-
tures extracted using RCBM.

Finally, our RCBM belongs to a broader family of methods called deep learning[8, 9], which
has recently revolutionized the fields of Computer Vision [10–12] and Natural Language Pro-
cessing [13, 14] by generating results that outperform the previous state-of-the-arts both in un-
supervised and supervised settings. Being the first work that introduces deep learning to the
social realm, we believe our paper can serve as a starting point toward defining many new re-
search directions and applications.

Related Work
There are three main lines of research that are relevant to the topic presented here: (1) mining
patterns of social dynamics, (2) time series dictionary learning, and (3) deep learning.

Mining patterns of social dynamics. Several papers have investigated methods of identi-
fying patterns for social dynamics [4–7]. In particular, endogenous vs. exogenous trends are
studied in [4]; the shape of aggregate popularity is looked at in [5]; the proportions of reader-
ship before, at, and after the peak are investigated in [6]; an efficient clustering algorithm for
multi-dimensional social dynamics in general is proposed in [7]. Our work compliments all
these works by additionally considering the tasks T1 and T2 mentioned in Section 1.

Time-series dictionary learning. The research in time-series dictionary learning targets
the general problem of mining structures from time-series streams [15–19]. Along this line, the
authors of [15, 16] make use of a fixed-length sliding window to extract the subsequences fol-
lowed by conventional clustering methods. Since the length of the sliding window is fixed, nei-
ther task T1 nor T2 above is addressed. In [17], a method based onminimum description
length is proposed to consider variable scales. Also, the authors of [18, 19] introduce the con-
cept of shapelets that does not rely on specific scales. Although T1 is partially addressed in
these works, T2 is not considered. Moreover, latent factor methods like [20, 21] model multi-
variate time series using hidden variables. Along this line, the State Space Model [20] builds a
linear dynamical system assuming time-invariance and linearity. Also, Sparse Coding [21] can
be used to discover global signatures for pre-aligned time series. Although these methods also
make use of latent factors like RCBM, they do not address T1 and T2. Finally, the authors of
[22, 23] combine a convolutional formation with sparse coding. While the work of [22] does
not address T1 and T2, the work of [23] is designed for image applications where the input ma-
trix is assumed to be homogeneous in both dimensions. Our method here is different, since it
is designed for social dynamics where the input matrix is assumed to be homogeneous in one
direction (i.e., time) but heterogeneous in another (i.e., feature).

Deep learning. Research in deep learning has recently gained much attention in super-
vised learning such as classification and regression [13, 14], as well as unsupervised learning
such as feature extraction [11] and dimension reduction [24]. Moreover, there are also works
that formulate deep learning using convolution [10, 12]. In particular, the authors of [12] pro-
pose the Convolutional Deep Belief Network (cDBN), which combines the Reduced Boltzmann
Machine with the matrix convolution. Its sampling-based learning algorithm, however, is not
efficient enough for practical use. The Convolutional Autoencoder (cAE) proposed in [10] rep-
resents the current state-of-the-art among convolutional deep architectures. When applied to
image recognition, it not only produces meaningful features that mimic the ones used by hu-
man’s visual cortex area V2, but it also generates classification results that outperform the
state-of-the-art. When applied to social dynamics, our proposed RCBM has two advantages
over cAE. First, cAE uses the conventional convolution operator that overlooks the
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heterogeneity inherent in social dynamics. RCBM, in contrast, uses specialized convolution op-
erators that exploit the heterogeneity of social dynamics, and therefore offers higher-quality so-
lutions yet requires much less runtime. Second, the higher-level layers of cAE have much more
hidden variables compared to its lowest-level layer. In RCBM, on the contrary, the number of
hidden variables of each layer remains roughly the same, which further enhances RCBM’s
efficiency.

Materials and Methods
We now present our Recursive Convolutional Bayesian Model (RCBM), a probabilistic model
that learns the compositional structures of social dynamics. In turn, we introduce the base
Convolutional Bayesian Model (CBM), its learning algorithm, and the way to construct an
RCBM using multiple-layer CBM’s.

CBM: the Base Model
Problem definition. We use a generic information token (e.g., Youtube video, photo,

hashtag, etc) as the proxy of social dynamics. Since the social dynamics that emerge while an
information token is being propagated across a social network can be characterized by multiple
statistics (e.g., the ones mentioned in Section 2), we use X 2 RD×T to represent the D-dimen-
sional social dynamics corresponding to an information token (e.g., D = 2 for the X in Fig. 1).
The precise definition of X depends on the dataset and the application. See Section 5.1 for the
cases of using Twitter and Yelp datasets. All notations in this paper are summarized in Table 1.

Given a set of social dynamics fXðiÞgðnÞ
i¼1 (associated with n information tokens), our problem is

defined as finding a set of D-dimensional structures (e.g., theW1 andW2 in Fig. 1) that best
characterize these dynamics.

Assumptions. We aim at solving the above problem under the following three
assumptions:

A1. Finite Structures: the social dynamics can be characterized by a finite number of structures
that are invariant to shifting in time and scaling in magnitude.

A2. Burstiness: the distribution for the magnitude of the social dynamics is right-skewed; it is
typically small but can be occasionally very large.

Fig 1. CBM’s generation process.W: filter matrices; h: activation vectors; X: social dynamic. The filtersW1

andW2 are activated differently depending on their corresponding activation vectors h1 and h2, respectively.

doi:10.1371/journal.pone.0118309.g001
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A3. Heterogeniety: for each D-dimensional structure, all dimensions have different meanings
and no one is an exact copy of another.

The validity of these assumptions has been reported by many previous authors. Indeed, A1 is
discussed in [5–7], A2 in [1, 4, 25], and A3 in [5, 26].

Model. We postulate that each social dynamic X is generated by random activations of fil-
ters. For illustration, consider Fig. 1 whereW1 andW2 represent two filter matrices, while h1
and h2 represent their activation vectors, respectively. From the figure, the social dynamic X is
generated by making copies of the filter matricesW1 andW2. Moreover, the activation vectors
determine the time-shift and the magnitude of these two copies: h2 is active earlier but weaker,
hence the first weaker signal in X; h1 is active later but stronger, hence the latter
stronger signal.

Formally, given a set of K filters fWkgKk¼1, our generation process for a social dynamic X is:

1: Sample fhkgKk¼1 such that hk½t� � ExpðbÞ 8k; t

2: X ¼PkWk � hk þ � where � � Nð0; s2Þ:
ð1Þ

Here Exp(�) and N(�) denote the Normal and Exponential distributions, respectively, with pa-
rameters β and σ. Also,� denotes our specialized convolutional operator that carries out the
“scale-and-copy” task illustrated in Fig. 1. It is defined as:

ðW � hÞ½d; t� ¼
XTw
s¼1

h½t þ Tw � s� �W½d; s� 8d; t: ð2Þ

Table 1. Summary of all notations in this paper.

Base Model

X social-dynamic matrix. X 2 RD×T

Wk the k-th filter matrix. Wk 2 RD�Tw

hk the k-th activation vector. hk 2 RT
þ
þTw�1

σ, β parameters of P(Xjh) and P(h), respectively

K the number of filters (in one level)

Tw filter scale

Model Learning

fXðiÞgðnÞi¼1
set of n sample social dynamics

n size of sample social dynamics

hðiÞ
k

the k-th activation vector of the i-th sample

thk
,tWk

step-sizes for updating hk and Wk, respectively

h½r�
k

the solution of hk in the r-th optimization iteration

W ½r�
k

the solution of Wk in the r-th optimization iteration

Stacking Multiple Layers

Xl input dynamic at level l

hl,k the k-th activation vector at level l

Wl,k the k-th filter matrix at level l

Kl the number of filters at level l

c the factor used for downsampling

L the number of levels of an RCBM

doi:10.1371/journal.pone.0118309.t001
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Note that the� operator differs from the conventional matrix convolution used in [10, 12]. Ef-
fectively,� does D 1-D convolutions between each row ofW and the entire h, and puts the re-
sults back to each row of the output matrix separately. Moreover, the above generation process
implies a joint distribution P(X,h) = P(Xjh)P(h) where:

PðXjh;W; sÞ ¼
ffiffiffi
2

p

s
ffiffiffi
p

p exp
jjX �PkWk � hkjj2F

�2s2

� �

Pðh; bÞ ¼ 1

b
exp

P
kjjhkjj1
�b

� �
:

ð3Þ

CBM features. The design of CBM closely reflects our assumptions A1* A3. To address
A1, we use a convolutional formulation such that the structures (i.e., the filtersW’s) are invari-
ant to shifting in time and scaling in magnitude. To address A2, we enforce burstiness by as-
suming that the magnitude of the activation vectors (i.e., h’s) follows an exponential
distribution, which is typically small but occasionally large. This will also enforce sparsity for
activation vectors during model learning (see Section 3.2). Finally, to address A3, we consider
heterogeneity using our specialized convolutional operator� instead of the conventional ma-
trix convolution. As we will show in Section 4, this provides provable advantages in both run-
time and solution quality.

CBMModel Learning
Since givenW and h, the Maximum Likelihood Estimators (MLE) for σ and β (in Equation 3)
can be calculated in closed form, the main challenge for learning a CBM lies in estimatingW in
presence of the hidden variables hk’s. Formally, the problem can be written as:

W� ¼ arg max
W

logPðXÞ ¼ arg max
W

log
Z

PðXjhÞPðhÞdh: ð4Þ

Assuming that P(W,h) peaks with respect to (w.r.t.) h, we obtain the approximation:

W� 	 arg maxWmaxh log PðXjhÞPðhÞ

¼ arg maxW;h

�1

2
kX �

X
k
Wk � hkk2F �

s2

b

X
k
khkk1;

ð5Þ

where jj�jjF denotes the Frobenius norm. Now, considering a set of n samples of social dynam-

ics fXðiÞgni¼1 and their corresponding activation vectors ffhðiÞ
k g

K

k¼1g
n

i¼1
, Equation 5 becomes:

arg minW;h

X
i

1

2
jjXðiÞ �

X
k
Wk � hðiÞ

k jj2F þ
s2

b

X
k
jjhðiÞ

k jj1
� �

s:t: jjWkjjF 
 18k
hðiÞ
k � 08k; i:

ð6Þ

In Equation 6, two additional constraints are incorporated to improve the solution quality of
W. Specifically, the first constraint preventsWk from blowing up, because otherwise the objec-
tive function can be trivially improved by scaling up (and down)Wk (and hk) by the same fac-
tor. Also, the second constraint helps ensure that the signs ofWk are not arbitrary and hence
can be interpreted coherently. We note that Equation 6 is similar to sparse coding in [21] with
two important distinctions. First, the conventional matrix multiplication is used in sparse cod-
ing whereas a convolutional formulation is used in Equation 6. Second, in sparse coding, the
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penalty strength (usually denoted as λ) needs to be tuned manually, whereas in Equation 6, the

value of s2

b can be assigned using MLE with a straightforward meaning.

To solve Equation 6, since the problem is convex w.r.t. each one ofW and h (but not both),
we alternate between optimizing over one of them while keeping the other one fixed. To start
with, we first derive the derivatives of the smooth part of the objective function (i.e.,

f1ðW; hÞ ¼ 1
2
kXðiÞ �

X
k
Wk � hðiÞ

k k2

F) w.r.t. h andW:

rf1ðhðiÞ
k Þ ¼ ~Wk �

P
jh

ðiÞ
j �Wj � X

� �

rf1ðWkÞ ¼ P
i
~hðiÞ
k � P

jh
ðiÞ
j �Wj � X

� �
:

ð7Þ

Here, the deconvolution operator� is defined as:

ðW � XÞ½t� ¼
XD
d¼1

XTw
s¼1

X½d; t � sþ 1� �W½d; s�: ð8Þ

Again, the� operator differs from the conventional matrix convolution. Effectively, it calcu-
lates the 1-D convolutions of individual rows ofW and X separately, and then adds them to-
gether to form a single row. This brings the same advantages as� does as mentioned at the
end of Section 3.1.

Stepsize assignment. Typically, one can use line search [27] to determine the stepsize in
gradient-based methods. In our case, however, doing so would slow down the optimization
considerably because the line search itself needs many additional convolutions. Therefore, we
derive the following stepsize assignments for h andW, respectively:

thk ¼ a

jjWkjj21

tWk
¼ aP

ijjhðiÞ
k jj21

;

ð9Þ

where α 2 (0,2). In Section 4, we show that these stepsize assignments are essential to ensure
good runtime and convergence properties.

Overall algorithm. Algorithm 1 provides the pseudocode for CBM learning. It takes as in-

puts a set of n sample social dynamics fXðiÞgn

i¼1, the scale of the filters Tw, and the number of fil-

ters K, and produces as outputs all model parameters including fW ½r�
k g

K

k¼1, σ, and β. In each
iteration of the main repeat loop of Algorithm 1, three tasks are executed in turn: Task 1 (the
first for-loop) consists of solving Equation 6 w.r.t. h; Task 2 (the second loop) consists of ad-
vancing one step toward the solution of Equation 6 w.r.t.W; Task 3 (the reminder two lines)
consists of calculating the MLE for σ and β.

The details of Task 1 are presented in Algorithm 2. This is basically designed based on the
Nestrov acceleration [28] and the proximal method [27], where the function Sþl ð�Þ is an ele-
ment-wise function defined as:

Sþl ðuÞ ¼
u� l if u > l

0; otherwise:

(

Identifying the Compositional Structures of Social Dynamics
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Task 2 is conceptually similar to Task 1, whereP(�) is defined as:

PðWÞ ¼
W=jjWjjF if jjWjjF > 1

W; otherwise:

(

Algorithm 1 Learning of CBM

Data: fXðiÞgni¼1: n sample social dynamics
Data: Tw: scale of the filters
Data: K: number of filters

Result: fWkgK
k¼1: solution filters

Result: σ, β: additional model parameters

W ½�1�
k ¼ W ½0�

k ¼ random initialization 8k
σ = β = 1
λ = σ2 thk

/β
r = 0
repeat

r = r + 1
for i = 1 to n do
for k = 1 to K do

fhðiÞ
k g

K

k¼1 = optimize_over_h ðXðiÞ; fW ½r�1�
k gKk¼1;s; bÞ

end
end
for k = 1 to K do

tWk
¼ a=

P
ijjhðiÞ

k jj21
y ¼ W ½r�1�

k þ r�2
rþ1

ðW ½r�1�
k �W ½r�2�

k Þ
W ½r�

k ¼ Pðy � thkrf1ðyÞÞ
end

s ¼ 1
n

P
ijjXðiÞ �PkW

½r�
k � hðiÞ

k jj2F
� �1

2

b ¼ 1
n

X
i;k
khðiÞ

k k1
until convergence;

return fW ½r�
k g

K

k¼1, σ, and β

One distinction is that instead of solving h until convergence as in Task 1, only a single up-
date is conducted here. Finally, Task 3 calculates the close-form solution of MLE for σ and β.
Since the whole algorithm can be viewed as a case of Coordinate Descent [27], it is guaranteed
to converge.

Specifying parameters. Algorithm 1 has two parameters, Tw and K, that need to be sup-
plied by the user. The filter scale Tw can be conveniently specified as any small number (e.g.,
letting Tw 	 D) without the need to worry about overlooking the structures at larger scales.
This is because the high-level structures with larger scales are meant to be captured by the
CBM’s at higher levels (that will be described later).

Regarding the number of filters K, since CBM has a natural corresponding probabilistic
model (i.e., P(X,h) according to Equation 3), a naive method is trying out a range of different
K’s and select the one that produces the highest Bayesian Information Criterion (BIC) [29],
where the latter is a standard metric for model selection. Doing so, however, is very expensive
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because it requires training a large number of CBM’s. Therefore, we propose the following
three-step method for selecting K:

1. Pick a large K and train a CBM.

2. Sort all filters such that:

p 
 q ,
Xn
i¼1

Xp

k¼1

jjhðiÞ
k jj1 �

X
i

Xq

k¼1

jjhðiÞ
k jj1: ð10Þ

Algorithm 2Optimization over h

Data: X: a sample social dynamic

Data: fWkgKk¼1: filter matrices
Data: σ, β: model parameters

Result: fhkgKk¼1: solution activation vectors

h½�1�
k ¼ h½0�k = random initialization 8k
thk ¼ a=ðkWkk21Þ 8k
l ¼ s2thk=b
r = 0
repeat

r = r + 1
for k = 1 to K do

y ¼ h½r�1�
k þ r�2

rþ1 ðh½r�1�
k � h½r�2�

k Þ
h½r�k ¼ Sþl ðy� thkrf1ðyÞÞ

end
until convergence;

return fh½r�k gKk¼1

3. Plot the the cumulative activation function F(m):

FðmÞ ¼
Xn
i¼1

Xm
k¼1

jjhðiÞ
k jj1 ð11Þ

and pick the new K as the positionm
�
such that F(m

�
) starts to saturate (i.e., when dF

dm 
 �

where 0< � 1 is a small positive number).
The idea behind our method is that, since sparsity is enforced on hk’s using the one-norm in
Equation 6, the irrelevant filters {Wm�+1,. . .,WK} will all have very low activations compared to
that of the relevant filters {W1,. . .,Wm�}. The advantage of this approach is that it requires train-
ing only one (instead of a large number of) CBM, and hence it is much more efficient. The ef-
fectiveness of this method is validated in Section 5.

RCBM: recursive CBM’s
To capture the compositional structure of social dynamics across different scales, we now in-
troduce RCBM, a hierarchical architecture constructed by stacking together multiple CBM’s, as
illustrated in Fig. 2. For some new notations, we use l to represent any variable at the l-th level,
including Xl (input dynamic of level l), hl,k (the k-th activation vector at level l),Wl,k (the k-th
filter matrix in level l) and Kl (the number of filters in level l). Also, L denotes the total number
of levels of an RCBM.

Identifying the Compositional Structures of Social Dynamics

PLOS ONE | DOI:10.1371/journal.pone.0118309 April 1, 2015 9 / 28



Suppose we have trained a CBM with K = 3 following the procedures described in Section
3.2, like the Level 1 CBM in Fig. 2. To raise the level of abstraction, we construct the input dy-
namics at level 2 (i.e., X2) by down-sampling the lower-level activation vectors (i.e., h1,1, h2,1,
and h3,1) by a factor of c using a non-linearmax-pooling[10, 12], which simply takes the maxi-
mum value among consecutive c values. For example, since K1 = 3 in Fig. 2, X2 will have three

rows of length dTþTw�1

3
e, where T+Tw−1 is the length of hk,1. Moreover, the values of X2 will be

assigned as X2[d,t] = maxs 2 {1,. . .,c} hd,1[c(t−1)+s].
After doing max-pooling for each sample, we obtain a set of level-2 dynamics (i.e., X2) for

the whole dataset. We can then use these level-2 dynamics as if they are a set of new social dy-
namics and train another CBM as before, like the Level 2 CBM in Fig. 2. Repeating this layer-
wise training process for L times, we obtain an RCBM of L levels. Note that the number of fil-
ters Kl at each level can be different, e.g., in Fig. 2, we have K1 = 3 and K2 = 2. Also, note that
even if the filter scale Tw remains constant across different levels, the higher-level filters will
still detect larger-scale dynamics, i.e., a level-l filter effectively looks at the dynamics of scale cl
−1 Tw. Besides focusing at larger scales, a higher-level filter can also detect the dynamics of
higher levels of abstraction, because it is trained using the lower-level activation vectors, which
are themselves a non-linear transformation of their input dynamics. This is how RCBM can
recognize the compositional structures of social dynamics across different scales and levels
of abstractions.

RCBM features. While RCBM inherits all the features of CBM (in Section 3.1), it has two
additional features that are reflected in its name. First, all levels of an RCBM share the same
structure, hence the name “recursive”. This ensures that the numbers of activation vectors re-
main roughly the same across different levels. This is in sharp contrast to other convolutional
deep architectures like [10, 12], where the number of activation vectors becomes K2 from the
second level; this seriously limits the efficiency and scalability of previous algorithms. Second,
by using Equation 3, we can decompose the joint probability of the entire RCBM using Bayes’

Fig 2. A two-level RCBM.W: filter matrices; h: activation vectors; X: input dynamics. The upper-level input dynamic is constructed by max-pooling the
activation vectors that are one level below it.

doi:10.1371/journal.pone.0118309.g002
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hence the name “Bayesian”. Moreover, we note that RCBM is normalized locally according to
Equation 3. Therefore, the partition function Z in Equation 12 can be calculated efficiently
using 3 and the first line of Equation 12; this makes various inferences of RCBM efficient. Fi-
nally, such a probabilistic formulation also enables many new applications such as conditional
inferences and anomaly detection.

Model summary. To summarize, RCBM possesses three attractive properties:

• Good solution quality: under A1* A3, RCBM is capable of identifying compositional struc-
tures of social dynamics that have provable convergence qualities. This is attributed to our
specialized convolution operators (� and�) and stepsize assignment (Equation 9).

• Efficiency: the learning of RCBM is efficient and can scale much better than existing convolu-
tional deep learning methods [10, 12]. This is attributed to our specialized convolution oper-
ators, stepsize assignment, and the recursive structure.

• Wide applicability: RCBM can be applied to a range of applications. For one, it can be used as
the feature extractor for supervised tasks. For another, its probabilistic formulation (Equation
12) enables various conditional inferences and anomaly detection.

While all these properties are verified empirically, we formally establish the first two properties
in the next section.

Analysis
We now establish formally that under assumptions A1* A3, the specialized operators enable
the learning of RCBM to produce good solutions efficiently, whereas the conventional one
does not. The proof of all theorems in this section is given in Appendix S1.

Convergence Properties

Theorem 1. Convergence using the proposed convolution. Suppose a dataset fXðiÞgni¼1 is
generated according to the process in Equation 1 using filtersW

�
. Also, suppose Algorithm 1 is

used with the stepsize given in Equation 9, whereW[0] denotes the initial condition and Ŵ de-
note the converged solution. Then we have that 8W�

,9W[0] s.t.:

Ŵ!p W�:

Theorem 2. Non-convergence using the conventional convolution. With the same as-
sumptions as in Theorem 1 but supposing that the conventional matrix convolution is used, then
8W�

, we have that:

Ŵ↛
p
W�:

The main message from these two theorems is that using the proposed convolution opera-
tors can lead to better convergence because it considers the heterogeneity (Assumption A3) in
social dynamics. Although, in principle, not every initial condition (W[0]) leads to the global
optimum since Equation 6 is not jointly convex w.r.t.W and h. Practically, however, our
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experimental results (see the Experimental Results section) show that a handful of random ini-
tializations suffice to produce good and reliable solutions.

Runtime Complexity
From Algorithm 1, the bottleneck of training an RCBM is the function optimize_over_h
(i.e., Algorithm 1), because it is called repeatedly and that it is itself an iterative algorithm. Ac-
cordingly, we break down the runtime complexity analysis into two parts: (1) bounding the
number of iterations r it takes to solve Algorithm 1, and (2) analyzing the overall runtime com-
plexity while treating r as a constant. The first part is established using Theorem 1.

Theorem 3. Required Number of Iterations. Suppose an accelerated proximal method is
used to solve Equation 6 w.r.t. eitherW or h but not both. Let x[r] denote the solution in the r-th
iteration, x

�
denote the optimal solution, and � denote an error threshold. Then if the stepsizes

given in Equation 9 are used, the number of iterations r that ensures jjx�
−x[r]jj 
 � satisfies:

r ¼ O �
�1

2

� �
:

We note that this represents the fastest convergence rate achievable using first-order meth-
ods [27], which is attributed to the careful design of stepsizes in Equation 9.

For the second part, both the� and� operators take O(DTw T) to calculate. Considering L
levels and K filters (and activation vectors) per level, the total complexity is bounded by O
(KDTw TL). In contrast, previous works [10, 12] use the conventional matrix convolution that
requires O(D2 Tw T) per operation. Further, previous approaches need K2 activation vectors to
calculate from the second level up. Therefore, their total complexity is O(K2 D2 Tw TL). Using
K = 10 and D = 10, this represents a huge runtime overhead of two orders of magnitudes.

Experimental Results
We conduct extensive experiments in the following three directions: (1) the evaluation of
RCBM per se, (2) compositional structures in Twitter and Yelp discovered using RCBM, and
(3) two new applications enabled by RCBM.

Dataset Description
Twitter. We use the Twitter dataset from [5] that consists of 181M postings during June

to December of 2009 from 40.1M users and 1.4B following relationships. To enumerate the in-
formation tokens that carry social dynamics (as defined in Section 3.1), in contrast to a few pre-
vious authors who use hashtags [5][6], we find the discussion of many interesting events does
not include a hashtag. Therefore, we adopt a more general definition using bursty keywords,
i.e., ones that attract intense attention during a short period of time. We remove common
terms (e.g., “the”, “and”, etc.) and apply the classic method in [26] to detect bursty keywords. A
total of 0.5M bursty keywords are detected where their corresponding social dynamics are ex-
tracted. For better representativeness, we select the dynamics with at least 5 per-min peak us-
ages and 20 total usages around the 30 minutes during their peak times, yielding a 13K-sample
dataset of social dynamics.

We characterize each social dynamic using seven features [7] based on the types of users in-
volved and certain graph statistics. For features based on the types of users involved, we consid-
er five types of users. Initiators denote the ones who use this keyword before any of his or her
friends did. First-time propagators and first-time commentators denote the users who retweet
and tweets, respectively, about this keyword after his or her friends using the same keyword
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before. Recurring propagators and recurring commentators denote the users who retweet and
tweet, respectively, the same keyword that himself or herself used it before. For graph statistics,
we build the evolving graph corresponding to each keyword’s usages, and use the graph’s
diamter and the size of the largest connected component LCC, as they are shown to be infor-
mative in [7, 30–32]. Later, we will see that all these dimensions provide clear interpretation for
the compositional structures found in Twitter (see the Experimental Results section).

Yelp. We further use the Yelp dataset from [33] that consists of 1.1M reviews made by
252K users (with 956K friendship edges among them) during the ten-year period from 2004
through 2014. The target of these reviews are 42K businesses in Las Vegas, Phoenix, Edin-
burgh, Madison, and Waterloo; each of these businesses is considered as an information token.
For better representativeness, we select the businesses with at least 40 reviews (i.e. one review
per season, on average), yielding a 5.3K dataset of social dynamics. We characterize each social
dynamic using six evolving statistics of a business: its numbers of reviews and tips, its average
relative rating, the experience (measured by the number of previous reviews) and influence
(measured by the number of friends) of the business’s reviewers, and the amount of user re-
sponses (that tag each review as useful, funny, or cool). Similarly, these dimensions provide
good interpretability to the compositional structures found in Yelp (see the Experimental Re-
sults section).

Evaluation of RCBM
Parametric forms. We first verify the distributional assumptions we made in Equation 3.

To this end, we use each of the two datasets to train a 1-level CBM. For each sample X, we cal-
culate the per-sample error jjX−∑k Wk�hkjjF and the per-sample activation ∑kjjhkjj1. We
then compare their empirical distributions to their model distributions (i.e., according to Equa-
tion 3). From the results in Figs. 3 (Twitter) and 4 (Yelp), the empirical distributions and the
model distributions seem to match reasonably well. A close examination of the activation vec-
tors confirms that sparsity is enforced effectively such that for each activation vector, most of
its elements are exactly zero. These observation supports the validity of our formulations in
Equations 3 and 6.

Runtime and solution quality. We then turn to evaluate the runtime performance and
the solution quality of RCBM against deep-learning and non-deep-learning methods. For the
baseline deep-learning method, we use cAE [10] as it represents the state-of-the-art convolu-
tional deep learning algorithm. For the proposed method, we test two versions of RCBM: one

Fig 3. Empirical vs. fitted distributions of error and activation using the Twitter dataset. Left: per-sample error fitted with the Half-Normal distribution;
Right: per-sample activation fitted with the Exponential distribution.

doi:10.1371/journal.pone.0118309.g003
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determines the stepsizes using line search [27] (RCBM-LS); the other uses the proposed fixed
stepsize in Equation 9 (RCBM-FS). Using each method, we vary the sample size in the range of
100 to 10000 and train a two-level model with 10 filters at each level. The solution quality of
the learnt models is measured using perplexity [29] calculated using 3000 randomly sampled
held-out test data. Intuitively, perplexity measures how closely the model distribution resem-
bles the empirical distribution, where a lower value indicates a better model. All experiments
are run using 10 repetitions, where both the means and the standard deviations are reported.

From the left panels of Figures 5 (Twitter) and 6 (Yelp), we first observe that RCBM-LS and
RCBM-FS run significantly faster than cAE. Indeed, while cAE scales up to 500 samples, both
RCBM-LS and RCBM-FS scale to 10,000 samples, which confirms our analysis in Section 4.2.
Moreover, RCBM-FS runs much faster than RCBM-LS: while it may take more than 3 days to
train an RCBM-LS with 10,000 samples, it takes around 17.5 hours using RCBM-FS. Accord-
ingly, RCBM-FS achieves a 4X* 6X speedup compared to RCBM-LS, or a 30X* 100X
speedup compared to cAE. Such a significant speedup is attributed to several of our carefully-
designed features, including the fixed stepsizes, the specialized convolutions, and the recursive
structure of RCBM.

For solution quality, we can observe from the right panels of Figs. 5 and 6 that RCBM-LS
and RCBM-FS perform comparably and both perform considerably better than cAE, which
confirms Theorems 1 and 2. This is because they both incorporate our specialized convolution
operators that exploit the heterogeneity of social dynamics, which is not considered by the con-
ventional convolutions used in cAE.

To gain further insight, we compare our proposed method (i.e., RCBM-FS) against two
non-deep-learning methods that also incorporate latent factors, i.e., SSM and SC (see Section
2). For a fair comparison, we setup SSM and SC such that each of them has an equal or slightly
larger number of parameters compared to that of RCBM-FS. Similar to Figs. 5 and 6, we train
these models using the Twitter (Fig. 7) and Yelp datasets (Fig. 8) and present the the runtime
and perplexity results.

Fig 4. Empirical vs. fitted distributions of error and activation using the Yelp dataset. Left: per-sample error fitted with the Half-Normal distribution;
Right: per-sample activation fitted with the Exponential distribution.

doi:10.1371/journal.pone.0118309.g004
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Fig 5. Runtime and perplexity comparisons among deep-learning methods using the Twitter dataset. Baseline: the convolutional autoencoder [10];
LS: RCBMwith stepsizes determined by line-search; Proposed: RCBMwith stepsizes determined by Equation 9. On the left panel, the dashed and dotted
lines mark the runtimes of one and three days, respectively.

doi:10.1371/journal.pone.0118309.g005

Fig 6. Runtime and perplexity comparisons among deep-learning methods using the Yelp dataset. Baseline: the convolutional autoencoder [10]; LS:
RCBMwith stepsizes determined by line-search; Proposed: RCBMwith stepsizes determined by Equation 9. On the left panel, the dashed and dotted lines
mark the runtimes of one and three days, respectively.

doi:10.1371/journal.pone.0118309.g006
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In terms of runtime (i.e., the left panels of Figs. 7 and 8), we observe that SC and RCBM-FS
run much faster than SSM. This is because the standard expectation-maximization (EM) train-
ing of SSM involves multiplication and inversion of matrices [20]. Therefore, the complexity
for one optimization step is O(n(K2 T2+D2 T2)+K3+D3), which can be very high for large n, K,
T, or D. Further, despite that SC is theoretically faster than RCBM by a constant factor Tw, we
observe that they have comparable runtime in practice. This is attributed to our careful design

Fig 7. Runtime and perplexity comparisons against non-deep-learningmethods using the Twitter dataset. SSM: State Space Model; SC: Sparse
Coding; RCBM-FS: the proposed method. On the left panel, the dashed line marks the runtime of one day.

doi:10.1371/journal.pone.0118309.g007

Fig 8. Runtime and perplexity comparisons against non-deep-learningmethods using the Yelp dataset. SSM: State Space Model; SC: Sparse
Coding; RCBM-FS: the proposed method. On the left panel, the dashed line marks the runtime of one day.

doi:10.1371/journal.pone.0118309.g008
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of stepsize selection, which contributes to a 4* 6X runtime speedup (see the runtime of
RCBM-LS and RCBM-FS in Figs. 5 and 6).

In terms of solution quality, (see the right panels of Figs. 7 and 8), we observe that RCBM-FS
performs much better than SSM and SC. The reason why SSM performs poorly is that it makes
a rather strong modeling assumption that the dynamical transition of the hidden factors are
both linear and time-invariant, which is typically not true in practice. As for SC, the reason is
more involved. For the Twitter dataset where the majority of time series have a single peak and
are aligned accordingly, SC performs better than SSM because it makes fewer assumptions
about the time series dynamics. Still, SC performs poorly compared to RCBM, because it wastes
the majority of its parameters in capturing the global signatures at the same scale. In contrast,
RCBM-FS uses its parameters more efficiently by exploiting the local signatures of different
scales. For the Yelp dataset where the majority of times series have multiple peaks that cannot
be aligned, SC performs worse than SSM. Indeed, the perplexity even increases as the number
of samples grows, showing that the incapability of SC to deal with time-shifts represents a seri-
ous issue when the time series are not pre-aligned.

Efficient selection of K. Next, we compare the naive and the proposed methods in select-
ing the best number of filters K; both methods are described at the end of Section 3.2. With
each of our two datasets, we train two-level RCBM’s with both methods. For the naive method
based on Bayesian Information Criterion (BIC), we calculate BIC while fixing K = 10 for one of
K1 and K2 and varying the other; this requires training 20 RCBM’s in total. For the newly pro-
posed method, we train only one RCBM using K1 = K2 = 10 while plotting the cumulative acti-
vation function F(m) in Equation 11 for both levels. The results are summarized in Figs. 9
(Twitter) and 10 (Yelp), where good choices of K are indicated by peak BIC’s and the points
where F(m) saturates. In both panels of both figures, we observe that the choices of K’s sug-
gested by BIC and F(m) are nearly identical, although it requires training 20 RCBM’s to obtain
the BIC curves but only one to obtain the F(m) curves. Moreover, manual inspection confirms
that for the Twitter dataset,W1 *W5 of both levels consist of clearly interpretable filters,
whereasW6 *W10 of both levels consist of plain noise; for the Yelp dataset, similarly, the first
six (four) filters in level one (two) are clearly interpretable, whereas the last four (six) filters in
level one (two) consist of plain noise. Accordingly, we conclude that the proposed method of
choosing K is both efficient and effective.

Compositional Structures of Social Dynamics
We now investigate the compositional structures of social dynamics by inspecting the learnt fil-
ters (i.e.,W’s in Equation 12) in RCBM. We first note that this analysis is in sharp contrast
with the ones given in [5–7] in two ways. First, the goal in [5–7] is finding representative sam-
ples, which is essentially clustering; our goal, on the other hand, is finding structures that best
characterize social dynamics, which is essentially decomposition. Second, our method is com-
positional and scale-free.

Compositional Structures in Twitter. For the Twitter dataset, we use K1 = K2 = 5 accord-
ing to the experiment in Fig. 9 and train a two-level RCBM. The level-1 filters correspond to
compositional structures of seven minutes, whereas the level-2 filters correspond to those of 30
minutes. All these filters are visualized in Figs. 11 and 12. In both figures, the filters are ranked
according to their corresponding activation strength (i.e., Equation 10).

Level-1 structures. The filterW1,1 in Fig. 11 represents the baseline of typical Twitter so-
cial dynamics. It corresponds to a strong community indicated by the black and grey lines of
the graph diameter and LCC (largest connected component), respectively. Such a strong com-
munity is mainly attributed to the initiators (green), first-time propagators (light blue), and
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first-time commentators (blue), but not the recurrent propagators (pink) and commentators
(red). Such a baseline structure matches Twitter’s responsive and light-weighted nature. The
filterW1,2 characterizes the popularity of social dynamics. It mainly consists of the number of
initiators, with minor first-time propagators, characterizing how popular a piece of informa-
tion is from the external sources outside of Twitter, e.g., TV, web news, etc. The filterW1,3

characterizes the contagiousness of social dynamics that consists of mainly first-time

Fig 9. BIC and accumulated activation function of level-1 (left) and level-2 (right) filters using the Twitter dataset. The choices of K’s using the two
statistics match each other.

doi:10.1371/journal.pone.0118309.g009

Fig 10. BIC and accumulated activation function of level-1 (left) and level-2 (right) filters using the Yelp dataset. The choices of K’s using the two
statistics match each other.

doi:10.1371/journal.pone.0118309.g010
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propagators (light blue) and the corresponding strong community indicated by the diameter
(black) and the LCC (grey), despite only a small number of initiators (green). The filterW1,4

characterizes the stickiness of social dynamics, which consists of mainly recurrent commenta-
tors (red) with smaller but proportional numbers of initiators (green) and first-time commen-
tators (blue). It characterize the capability of a social dynamic to retain the attention of the
users and keep commenting about it. We note that the community-related dynamics (diameter
and LCC) are also weaker since the corresponding community is much smaller compared to
that ofW1,3. The filterW1,5 characterizes the interactivity of social dynamics, which has the
largest magnitude of first-time commentators (blue) among all level-1 filters. It characterizes
the capability of a social dynamic to motivate users to spend time and comment on it, instead
of merely passing it along (i.e., propagating it) to other users.

Level-2 structures. We now turn to investigate the level-2 filters as visualized in Fig. 12.
Note that each individual component on the right of Fig. 12 corresponds to one level-1 filter in
Fig. 11, and that the time scale now is 30 minutes instead of 7 minutes that is the case of
Fig. 11. This is because the level-2 filters are intended to capture how the level-1 structures in-
teract with one another and form larger-scale structures with high-level meanings, which is a
unique feature of RCBM.

The filterW2,1 characterizes a three-stage structure that is driven mainly by popularity (the
green line), but accompanied by different structures in each of its stages. It is accompanied
firstly by contagiousness (light blue), secondly by interactivity (blue) and stickiness (red), and
thirdly by combinations of the three. The contagiousness dips in the second stage, but gets en-
hanced again in the third stage, suggesting that contagiousness alone is not enough to sustain
long-lasting social dynamics. The filterW2,2 is mainly composed of strong contagiousness,

Fig 11. The level-1 compositional structures of Twitter social dynamics identified using a two-level RCBM. They represent the fine-grained signatures
of Twitter social dynamics including the baseline, popularity, contagiousness, stickiness, and interactivity.

doi:10.1371/journal.pone.0118309.g011

Fig 12. The level-2 compositional structures of Twitter social dynamics identified using a two-level RCBM. They represent the interactions among the
fine-grained signatures in Fig. 11.

doi:10.1371/journal.pone.0118309.g012
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which dips at around time t = 12, and is later continued and enhanced by interactivity and
stickiness. Manual inspection shows that the contagiousness results from reporting some facts
before t = 12, whereas it results from commenting about the facts, e.g., from famous bloggers,
after t = 12. The filterW2,3 andW2,4 are also driven by contagiousness, but their corresponding
contagiousness components have a smaller magnitude. The key difference among the two is
that inW2,3, strong interactivity and stickiness are generated as a result of the initial con-
tagiousness, which is much weaker in the case ofW2,4. As a result, the dynamics with top 10%
W2,3 activations reaches more than three times larger audiences compared to the case of the dy-
namics with top 10%W2,4 activations. Finally, the filterW2,5 exhibits a clear two-stage struc-
ture. The second stage characterized by contagiousness (light blue) seems to result from the
first stage that is characterized by strong stickiness. Manual inspection shows that such a struc-
ture consists of committed core users and responsive peripheral users, which is consistent with
the leader-follower pattern reported in [7]. In the present work, however, the local structures of
the pattern as well as the interaction among these structures are decomposed and analyzed in
much greater detail.

To summarize, we find three representative ways where smaller-scale signatures can interact
and form lager-scale structures with higher-level meanings. First, popularity can stimulate in-
teractivity, stickiness, and contagiousness (i.e.W2,1). Second, contagiousness can generate in-
teractivity and stickiness, which, in turn, enhance contagiousness (e.g.,W2,2 andW2,3). Finally,
stickiness beyond a certain threshold can generate contagiousness (e.g.,W2,5).

Compositional Structures in Yelp
For the Yelp dataset, we use K1 = 6,K2 = 4 according to the experiment in Fig. 10 and train a
two-level RCBM. The level-1 filters correspond to compositional structures of one year, where-
as the level-2 filters correspond to that of six years. Again, these filters are ranked according to
their corresponding activation strength (i.e., Equation 10) and visualized in Figs. 13 and 14.

Level-1 structures. Each level-1 structure indicate a particular level of rating (red lines in
Fig. 13) given by one of the two types of reviewers: a smaller number of elite reviewers who
have a higher level of experience (green lines) and influence (blue lines), and a larger number
of average reviewers who are the opposite of their counterparts. The filterW1,1 in Fig. 13 repre-
sents the baseline of a typical Yelp social dynamic. It corresponds to neutral ratings (indicated
by the small magnitude of the red line) given by elite reviewers who are more. Since this filter
gets activated the most among all level-1 filters, it is consistent with the fact that the majority of
Yelp contents are provided by a relatively small set of elite users. Moreover, it is consistent with
the fact that most Yelp businesses have ratings close to the overall average (i.e., around 3.7
stars). The filterW1,2 detect the cases when a business is given low ratings by average reviewers;
The filterW1,3 characterize the case when a business is given high ratings by elite reviewers;
The filtersW1,4 andW1,5 indicate the cases when high and low ratings are given by average
users, respectively. Note that there is a difference betweenW1,5 andW1,2: in the former case,
the rating for the business was neutral for several months, but drop suddenly at t = 5; In the lat-
ter case, the rating is low from the beginning, and become particularly so at t = 5. Finally, in
W1,5, the rating oscillates significantly, where the extreme values at t = 1,3,5 are all driven by
elite users. This seem to characterize a conflict in rating a business among different groups of
elite users, comparable to the edit wars in Wikipedia [34].

Level-2 structures. The level-2 structures of Yelp social dynamics are summarized in
Fig. 14. Note that the time scale now is six years instead of one year that is the case of Fig. 13.
Again, each individual component on the right of Fig. 14 corresponds to one level-1 filter in
Fig. 13. The filtersW2,1 andW2,2 indicates cases where a business is consistently given low and
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high ratings by average and elite users, respectively. While it is interesting to see these two com-
mon long-term dynamics that present on Yelp, it is equally informative to see that the opposite
cases are uncommon. That is to say, from our data, it is uncommon to see a business that is
consistently given high ratings by average users, or low ratings by elite users. Moreover, the fil-
tersW2,3 andW2,4 both show disagreement in the ratings of average versus elite reviewers. In-
deed, inW2,3, the high ratings from the elite reviewers (blue line) at t = 2 is substituted by the
low ratings from the average reviewers (red line) at t = 3, accompanied by increased conflict
(yellow line) among elite reviewers. Further, the situation becomes more dramatic inW2,4,
where multiple such transitions take place with one-year gaps.

To summarize, we find representative ways where the ratings from the average and the elite
Yelp reviewers can interact in different time scales. Particularly, three common long-term
structures seem to emerge: (1) low ratings by many average users, (2) high ratings by many
elite users, and (3) sharp disagreement and transitions in the ratings between the average versus
elite users. The cause and mechanism of these long-term structures are beyond the scope of
this work and are left for future research.

Applications of RCBM
Anomaly detection. An advantage of RCBM is its probabilistic formulation (i.e., Equation

12) that assigns a probability to every sample social dynamic. Therefore, a natural application
is to detect abnormal social dynamics with extremely-low probabilities. A list of such anomalies

Fig 13. The level-1 compositional structures of Yelp social dynamics identified using a two-level RCBM. They represent the fine-grained signatures of
Yelp social dynamics including high and low ratings given from reviewers with different levels of experience.

doi:10.1371/journal.pone.0118309.g013
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detected in Twitter is summarized in Table 2, where examples tweets are listed and the corre-
sponding keywords underlined. Similarly, a list of such anomalies detected in Yelp is summa-
rized in Table 3, where example reviews are listed with their corresponding ratings (i.e., in the
parentheses).

Anomalies in Twitter. The anomalies detected in the Twitter dataset (see Table 2) roughly
consist of four groups. The anomalies in the first group correspond to major disasters, includ-
ing the 2009 tsunamis in American Samoa and Indonesia, and the plane crash in Manhattan.
The second group of anomalies corresponds to urgent messages, like the national emergency of
swine flu and the 2009 Iran election. The property of the first two groups is that they are very
contagious and can form large communities very quickly. However, there is relatively little in-
teraction among users compared to other social dynamics with comparable level of contagious-
ness. The third group of anomalies corresponds to the shutdown or malfunctioning of major
online services like gmail or youtube. The forth group are machine-generated messages, which
typically correspond to tweets about some marketing promotion. The last two groups have a
common characteristic of having a lot of popularity but barely any contagiousness, stickiness,
and interactivity compared to typical social dynamics. Finally, we note that detection of all
these four groups of anomalies has useful applications. Indeed, for the first three groups, al-
though they happen rarely, detecting them early and being able to respond to them can have a
huge impact. For the last group, it is useful in detecting the online scam.

When analyzing these anomalies, a legitimate question is whether these anomalies can be
trivially detected by frequency-based rankings. It turns out that, the list in Table 2 is very

Fig 14. The level-2 compositional structures of Yelp social dynamics identified using a two-level RCBM. They represent the interactions among the
fine-grained signatures in Fig. 13.

doi:10.1371/journal.pone.0118309.g014
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different from the one generated by ranking keywords using their frequencies. Indeed, only
twelve out of top-100 frequent keywords are considered to be associated with anomalies, which
is, equivalently, 27 out of top 500 or 46 out of top 1000. To gain further insights, in Table 4, we
list some tweets and keywords that are used the most frequently but are associated with normal
social dynamics. They can be roughly divided into three groups: holidays, common emotion,
and trendy events. It can be observed that each tweet in this table seems to be associated with
more organic interactions compared to the cases in Table 2.

Anomalies in Yelp. The anomalies detected in the Yelp dataset (see Table 3) roughly con-
sist of three groups. The anomalies in the first group correspond to adult entertainment busi-
nesses. The property of this group is the strong yet distinct preferences from individual
reviewers, some calling it “heaven” and giving five starts, while others saying they “got almost
nothing out of it” and give only one star. Further, these radically different ratings are mixed
uniformly in time, which is in sharp contrast to the transitions that present inW1,6 of Fig. 13 or
inW2,3 andW2,4 of Fig. 14 where each transition takes months or years. The second group of
anomalies corresponds to exceptionally poor services or facilities for a prolonged period of
time. The property of this group is that they consistently receive the lowest possible ratings
from both average and experienced reviewers. While long-term negative ratings from average

Table 2. Sample Twitter keywords and tweets that are associated with abnormal social dynamics de-
tected using RCBM. The keywords are underlined.

Major Disaster

RT @BreakingNews: BULLETIN—TSUNAMI WARNING ISSUED FOR AMERICAN SAMOA, SAMOA,
NIEU, WALLIS-FUTUNA

RT @BreakingNews Tsunami watch iss. for Indonesia, India, Thailand & Malaysia after a powerful
7.9-magnitude earthquake off Sumatra

RT @marcambinder: Breaking: Small plane and helicopter collide over Hudson River in Manhattan. 10–60
(major emergency) declared.

Urgent message

RT @SFChron_alert: Obama declares swine flu a national emergency. http://www.sfgate.com/ZILQ

RT from Iran—If you are outside Iran, change your location / timezone to Iran / Tehran to make it harder to
track Iranians

#SaveBalloonBoy Colorado Boy Floats Away In Balloon, Frantic Search Under Way To Rescue Boy http://
bit.ly/tsxWI

Major online service shutdown

And the world has come to an end. . . Gmail is down.

i hate @youtube for wrongfully banninag @ownagepranks account #youtubefail

Machine-generated message

omg!! is it true what they wrote about you in their twit blog? http://lila.twittersblogs.com

EVERYONE!!! Check this new dating site out! Totally Free! talk to mad local chicks that are down for
anything! http://local-camz.com

300 new followers in a day—TOTALLY FREE—NO SALE—http://twittertrain.info

Hey everyeone. Just lost 32 lbs in 3 weeks. I wanted to say thanks to Rhonda and her awesome blog.
www.rhondasweightloss.com

Hey #JonasOnUstream I LOVE IT (Jonas Brothers live > http://ustre.am/2us4)

CHECK out this site, im a member of it, It gets you more followers: http://TwitTrain.info

Hello!, I just made $842 working a few hours this week from home for Google. You should really check this
out! http://bit.ly/u7Rvz

I made an extra $80 today from using tips from http://EARNING-PROFIT3.com

I just took “how sexual are you?” and got: virgin! Try it? http://bit.ly/zM3kl

doi:10.1371/journal.pone.0118309.t002
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reviewers are common (i.e., seeW2,1 of 14), this group of anomalies get consistent negative rat-
ings from elite reviewers as well. The third group corresponds exclusively to those restaurants
that are constantly outstanding. They receive the highest possible ratings frequently, mostly
from average users but also from experienced users. Common words that can be found from
the reviews of this group of businesses include “consistently excellent”, “lives up the hype”, and
“exceeds expectation”. Moreover, unlike the case ofW2,2 of 14 where positive ratings are given
by elite users, these business consistently receive top ratings from average reviewers. Finally,
these anomalies, again, cannot be trivially detected using frequency-based rankings. Indeed,
less then 15% of these anomalies appears in the lists of top-100 businesses in terms of the num-
bers of reviews, tips, and checkins. This confirms the advantage of RCBM in detecting anoma-
lies according to their social dynamics, which is based on the common compositional
structures learnt directly from a large quantity of unlabeled data.

Feature extraction for forecasting. When deep learning is used as the unsupervised fea-
ture extraction module in Computer Vision and Natural Language Processing [10–14], it pro-
duces state-of-the-art results in various supervised learning tasks. Similarly, we explore
RCBM’s potential for supervised learning in social applications. For the Twitter dataset, we try
to forecast the total number of users of a hashtag; for the Yelp dataset, we aim to forecast the
average daily checkins of a business during 2014.

For each dataset, we build a two-level RCBM using a training set. Then, for each testing
sample, we obtain its activation vectors using Algorithm 1. To prevent the use of unavailable
information during forecasting, for the Twitter dataset, we use all samples up to November 31
as the training set, and all samples in December as the testing set. Also, for each test sample,

Table 3. Sample Yelp businesses reviews that are associated with abnormal social dynamics detected
using RCBM.

Adult Entertainment

First time visiting a male-dancing strip club. Never in my wildest dreams did I think I would enjoy this
experience as much as I did! (5)

I get accosted and molested by this tall blond Eastern European girl who tried dragging me back to VIP. (1)

I am a strip club aficionado, and this place cannot be beat. (5)

Do you like being crammed into tight spaces and being yelled at by security wherever you stand? (1)

We call it heaven. Real life angels wiggling for our pleasure! (5)

My wife and I dropped $560 here tonight and got almost nothing out of it. (1)

Poor Service / Facility

Terrible customer service, hold times are outrageous, issues are rarely fixed in a timely manner. (1)

No stars, but its forcing me to at least do one star to do this review, worst customer service ever!!!! (1)

The store, the people who go there, the parking lot, the area, it is just all gross. (1)

It’s dirty in there, and none of the employees are happy that they have a job. (1)

This mall is sad. You will actually feel bad for this mall. (1)

My son gripped my hand as if we were walking through a haunted house. My wife did the same. (1)

Consistently Outstanding Restaurants

The restaurant exceeded our expectation in both food and service. (5)

It is pricey, but the food and service is always consistently excellent. (5)

Loved everything about this place and was surprised it lived up to the hype. (5)

This place was incredible, and totally lived up to the hype. (5)

Thin Crust Pizza at its best. (5)

From start to finish, from wine to dessert and everything in between, this place lived up to all of my
expectations and then some. (5)

doi:10.1371/journal.pone.0118309.t003
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only the data up to its peak usage time is used. Similarly, for the Yelp dataset, the prediction of
the 2014 average checkins are made based on the information up to the end of December 2013.
For the prediction models, we use the vector ARMA (VARMA) and Support Vector Regression
(SVR) as representative linear and nonlinear models [29], respectively. For features, we use the
seven-dimensional features in Fig. 11 as the baseline, and the RCBM activation vectors in the
first level (H1), the second level (H2), and in both levels (H1+H2). To gain further insights, we
also use another 1-level RCBM with an equal number of parameters as the two-level RCBM
(i.e., with doubled number of filters), and use its activation vectors (H12) as features.

The results are summarized in Tables 5 and 6. In general, we observe that SVR performs
better than VARMA, whereas using the H1 / H2 / H1+H2 / H12 features also performs much
better than using the baseline features. However, an interesting observation is that using the
setting VARMA + H1 + H2 performs better than using the setting SVR + Baseline. It suggests

Table 4. Sample Twitter popular keywords and tweets associated with normal social dynamics.

Holiday

Merry Christmas! Anyone staying up to wait for Santa?

Happy Thanksgiving to all my friends in the US

Common emotion

#VMAs Taylor Swift is amazing. Kanye is so rude. @taylorswift13, you go girl. I’m proud of you:)

RT@newellhj Oh Nick. You are an idiot. This is why you should have been invited. You just show you’re an
idiot. #bbcqt

Trendy events

Yankees win! Thaaaaaaaaa Yankees win! #WorldSeries #Champs

Hooray! North Korea pardoned the detained US journalists!

So the balloon landed and the little boy isn’t inside?! Where is he?? Ahh!

I wonder if Obama actually wrote this speech because it’s really good.

Hi, i’m Madonna. I’m doing a tribute to Michael Jackson in which i ramble about myself the whole time
because i am so very classy.

Watching the emmy’s

Is it wrong that I cried at the glee finale? I wish it was like when I was in high school.

doi:10.1371/journal.pone.0118309.t004

Table 5. Forecasting error (via RMSE) of variousmodels and features using the Twitter dataset. The
models used include VARMA and SVR, whereas the features used include the raw social dynamics (Base-
line), level-1 activation vectors (H1), level-2 activation vectors (H2), and both levels of activation vectors (H1
+ H2) of a 2-level RCBM. The forecasting accuracy using a 1-level RCBMwith a doubled number of filters is
denoted as (H12).

Method RMSE

VARMA + Baseline 451.1

VARMA + H1 246.7

VARMA + H2 397.6

VARMA + H12 313.8

VARMA + H1 + H2 235.9

SVR + Baseline 397.6

SVR + H1 231.0

SVR + H2 360.4

SVR + H12 281.5

SVR + H1 + H2 184.2

doi:10.1371/journal.pone.0118309.t005
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that using activation vectors as features can perform reasonably well even when a simple linear
model is used. Moreover, it can be observed that using H1 + H2 performs much better than
using H1, H2, or H12, no matter whether VARMA or SVR is used. This indicates that exploit-
ing compositional features across different time scales using a multi-layer structure is indeed
helpful in forecasting social dynamics. We believe this is an important message with a lot of
promising applications, and plan to study it in greater details in our future work.

Conclusion
In this paper, we have introduced a new perspective on studying social dynamics, namely, the
multi-scale compositionality. To this end, we have proposed a novel model called RCBM that
is capable of both identifying signatures at multiple scales (Task T1) and discovering composi-
tional interactions (Task T2) in social media. Specifically, our contributions are:

1. Design and Analysis of RCBM: We have developed RCBM based on specialized convolution
operators. While the formulation of RCBM is general enough to consider the heterogeneity
of social signals, its runtime performance and solution quality are analyzed formally and
confirmed experimentally.

2. Identifying the Compositional Structures of Social Dynamics: Using RCBM, we have discov-
ered that the social dynamics in Twitter are characterized by signatures representing the dy-
namics’ popularity, contagiousness, stickiness, and interactivity. In contrast, the social
dynamics in Yelp are characterized by signatures representing how different groups of re-
viewers rate individual businesses. Moreover, we have found the patterns where theses sig-
natures interact by generating, enhancing, or dominating one another.

3. RCBM-Enabled Applications: We have investigated new applications enabled by RCBM,
such as detecting abnormal social dynamics and forecasting social dynamics with features
learnt using RCBM.

Being the first work that brings deep learning into social networks research, we believe RCBM
opens up many opportunities for new research and applications beyond the ones we have dem-
onstrated here. We plan to keep exploring along this direction in our future work.

Table 6. Forecasting error (via RMSE) of variousmodels and features using the Yelp dataset. The mod-
els used include VARMA and SVR, whereas the features used include the raw social dynamics (Baseline),
level-1 activation vectors (H1), level-2 activation vectors (H2), and both levels of activation vectors (H1 + H2)
of a 2-level RCBM. The forecasting accuracy using a 1-level RCBMwith a doubled number of filters is de-
noted as (H12).

Method RMSE

VARMA + Baseline 892.2

VARMA + H1 647.9

VARMA + H2 674.1

VARMA + H12 655.6

VARMA + H1 + H2 639.8

SVR + Baseline 744.5

SVR + H1 584.3

SVR + H2 582.7

SVR + H12 598.1

SVR + H1 + H2 536.0

doi:10.1371/journal.pone.0118309.t006
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