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Abstract
As is well known, the common elementary functions defined over the real numbers can be

generalized to act not only over the complex number field but also over the skew (non-com-

muting) field of the quaternions. In this paper, we detail a number of elementary functions

extended to act over the skew field of Clifford multivectors, in both two and three dimen-

sions. Complex numbers, quaternions and Cartesian vectors can be described by the vari-

ous components within a Clifford multivector and from our results we are able to

demonstrate new inter-relationships between these algebraic systems. One key relation-

ship that we discover is that a complex number raised to a vector power produces a quater-

nion thus combining these systems within a single equation. We also find a single formula

that produces the square root, amplitude and inverse of a multivector over one, two and

three dimensions. Finally, comparing the functions over different dimension we observe

that C‘ð<3Þ provides a particularly versatile algebraic framework.

Introduction
Clifford algebras are associative non-commutative algebras developed by William K. Clifford
around 1878 building on the exterior algebras developed earlier by Hermann Grassmann. Spe-
cifically, denoting ^<n as the exterior algebra of <n then we produce the space of multivectors
<�<n�. . .�^n<n denoted by C‘ð<nÞ with unity 1. These algebras can be either simple,
hence isomorphic to matrix algebras over the reals, complex numbers, or quaternions, or semi-
simple, and hence isomorphic to the direct sum of two matrix algebras over the reals or quater-
nions [1–5].

In this paper, we firstly describe some general results applicable in C‘ð<nÞ, before exploring
the elementary functions based on multivectors in two and three dimensions, which then final-
ly allows us to identify several unifying relationships. Clifford multivectors form a generaliza-
tion of the elementary functions over complex and quaternionic numbers [6] that can be
recovered as special cases.
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Analysis

General results for multivectors in C‘ð<nÞ
Within C‘ð<nÞ we form a multivector <� <n � � � � � ^n<n that we can write as

M ¼ A0 þ A1 þ A2 þ A3 þ � � � þ An; ð1Þ

where A0 ϵ<, A1 ϵ<n, A2 ϵ^2<n,. . ., An ϵ^n<n. The following definitions for the general case
of multivectors over C‘ð<nÞ are essentially as found in [5].

Definition. (Grade selection)We define the grade selection operation hMik = Ak ϵ^k<n. The
number of elements in each grade Ak follows the Pascal triangle relation n!

k!ðn�kÞ! with the n+1

grades forming a 2n-dimensional real vector space.
Definition. (Orthonormal basis) For a set of basis elements {ek:1kn} for <n, we define the

properties

ekek ¼ 1;ejek ¼ �ekej;jk; 1j;kn: ð2Þ

These n elements generate a basis of 2n elements for C‘ð<nÞ with the highest grade element being
the pseudoscalar e1e2. . .en.

For example, in C‘ð<3Þ we have the basis elements e1,e2,e3 forming a multivectorM = A0 +
A1 + A2 + A3 with A0 = a0, A1 = a1e1 + a2e2 + a3e3, A2 = a4e1e2 + a5e3e1 + a6e2e3 and A3 =
a7e1e2e3, where a0,. . .,2

n
-1 ϵ <. In order to abbreviate notation we often write e12 � e1e2 and e123

� e1e2 e3 etc.
Definition. (Multivector involutions)We define three involutions on a multivector M: firstly

space inversion written as M� defined by ek ! -ek, secondly reversion written as M† that re-
verses the order of all products, e1e2. . .en ! enen-1. . .e1 and thirdly a composition of the first two
that forms Clifford conjugation written as �M ¼ My�. This produces a variation in signs over the
different grades as follows

M� ¼ A0 � A1 þ A2 � A3 þ A4 � A5 þ A6 � A7 þ A8 � � � þ ð�ÞnAn

My ¼ A0 þ A1 � A2 � A3 þ A4 þ A5 � A6 � A7 þ A8 þ � � � þ ð�Þbn=2cAn

�M ¼ A0 � A1 � A2 þ A3 þ A4 � A5 � A6 þ A7 þ A8 þ � � � þ ð�Þnþbn=2cAn:

ð3Þ

Addition and subtraction of multivectors involves adding and subtracting the correspond-
ing terms of the algebra and multiplication is through the formal application of the law of the
distribution of multiplication over addition, that is explicated in the sections on two and three
dimensional multivectors to follow. We find that reversion and Clifford conjugation are anti-
automorphisms producing (M1M2)

† =M2
†M1

† and �M1M2 ¼ �M2
�M1 whereas space inversion

(M1M2)� =M1
�M2

� is an automorphism.
Note, that using the reversion involution, calculating the corresponding grades inMM† we

find that all products are of the form e1e2� � �enenen-1� � �e1 = + 1. Hence we can use the reversion
involution to form a positive definite scalar hMM†i0. This leads us to define an inner product
for multivectors.

Definition. (Inner product)We define for two multivectors M1 and M2 the product

hM1M2
yi0 ¼ hM2M1

yi0; ð4Þ

which can be shown to have the required properties for an inner product. This induces a norm on
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a multivector

jjMjj2 ¼ hMMyi0; ð5Þ

which is positive definite as required. Conventional results now follow, such as a triangle inequal-
ity for multivectors.

Definition. (Square root) A square root of a multivector Y is a multivector M such that
Y = M2 and we write M = Y1/2.

We reserve the square root symbol
p

to act over the reals and complex-like numbers, with
its conventional definition, producing a value within the complex-like numbers. We define a
complex-like number as numbers of the form a + Ib, where a,b ϵ < and l is any algebraic quan-
tity that squares to minus one. For example, we will find that the bivectors and trivectors will
square to minus one. Naturally I will commute with a and b and so we therefore have an iso-
morphism with conventional complex numbers and so we have available the results from com-
plex number theory in these cases.

Definition. (Multivector amplitude)We define the amplitude of a multivector M as

jMj ¼ ðM �MÞ12: ð6Þ

Note that in the general case for multivectors in C‘ð<nÞ, M �M may produce a multivector of vari-
ous grades and so the square root may not exist in all cases. However, for multivectors of grade
less than or equal to three, which is the case primarily dealt with in this paper, we will find that
M �M always produces a complex-like number, and so we are then entitled to use the square root
symbol that we reserved for this case. That is, we can write

jMj ¼
ffiffiffiffiffiffiffiffiffiffi
M �M

p
; for n � 3: ð7Þ

Note that the amplitude in these cases is in general also a complex-like number.
Definition. (Multivector amplitude)We define the amplitude of a multivector M as

jMj ¼
ffiffiffiffiffiffiffiffiffiffi
M �M

p
: ð8Þ

Note thatM �M is not positive definite and does not have a value in the reals in general and
hence the amplitude may not exist in all cases.

Definition. (Multivector exponential) The exponential of a multivector is defined by con-
structing the Taylor series

eM ¼ 1þM þM2

2!
þM3

3!
þ . . . ; ð9Þ

which is absolutely convergent for all multivectors [5].
Convergence is easily demonstrated because ǁMn ǁ<ǁM ǁn. The infinite sequence {Mn} of

multivectorsM1,M2,M3,. . .,Mn,. . .M1,M2,M3,. . .,Mn,. . . approaches the multivector L as a
limit, that isMn ! L, if ǁL −Mnǁ! 0 as n!1.

Definition. (Logarithm) The logarithm of a multivector is defined as the inverse of the expo-
nential function. For a given multivector Y we find M, such that Y = eM and we write M = log Y,
which is multivalued in general.Hence we have elogY = Y. The principal value of the logarithm
can be defined as the multivector M = log Y with the smallest norm.

In even dimensional spaces C‘ð<2nÞ the pseudoscalar is non-commuting with some compo-
nents of the algebra, whereas in odd dimension the pseudoscalar is commuting with all ele-
ments. Additionally spaces of dimension 2,3,6,7,10,11,. . . have a pseudoscalar that squares to
minus one whereas 4,5,8,9,12,13,. . . the pseudoscalar squares to plus one. Hence spaces that

Functions of Multivector Variables

PLOS ONE | DOI:10.1371/journal.pone.0116943 March 16, 2015 3 / 21



have a commuting pseudoscalar that squares to minus one lie in spaces of dimension
3,7,11,15,. . .,4n-1,. . ., where n 2 N. As we can see, in general, these pseudoscalar properties
have period four.

Definition. (Hyperbolic trigonometric functions) Splitting the exponential series,as shown
in Eq. (9), into odd and even terms we define the hyperbolic trigonometric functions

coshM ¼
X1
n¼0

M2n

ð2nÞ! ¼
1

2
ðeM þ e�MÞ;

sinhM ¼
X1
n¼0

M2nþ1

ð2nþ 1Þ! ¼
1

2
ðeM � e�MÞ:

ð10Þ

The exponential form immediately implies eM = coshM+ sinhM and we can then easily con-
firm the usual results that sinh 2M = 2sinhM coshM and cosh2M-sinh2M = 1.

Definition. (Trigonometric functions)We define the trigonometric functions with the alter-
nating series

cosM ¼
X1
n¼0

ð�ÞnM2n

ð2nÞ! ;sinM ¼
X1
n¼0

ð�ÞnM2nþ1

ð2nþ 1Þ! : ð11Þ

This definition then implies cos2M+ sin2M = 1.
We can write the trigonometric functions in an exponential form, such as cosM ¼

1
2
ðeJM þ e�JMÞ for example, provided we have a commuting pseudoscalar with J2 = -1. This is

only true though in spaces of dimension 3,7,11,. . ., as previously discussed.
For the multivector finite series Sn = 1 +M +M2 + . . .+Mn we findMSn =M +M2 + . . . +

Mn+1 and so Sn −MSn = (1-M)Sn = 1 −Mn+1. Multiplying on the left with the inverse of (1-M)
we find for the sum

Sn ¼ ð1�MÞ�1ð1�Mnþ1Þ; ð12Þ
provided the inverse exists.

Clifford’s geometric algebra of two dimensions

Within Clifford’s geometric algebra C‘ð<2Þ, we form a multivectorM 2 < � <2 � ^2<2 that
can be expressed in terms of an orthonormal basis as

M ¼ aþ xe1 þ ye2 þ be12; ð13Þ
where a,x,y,b are real scalars and the bivector defined as e12 = e1e2. We then find for the bivec-
tor that e212 ¼ e1e2e1e2 ¼ �e1e1e2e2 ¼ �1.

We note that the space of multivectors in C‘ð<2Þ is isomorphic to the matrix algebra

C‘ð<2Þ ffi Matð2;<Þ. We also note that the subalgebra of C‘2 spanned by 1 and e12, consisting
of scalar and bivector components forming the even subalgebra, with e12 taking the role of the
unit imaginary, is isomorphic toC. Hence the even subalgebra in two dimensions, given by a +
be12, is isomorphic to the complex field, and so we can assume the results from complex number
theory when the multivector lies within this restricted domain. For example, the log of a multi-

vector in the even subalgebra logðaþ e12bÞ ¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p þ ye12, with the multivalued θ = arc-
tan(b/a), as found in complex number theory. In addition to the even subalgebra representing
the complex numbers, we also have the subalgebra a + xe1 forming the one-dimensional Clifford

algebra C‘ð<1Þ.
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The sum or difference of two multivector numbersM1 = x1e1 + y1e2 +b1e12 andM2 = a2+
x2e1 + y2e2 +b2e12 is defined by

M3 ¼ M1 	M2 ¼ a1 	 a2 þ ðx1 	 x2Þe1 þ ðy1 	 y2Þe2 þ ðb1 	 b2Þe12: ð14Þ

The productM3 of multivectorsM1 andM2 is found through the formal application of the dis-
tributive law of multiplication over addition

M3 ¼ M1M2 ¼ a1a2 þ x1x2 þ y1y2 � b1b2 þ ða1x2 þ a2x1 þ b1y2 � y1b2Þe1
þða1y2 þ y1a2 þ x1b2 � b1x2Þe2 þ ða1b2 þ b1a2 þ x1y2 � y1x2Þe12:

ð15Þ

In two dimensions the conjugation involution produces

�M ¼ a� xe1 � ye2 � be12: ð16Þ

In terms of multiplication and additions we can write
�M ¼ � 1

2
ðM � e1Me1 � e2Me2 þ e12Me12Þ. We then have the scalar part of a multivector

hMi0 ¼ 1
2
ðM þ �MÞ and the sum of vector and bivector components

hMi1 þ hMi2 ¼ 1
2
ðM � �MÞ. If required, we can also isolate the vector components of M as

hMi1 ¼ 1
2
ðM þ e12Me12Þ ¼ v1e1 þ v2e2. Using Clifford conjugation we then find

M �M ¼ �MM

¼ ðaþ xe1 þ ye2 þ be12Þða� xe1 � ye2 � be12Þ
¼ a2 � x2 � y2 þ b2;

ð17Þ

producing a real number, though not necessarily non-negative.
Definition. (Negative square root)We define the principal square root of negative numbers

in two dimensions as follows: given a real number a 2 <
 we defineffiffiffiffiffiffiffi�a
p ¼ e12

ffiffiffi
a

p
; ð18Þ

using the property that the bivector squares to minus one.
The amplitude of a multivector in two dimensions becomes

jMj ¼
ffiffiffiffiffiffiffiffiffiffi
M �M

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2 � y2 þ b2

p
: ð19Þ

Note that that the special case of x = y = 0 produces the magnitude of a complex-like number.
The reversion involution on the multivectorM in two dimensions produces

My ¼ aþ xe1 þ ye2 � be12; ð20Þ

which we can also write algebraically asMy ¼ 1
2
ðM þ e1Me1 þ e2Me2 þ e12Me12Þ. From Eq. (5),

we then find the norm of a multivector in two dimensions

jjMjj ¼ hMMyi1=20 ¼ ha2 þ x2 þ y2 þ b2 þ 2aðxe1 þ ye2Þi1=20 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2 þ y2 þ b2

p
: ð21Þ

Also, this definition of the product and the definition of the amplitude in Eq. (17) produces
the homomorphism

jM1M2j2 ¼ M1M2M1M2 ¼ M1M2
�M 2

�M 1 ¼ jM1j2jM2j2: ð22Þ
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Expanding this expression in full we have

ða21 � a22 � a23 þ a24Þðb21 � b22 � b23 þ b24Þ
¼ ða1b1 þ a2b2 þ a3b3 � a4b4Þ2 � ða1b2 þ a2b1 � a3b4 þ a4b3Þ2

� ða1b3 þ a2b4 þ a3b1 � a4b2Þ2 þ ða1b4 þ a2b3 � a3b2 þ a4b1Þ2 ð23Þ

and so is a variation of Euler’s four-square identity. It should be noted that jM1j2jM2j2 ¼
	ðjM1jjM2jÞ2 and taking roots we find that |M1M2 |= ± |M1 ||M1M2 |.

Also, from Eq. (17) we can see that because jMj2 ¼ M �M is a real scalar, we can define the
inverse multivector as

M�1 ¼ �M=jMj2: ð24Þ

This givesMM�1 ¼ M �M=jMj2 ¼ jMj2=jMj2 ¼ 1 as required. This now allows us to define the
division operationM1=M2 ¼ M1M

�1
2 . Clearly, a multivector fails to have an inverse ifM �M ¼

a2 � x2 � y2 þ b2 ¼ 0 and so fails to form a division algebra in these cases. This expression for

the inverse is analogous to the formula for the inverse of a complex number z�1 ¼ �z=jzj2, that
can be recovered as a special case from Eq. (24) forM in the even subalgebra.

Now, for more complex manipulations to follow it is preferable to write the general multi-
vector as

M ¼ aþ vþ ib; ð25Þ

where v = xe1 + ye2 defines a vector, with the bivector i = e1e2. We also define F = v + ib so that
we can writeM = a + F. We have used the symbol i for the pseudoscalar that is also commonly

used for the unit imaginary
ffiffiffiffiffiffiffi�1

p
. This notation is adopted because complex numbers also lie

in a two-dimensional space analogous to the even subalgebra of the two-dimensional multivec-
tor. Note that the pseudoscalar i is non-commuting with the vector component v of the multi-
vector. In general, the pseudoscalar refers to the highest dimensional element of the algebra,
which is of dimension n for a Clifford algebra C‘ð<nÞ. We have the important result that v2 =
(xe1 + ye2)(xe1 + ye2) = x2 + y2 and so a real scalar giving the Pythagorean length. Hence, using
this notation, the condition for a multivector inverse to exist is given by a2+b2 6¼ v2.

The square root. The square roots of a multivector in C‘ð<2Þ are given by

M
1
2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ða	 jMjÞp ðM 	 jMjÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ �M 	 2jMj

p ðM 	 jMjÞ; ð26Þ

with the conditions that |M | is real for the square root using the plus sign, with an extra condi-
tion that a> |M | when selecting the negative sign in order ensure a positive argument for the
square root function in the denominator. We require these conditions because of the non-com-
muting pseudoscalar that will be generated from the root of a negative number. Proof: Given a
multivector S = c + w + id we find S2 = c2 + w2 − d2 + 2c(w + id). Hence, provided c 6¼ 0 imply-
ing vector or bivector components are present inMM, the root of a multivectorM = a +v + ib
must be of the form S ¼ cþ 1

2c
ðvþ ibÞ ¼ 1

2c
ð2c2 þ vþ ibÞ ¼ 1

2c
ð2c2 � aþMÞ. It just remains

now to find c. The scalar component of the equation S2 =M gives us c2 ¼ 1
2
ða	 jMjÞ. Substi-

tuting this expression we find S ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2ða	jMjÞ

p ðM 	 jMjÞ as required. For the case where c = 0, re-

turning to the first line of the proof we see that this implies thatM is just a real number and
provided we choose the positive sign Eq. (26) produces

ffiffiffi
a

p
as required. However, because with

c = 0, S2 = w2 − d2 a scalar, and so we can see that we now have available a new set of roots. If
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we are seeking the square root of a negative real-a, where a
 0, then we have the equation w2

− d2 = -a, and solving for d, we find the root

ð�aÞ12 ¼ w	 i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþw2

p
; ð27Þ

which is satisfied for all vectors w = w1e1 + w2e2. The special case with w = 0 produces the prin-
cipal root defined earlier in Eq. (18). Additionally for the case a = 1, we now produce (-1)1/2

and we therefore find an infinite number of possible roots. The possible roots of minus one in
Clifford multivectors has been further investigated elsewhere as in [8]. For the roots of positive

reals it is preferable to solve instead for the vector length giving a
1
2 ¼ 	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ d2
p

v̂ þ id. This
last expression shows the need to distinguish the square root of reals given by

ffiffiffi
a

p
and the more

general square roots over the domain of multivectors shown as a
1
2 in order to avoid circular def-

initions. The principal values though will correspond with each other.
As general comments, inspecting Eq. (26) we can see that it can produce two distinct roots,

each of which though can also be negative, so therefore in general produces four possible
square roots. The last version on the right has the advantage of being expressed inM alone and
not in components.

From Eq. (26), for the special case of a multivector in the form of a complex-like number z
= a + ib we have

z
1
2 ¼ z 	 jzjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z þ �z 	 2jzjp ; ð28Þ

which agrees with results from complex number theory.
Trigonometric form of a multivector. Definition. (Multivector argument)We define the

argument of a multivector M = a + v + ib = a + F as

argM ¼ arctan
jFj
a

� �
; ð29Þ

for a 6¼ 0, where jFj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � v2

p
. For a = 0 we have argM= π/2. The function is multivalued

modulo 2π and also depends on which quadrant the point (a, | F |) is in.We define the principal
value of the argument −π< ϕ� π.

Theorem (Trigonometric form) A two dimensional multivector can be written in the form

M ¼ aþ vþ ib ¼ cos�þ vþ ibffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � v2

p sin�

� �
jMj ¼ ðcos�þ F̂ sin�ÞjMj; ð30Þ

provided |M |,| F |6¼ 0, where ϕ =arg M, and we have defined F̂ ¼ F=jFj.
Proof. Assuming b2 > v2 and|M |6¼ 0, we have cos ϕ =a/| M | and sin� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � v2
p

=jMj.
Substituting we findM = a + v + ib as required. Alternatively if b2 < v2 then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � v2

p
becomes

a bivector but because it will cancel with the same term in sin ϕ the multivector will be re-
turned. Likewise if |M | is a bivector, then this will also cancel with |M | in the sin ϕ and cos ϕ
terms. Hence Eq. (30) applies provided |M |6¼ 0 and b2 6¼ v2, as required.

The order of the factors in Eq. (30) is important because ϕ and |M | can lie in the even sub-
algebra and so will not necessarily commute with v + ib, in general. Notationally, it is also im-

portant to note that we define F̂ ¼ vþibffiffiffiffiffiffiffiffiffi
b2�v2

p � ðvþ ibÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � v2

p
, where the denominator

always follows the numerator, due to commutativity issues. Note, it turns out that we can rear-

range the factors to produce an equivalent formM ¼ jMj cos�þ sin�ðb2 � v2Þ�1
2ðvþ ibÞ

� �
.
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Now, assuming the trigonometric form in Eq. (30) exists, we find for integer powers p that

Mp ¼ ðcos�þ F̂ sin�ÞpjMjp ¼ ðcos p�þ F̂ sin p�ÞjMjp; ð31Þ

a generalization of de Moivre’s theorem for multivectors, valid for | F |,| M | 6¼ 0 |.

Now, because multivector multiplication is associative we can find the rational powersM
p
2q ,

where p,q are integers. We will now see how this relation can be written in polar form using the
exponential map, which will allow us to calculate more general multivector powers
using logarithms.

Exponential map of a multivector. Given a two-dimensional multivector a + v + ib = a +

F, we find F2 = (v + ib)2 = v2 − b2 and so jFj2 ¼ F�F ¼ �F2. Hence, given the exponential map
in Eq. (9), we find

eaþvþib ¼ eaevþib ¼ eaeF

¼ ea 1þ F � jFj2
2!

� FjFj2
3!

þ jFj4
4!

þ . . .

 !
:

ð32Þ

If | F | = 0, then referring to the last line of the derivation above, we see that all terms following
F will be zero, and so, in this case ea+v+ib = ea(1+v+ib). Now, assuming the power series defini-
tions given in Eq. (11) for the trigonometric functions, we can then find the closed form

eaþvþib ¼ eaðcosjFj þ F̂sinjFjÞ; ð33Þ

a result that remains valid even if jFj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � v2

p
is a bivector, because as we know from com-

plex number theory the trigonometric functions will simply become hyperbolic
trigonometric functions.

We can thus rearrange this result, to write a multivector in polar form as

M ¼ aþ vþ ib ¼ jMjeF̂� ¼ jMjeðvþibÞ=jFj�; ð34Þ

where ϕ = arg M. We find that an exponential form is only possible if |M | is real, even though
the trigonometric form, shown previously in Eq. (30), is valid generally. This is because

jeaþvþibj ¼ ðeaþvþibea�v�ibÞ1=2 ¼ ea, a result that is always real, whereas in general |a + v + ib| can
become a bivector. This also explains why the square root fails to exist in these cases. Eq. (34) is
a generalization of the exponential form for complex numbers. That is, for v = 0, we have

M ¼ aþ ib ¼ jMjeF̂� ¼ jMjei� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ðcos�þ isin�Þ, where i is the bivector, reducing to
the polar form of a complex number.

Hence the logarithm of a multivectorM becomes

logM ¼ logjMj þ F̂�; ð35Þ

ϕ =arg M. The logarithm multivaluedness coming from the argument function.
We can now also define the multivector powerMP = elog(M)P, where P is a also general multi-

vector and, due to non-commutativity, alternatively as ePlog(M).
Trigonometric functions of a multivector. In two dimensions, the expressions for the hy-

perbolic trigonometric functions given in Eq. (10) can be simplified to give

coshM ¼ 1

2
ðeaþF þ e�a�FÞ ¼ cosjFjcosh aþ F̂sinjFjsinh a

sinhM ¼ 1

2
ðeaþF � e�a�FÞ ¼ cosjFjsinh aþ F̂sinjFjcosh a:

ð36Þ
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We can view these relations as a generalization of the results for complex numbers. For exam-
ple, for complex numbers we have cosh(a + ib) = cos b cosh a + i sin b sinh a, whereas for the

case of multivectors we can write coshðaþ vþ ibÞ ¼ cosh ðaþ FÞ ¼ coshðaþ F̂ jFjÞ, and so
produce the results of Eq. (36), where F̂ now takes the role of the unit imaginary, because

F̂ 2 ¼ �1. These results also remaining valid if | F | is a bivector.
Now, because the pseudoscalar i in two dimensions is not commuting there is no way to

generate the alternating series shown in Eq. (11) for the trigonometric functions from the expo-
nential series using the pseudoscalar and so these will be developed in the next section in
three dimensions.

Our complete list of results for multivectors in C‘ð<2Þ are tabulated in Table 1. The inverse
hyperbolic trigonometric functions are also shown in Table 1, using the algebraic procedure
shown next in three dimensions. In conclusion, we have identified several limitations in two di-
mensions, such as the lack of a commuting pseudoscalar, the nonexistence of the square root
and exponential representation in a significant class of multivectors, however, we now produce
the corresponding expressions with multivectors in the more general three-dimensional space
where these limitations are absent.

The Multivector in Three Dimensions
In three dimensions we have the three basis elements e1e2 and e3, the three bivectors e1e2, e3e1
and e2e3, as well as the trivector j = e1e2e3 = e123 and we form the three dimensional geometric

algebra C‘ð<3Þ. In order to assist the readers intuition we note an isomorphism with matrix

Table 1. Multivector functions in two dimensionsM 2 C‘ð<2Þ.
Main results Notes (i = e12 non-commuting)

M = a + v + ib = a + F Define v 2 <2, a,b 2 <, F = v + ib
�M ¼ a� v� ib ¼ a� F Conjugation

jMj ¼
ffiffiffiffiffiffiffiffiffi
M �M

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � v2 þ b2
p Amplitude

M�1 ¼ �M=ðM �MÞ: | M |6¼ 0 Inverse

� ¼ argM ¼ arctan jFj
a

� �
Argument, jFj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � v2
p

M ¼ ðcos�þ F̂ sin�ÞjMj: | M |,| F | 6¼ 0 Trigonometric form, F̂ ¼ F=jFj
Mp ¼ ðcosp�þ F̂ sinp�ÞjMjp Integer powers, p 2 N

eM ¼ eaðcosjFj þ F̂sinjFjÞ Exponential, eM � S1
n¼0

Mn

n!

If | F | = 0 then eM = ea(1 + F)

M1
2 ¼ M	jMjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mþ �M	2jMj
p : | M |2 < Square root

M ¼ jMjeF̂�: | M |2 < 6¼ 0 Polar form, F̂ 2 ¼ �1

Mx ¼ jMjxðcos x�þ F̂sin x�Þ: | M |2 < Real powers x 2 <
log eM ¼ logejMj þ F̂� Logarithm

MP = elog(M)P or ePlog(M) General powers

Hyperbolic trigonometric functions M ¼ aþ F ¼ aþ F̂ jFj
cosh M ¼ cosjFjcosh aþ F̂sinjFjsinh a eM = cosh M + sinh M

sinhM ¼ cosjFjsinh aþ F̂sinjFjcosh a cosh2M—sinh2M = 1

arcsinhM ¼ log Mþ ð1þM2Þ12
� �

Inverse hyperbolic sin

arccoshM ¼ logðMþ ðM2 � 1Þ1=2Þ Inverse hyperbolic cos

doi:10.1371/journal.pone.0116943.t001
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algebra that C‘ð<3Þ ffi Matð2;CÞ. This isomorphism also implies that Clifford algebra shares
the non-commuting and associativity properties of matrix algebra. However it should be noted
that the Clifford algebra we have defined over <3 has more structure than is the case with the
matrix definition, for example, we have a graded structure in C‘ð<3Þ of scalars, vectors, bivec-
tors and trivectors. In three dimensions the trivector squares to minus one and commutes with
all quantities and so in close analogy to the unit imaginary. Indeed, using the trivector we can
also form what are called the dual relations, e1e2 = je3, e3e1 = je2 and e2e3 = je1. Hence, we can
write a general multivector in three dimensions as

M ¼ aþ vþ jwþ jt; ð37Þ

where v = v1e1 + v2e2 + v3e3 and w = w1e1 + w2e2 + w3e3, which thus produces a multivector of

eight dimensions. The Clifford algebra C‘ð<3Þ contains the element j = e123 as a pseudoscalar
such that the two dimensional subalgebra generated by j is the center Z(A) of the algebra

A ¼ C‘ð<3Þ. That is, every element of A commutes with every element of the center Z(A) that
can be represented as a + jt. Thus A is isomorphic to an algebra over the complex field. This is

in contrast to C‘ð<2Þ where the imaginary element i = e12 is not commuting with other ele-

ments of the algebra and so does not belong to the center CenðC‘ð<2ÞÞ.
Before proceeding to a general multivector product it is instructive to firstly calculate the

special case of the product of two vectors v and w. Assuming the distribution of multiplication
over addition we find

vw ¼ ðv1e1 þ v2e2 þ v3e3Þðw1e1 þ w2e2 þ w3e3Þ
¼ v1w1 þ v2w2 þ v3w3 þ ðv2w3 � w2v3Þe2e3 þ ðv1w3 � v3w1Þe1e3 þ ðv1w2 � w1v2Þe1e2
¼ v �wþ v ^w;

ð38Þ

consisting of the sum of the dot and wedge products, being a scalar and a bivector respectively.
In three dimensions we in fact have the relation v ^ w = jv × w, where j is the trivector and × is
the vector cross product. For a vector squared, that is v2 = vv, we have v ^ v = 0 and so vv ¼
v � v ¼ v21 þ v22 þ v23 producing a scalar equal to the Pythagorean length squared.

Now, defining Z = a + jt and F = v + jw, we can writeM = Z + F, which splits the multivector
into a component Z isomorphic to the complex number field and a multivector F.

For the multivectorM, we then have Clifford conjugation

�M ¼ a� v� jwþ jt ¼ Z � F; ð39Þ

that produces the amplitude of a multivector in three dimensions

jMj ¼
ffiffiffiffiffiffiffiffiffiffi
M �M

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � v2 þw2 � t2 þ 2jðat � v �wÞ

p
; ð40Þ

that in general is a complex-like number. We note that is well behaved with |M1M2 |
2 = |M1|

2|
M1|

2 and |M1M2 |= ± |M1 ||M2 |.
Definition (Negative square root)We define the principal square root when acting act over

negative reals in C‘ð<3Þ as follows: given a positive real number a 2 < we defineffiffiffiffiffiffiffi�a
p ¼ e123

ffiffiffi
a

p ¼ j
ffiffiffi
a

p
: ð41Þ

In three dimensions the pseudoscalar j is commuting and so closely analogous to the scalar

unit imaginary
ffiffiffiffiffiffiffi�1

p
. The subalgebra, consisting of quantities of the form a + jb form an iso-

morphism with the commuting complex numbers and we can therefore assume the results
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from complex number theory when restricted to this domain. We can now investigate whether
we can identify the root for a complex number within the expanded domain of multivectors.
That is, we have the equation

M2 ¼ a2 þ v2 �w2 � t2 þ 2ðav� twÞ þ 2jðtvþ awÞ þ 2jðat þ v �wÞ ¼ cþ jd; ð42Þ

where c,d 2 <. Solving this equation forM we find two distinct cases, either v = w = 0 that cor-
responds to the conventional square root over the complex numbers and a = t = 0 that provides
a different set of roots over the domain of vectors and bivectors. That is, we find (v + jw)2 = c +
jd, where c = v2 − w2 and d = 2v w. Hence we have an alternative set of roots for complex num-
bers as

ðcþ jdÞ12 ¼ vþ jw: ð43Þ

As a special case we can find for c = -1 and d = 0

ð�1Þ12 ¼ sinh yŵ? þ jcosh yŵ; ð44Þ

where ŵ is a unit vector and ŵ? is a unit vector perpendicular to ŵ and θ 2 <. This equation
also provides an alternative root of minus one to the trivector in Eq. (41). The investigation of
roots within Clifford multivectors has been previously studied [8], and roots are simpler to an-
alyze using the polar form of a multivector, investigated shortly.

In three dimensions we have the reversion involution

My ¼ aþ v� jw� jt; ð45Þ

giving

MMy ¼ a2 þ v2 þw2 þ t2 þ 2ðav� jv ^wþ twÞ; ð46Þ

with the norm jjMjj ¼ hMMyi1=20 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ v2 þw2 þ t2

p
. Also when representing complex

numbers in three dimensions using z = a + jb then the norm produces
ffiffiffiffiffiffi
zzy

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
.

Now, becauseM �M is a commuting complex-like number, we can find the inverse multivec-
tor toM as

M�1 ¼ �M=ðM �MÞ; ð47Þ

which is the same definition as in the two-dimensional case. The multivector inverse now fails
to exist whenM �M ¼ 0 or when a2 + w2 = v2 + t2 and at = v � w, which we can write as the sin-
gle condition (v + jw)2 = (a + jt)2 or F2 = Z2. The inverse of a vector is a special case of this gen-
eral multivector inverse, v-1 = v/v2. The inverse obeys the relations (M-1)-1 =M and (MN)-1 =
N-1M-1.

Hamilton’s quaternions i,j,k, satisfying i2 = j2 = k2 = ijk = -1, can be shown to be isomorphic

to the even subalgebra of C‘ð<3Þ, so that a quaternion
q ¼ aþ w1i� w2jþ w3k ffi aþ jw ¼ aþ w1je1 þ w2je2 þ w3je3. Hamilton in fact originally
conceived the quaternions as the quotient of two vectors, and indeed using Clifford algebra
vectors we can explicate this idea, finding the quotient of two vectors

v=w ¼ vw=w2 ¼ 1

w2
ðv �wþ v ^wÞ ð48Þ

that lies on the even subalgebra and so isomorphic to the quaternions as asserted by Hamilton.
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The square root
We find that the same expression for square root of a multivector in two dimensions

M
1
2 ¼ M 	 jMjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M þ �M 	 2jMjÞ
p ; ð49Þ

produces the square root in three dimensions, however, in three dimensions all the restrictions
onM in order for the root to exist can be lifted except that the denominator
1
2
ðM þ �M 	 2jMjÞ ¼ Z 	 jMj 6¼ 0.

The full algebraic analysis of roots in three dimensions is quite extensive, however, as in
complex number theory roots are more easily handled using the polar form of a number and
we will find that the positive sign above will correspond to the principal value in the polar form
e0.5logM, calculated using logarithms that are defined shortly.

Trigonometric form of a multivector
Definition (Multivector argument)We define the argument of a multivector

� ¼ argM ¼ arctan jFj
Z

� �
, where arg(M),Z,|F| are complex like numbers. The real part of ϕ = arg

M = a + jb is multivalued modulo 2π, where a,b 2 <, and so we can once again define a principal
value –π< a� π.

It is helpful to remember that complex number theory proves that functional identities that
are true for all real values of the variable are also true for complex values of the variable [7].

Now, a multivector in C‘ð<3Þ can be written in the form

M ¼ Z þ F ¼ jMjðcos �þ F̂ sin �Þ; ð50Þ

where ϕ = argM, provided |M |,| F | 6¼ 0. We have defined F̂ ¼ F=jFj that has the key property
that F̂ 2 ¼ �1. This result can be confirmed by substituting ϕ, using the fact that cos� ¼ Z

jMj

and sin� ¼ jFj
jMj. Specifically, with F = v + jw we find jFj ¼

ffiffiffiffiffiffi
F�F

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�v2 þw2 � 2jv �wp

. The

order of the factors is not as significant in three dimensions compared to two dimensions be-
cause the pseudoscalar j is commuting. We can use here the conventional trigonometric results
from complex number theory because Z, |F| and |M| are all complex-like numbers.

We will then find for integer powers p that

Mp ¼ jMjpðcos�þ F̂ sin�Þp ¼ jMjpðcos p�þ F̂ sin p�Þ; ð51Þ
an extension of de Moivre’s theorem for multivectors in three dimensions.

Exponential map of a 3D multivector
Now, given a three-dimensional multivector a + v + jw + jt = Z + F, we find

F2 ¼ ðvþ jwÞ2 ¼ v2 �w2 þ 2jv �w ¼ �F�F ¼ �jFj2. Now using Eq. (9) and the fact that

F ¼ F̂ jFj we find
eM ¼ eZþF ¼ eZeF

¼ eZ 1þ F þ F2

2!
þ F3

3!
þ F4

4!
þ . . .

� �

¼ eZ 1þ F̂ jFj � jFj2
2!

� F̂ jFj3
3!

þ jFj4
4!

þ . . .

 !

¼ eZðcosjFj þ F̂sinjFjÞ;

ð52Þ
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and thus in a closed form. If F2 = 0, then referring to the second line of the derivation above,
we see that all terms following F are zero, and so, in this case eM = eZ+F = eZ(1 + F). The expo-
nential function will also have the expected properties that ðeMÞ�¼ e �M and likewise for rever-
sion and space inversion operations, as defined in Eq. (3). A corollary of this result is that |eM|
= |eZeF| = |eZ||eF| = eZ.

We can thus write quite generally a multivector in polar form

M ¼ aþ vþ jwþ jt ¼ jMje�F̂ ; ð53Þ

where ϕ = argM, provided |M |,| F | 6¼0, where clearly the exponent is multivalued. The polar

form can also be expanded as jMje�F̂ ¼ jMjðcos�þ F̂ sin�Þ and so equivalent to the trigono-
metric form shown in Eq. (50). We can therefore write a multivectorM ¼ elogjMje�F̂ ¼ elogjMjþ�F̂

and defining the logarithm as the inverse of the exponential function, obtain the logarithm of a
multivector

logM ¼ logjMj þ �F̂ ; ð54Þ

where ϕ = argM and F̂ ¼ vþjw
jFj , provided |M |,| F | 6¼ 0. Naturally, this will also coincide with

the power series expansion of

logM ¼ logð1þ ðM � 1ÞÞ ¼ ðM � 1Þ � 1
2
ðM � 1Þ2 þ 1

3
ðM � 1Þ3 . . .. This leads to analogous

results, as for complex numbers, that log jM = log M + jπ/ 2 and logð�MÞ ¼ logM � pF̂ .
Some properties of the logarithm include log(–1) = jπ as well as the log of the trivector
log j ¼ p

2
j, logðbjÞ ¼ log bþ p

2
j, and the log of a unit vector log e1 ¼ jð1� e1Þ p

2
generalizing to

log v̂ ¼ jð1� v̂Þ p
2
and finally for a general vector log v ¼ logjjvjj þ jð1� v̂Þ p

2
.

The multivector logarithm is naturally a generalization of the well known result for quater-
nions, that can be recovered by setting v = t = 0 giving a multivectorM = a + jw, with

logðaþ jwÞ ¼ logjqj þ �jŵ ¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þw2

p þ arctan

ffiffiffiffiffiffi
w2

p

a

 !
jwffiffiffiffiffiffi
w2

p ; ð55Þ

where � ¼ arctan
ffiffiffiffi
w2

p
a

� �
, producing the quaternion logarithm as required. If we now set e3 = 0

we find

logðaþ w3e12Þ ¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ w2

3

p þ arctan
w3

a

� �w3e12ffiffiffiffiffi
w2

3

p ¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ w2

3

p þ arctan
w3

a

� �
e12; ð56Þ

the definition of the log of a complex number z = a + iw3.
The nesting of real, complex numbers and quaternions within a multivector can be used to

illustrate the Cayley-Dickson construction. In the Cayley-Dickson construction, complex num-
bers are generated from pairs of real numbers, and subsequently quaternions are then generat-
ed from pairs of complex numbers, etc.

Now, the quaternions are the even subalgebra of C‘ð<3Þ and so we can write a quaternion

q ¼ aþ jw ¼ ðaþ w3e12Þ þ ðw2 þ w1e12Þe31 ¼ z1 þ z2e31 ð57Þ

consisting now of a pair of complex-like numbers z1 = a + w3e12 and z2 = w2 + w1e12. We can

then find the norm jqj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jz1j2 þ jz2j2

q
, and so derived from the norm of the constituent

complex numbers. Also, given two quaternions p = x1 + x2e31 and q = y1 + y2e31, where x1, x2,
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y1, y2 are complex like numbers in the form a + e12b, we find their product

pq ¼ ðx1y1 � x2�y2Þ þ ðx1y2 þ x2�y1Þe31: ð58Þ

This allows us to implement non-commutative quaternion multiplication using only commut-
ing complex number arithmetic, which has advantages in numerical applications that utilize
the already efficient implementation of complex number arithmetic.

Also, re-arranging the multivector in Eq. (37) to (a + jw) + j(t − jv) = q1 + q2, where q1 =
a + jw and q2 = t − jv are quaternions, we have now written the multivector as a pair of qua-
ternions. Though this is analogous to the Cayley-Dickson construction that will then produce
the octonions, in our case we have formed rather the complexified quaternions, though both

being eight dimensional spaces. Hence in C‘ð<3Þ we can identify the full multivector with the
field of complexified quaternions, the even subalgebra a + jw with the real quaternions, a + jt
with the commuting complex numbers and the subalgebra a + v1e1 + v2e2 + w3e1e2 with

C‘ð<2Þ.
The multivector logarithm highlights both the issue of multivaluedness and the non-com-

muting nature of multivectors. Firstly, the non-commutativity implies that eAeB 6¼ eA+B and
hence log AB 6¼ log A + log B. Also An Bn 6¼ (AB)n, unless A and B commute, where n
an integer.

Secondly, the issue of multivaluedness is typically addressed through defining the principle
value of the logarithm and the use of Riemann surfaces, however with the multivector loga-

rithm the multivaluedness can expand into two domains, of F̂ and j. This is because both j and

F̂ square to minus one and commute withM. That is

M ¼ elog M ¼ elog Mþ2npF̂ ¼ elog Mþ2mpj ¼ elog MþpF̂þpj ¼ elog Mþð2nþ1ÞpF̂þð2mþ1Þpj ð59Þ

where n andm are integers, where we can add even powers of π. HenceM = elogM whereasM 6
¼ logðeMÞ due to the multivalued nature of the log operation.

Now, we can easily see that for n an integer that
Mn ¼ ðelog MÞn ¼ elog Melog M . . . elog M ¼ enlog M , which can be used as an alternative to Eq. (51).
This leads us to define the multivector power

MP ¼ elogðMÞP; ð60Þ

where the power P is now generalized to a multivector. This implies, for example, the power law
(MP)n =MnP, where n 2 Z. With this definition of power we can then define the log of a multi-
vector Y to the multivector baseM as

log MY ¼ 1

logM
log Y : ð61Þ

Although, if the power P does not commute with logM then we can also define a power as
ePlog(M), that has a logarithm log Y/logM. These expressions however need care due to the
multivalued nature of the logarithm operation and the non-commutativity.

Now, using the logarithm function e0.5logM

e0:5ðlogjMjþ�F̂ Þ; e0:5ðlogjMjþ�F̂þpF̂þpjÞ; ð62Þ

we produce the two roots ofM defined in Eq. (49), as required.
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Special cases
We will now consider some special cases where we do have commuting multivectors, such as
the case with two multivectorsM and Z = a + jt. We then have that

logMZ ¼ ZlogM þ F̂mpþ jnp, wherem;n 2 Z add possible phase terms. We can eliminate
the phase terms using the exponential function and write a more explicit expression as
elog Mz ¼ ezlog M . We also then recover the well known relations that ezeM = eZ+M and log ZM =
log Z + logM.

A further special case [5] involves the product of two vectors a and b, and we have from
Eq. (38) that

ab ¼ reyB̂ ¼ ecþyB̂ ð63Þ

where θ is the angle between the two vectors, cosy ¼ â � b̂, c ¼ logr and B̂ is the unit bivector
of the plane defined by the vectors. We can then produce the result for two vectors a and b that

logðabÞ ¼ logjjajj þ logjjbjj þ yB̂ ¼ 1

2
logða2b2Þ þ y

a ^ b

ja ^ bj ð64Þ

where B̂ ¼ a^b
ja^bj is the unit bivector formed by a ^ b and y ¼ arcsin ja^bj

jjajjjjbjj is the angle between

the two vectors.

Linear equations and linear functions
We define a linear function over multivector variables

FðMÞ ¼
Xn
m¼1

RmMSm; ð65Þ

where Rm,Rm,M are multivectors. The series cannot in general be simplified due to non-com-
mutativity. The case of n = 1, giving F(M) = RMS is particularly useful. For example, for the
special case where R and S are vectors we have a reflection of a multivector

M0 ¼ �vMv: ð66Þ
When R and S lie in the even subalgebra, isomorphic to the quaternions we have a rotation op-
eration in three dimensions

M0 ¼ RMRy; ð67Þ
where RR† = 1. The quaternions form a division algebra and so they are suitable to use as rota-
tion operators that require an inverse. There is also a generalization to describe rotations in <4,

M0 ¼ RMS; ð68Þ
whereM = xe1 + ye2 + ze3 + jt represent a 4D Cartesian vector, with RR† = SS† = 1.

For the second case from Eq. (65) with n = 2 we have F(M) = RMS + PMQ. Now, premulti-
plying by S-1 from the right and P-1 from the left we produce Y = P-1F(M)S-1 = P-1RM +MQS-1.
Setting A = P-1R and B = QS-1 we produce

Y ¼ AM þMB; ð69Þ
which is called Sylvester’s equation [9] that can in general be solved forM. Assuming | A|6¼ 0
(or alternatively | B |6¼ 0) we firstly calculate
A�1Y�B þ Y ¼ M�B þ A�1MB�B þ AM þMB ¼ MðBþ �BÞ þ A�1MB�B þ AM. Now Bþ �B and
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B�B are commuting complex-like numbers and so we can write
ð�B þ Bþ A�1B�B þ AÞM ¼ A�1Y�B þ Y , thus succeeding in isolating the unknown multivector
M. Hence we have the solution

M ¼ ðBþ �B þ A�1B�B þ AÞ�1ðA�1Y�B þ YÞ: ð70Þ

This result is analogous to results using quaternions or matrices [9], though solved here for a
general multivector.

Regarding polynomial equations in multivectors, the fundamental theorem of algebra tells
us that the number of solutions of a complex polynomial is equal to the order of the polynomi-
al. With multivector polynomials however, such as the simple quadratic equationM2 + 1 = 0
we can find an infinite number of solutions.

A common operation in complex number theory is the process of ‘rationalizing the denomi-
nator’ for a complex number 1

aþib
that involves producing a single real valued denominator,

given by a�ib
a2þb2

. We can also duplicate this process for a multivector 1
aþvþjwþjt

. Now,

1=M ¼ M�1 ¼ �M=ðM �MÞ. Notice thatM �M is a complex-like number that we can now ‘ratio-

nalize’ by multiplying the numerator and the denominator by ðM �MÞy forming 1
M
¼ �M ðM �M Þy

R
,

where R ¼ M �MðM �MÞy is a scalar real value, as required.
Trigonometric functions of multivectors in 3D. The trigonometric functions in three-di-

mensions are more straightforward than in two-dimensions, because the unit imaginary j =
e123 is commuting. Using the general expressions in Eq. (10) and usingM = Z + F, we can once
again write these expression in a closed form

coshM ¼ 1

2
ðeZþF þ e�Z�FÞ ¼ cosjFjcosh Z þ F̂sinjFjsinh Z

sinhM ¼ 1

2
ðeZþF � e�Z�FÞ ¼ cosjFjsinh Z þ F̂sinjFjcosh Z:

ð71Þ

Using the commuting trivector j, we can now write the trig relations given in the general case
in Eq. (11), as

cosM ¼ 1

2
ðejM þ e�jMÞ ¼ coshjFjcosZ � F̂sinhjFjsinZ

sinM ¼ 1

2j
ðejM � e�jMÞ ¼ coshjFjsinZ þ F̂sinhjFjcosZ:

ð72Þ

All the usual identities will hold such as sinh jM = jsinM and cosh jM = cosM. Also, we can
see that sinM and cosM are commuting, and so we can define without any difficulties with
non-commutativity

tanM ¼ sinM
cosM

¼ tanZ þ F̂ tanhjFj
1� F̂ tanhjFjtanZ : ð73Þ

These expressions are easily calculated because both Z and |F| are complex-like numbers and
so we can utilize the well known results from complex number theory. We can also see that,
given three multivectorsM1,M2,M3 then writing sin ϕ =M1 |M3 and cos ϕ = M2 |M3 we have

sin�=cos� ¼ M1M
�1
3 ðM2M

�1
3 Þ�1 ¼ M1M

�1
3 M3M

�1
2 ¼ M1M

�1
2 ¼ tan�. That is, we can view

M1,M2,M3 as three sides of a triangle, subject to the normal trigonometric relations.

We also have the results that for a general vector v that cosv ¼ cos
ffiffiffiffiffi
v2

p ¼ cosjjvjj that neat-
ly generalizes scalar values to vector values. That is, the cos of a vector is the cos of the length of

the vector though sinv ¼ v̂sinjjvjj. For a field F = E + jB we have cosF ¼ cos
ffiffiffiffiffi
F2

p
.
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Inverse trigonometric functions. Now, using the result that eM = coshM + sinhM substi-
tutingM = arcsinh X then taking the log of both sides we find

arcsinhX ¼ logðcoshðarcsinhXÞ þ XÞ: ð74Þ

Re-arranging cosh2 X—sinh2 X = 1 we find that cosh(arcsinh X) = (1 + X2)1/2 and so

arcsinhX ¼ logðð1þ X2Þ1=2 þ XÞ: ð75Þ

This will coincide with the power series arcsinhX ¼
X1

n¼0

ð�Þnð2nÞ!
22nðn!Þ2

X2nþ1

2nþ1
. Similarly we find

arccoshX ¼ logðX þ ðX2 � 1Þ1=2Þ and arctanhX ¼ 1
2
logðð1þ XÞ=ð1� XÞÞ ¼ 1

2
ðlogð1þ XÞ �

logð1� XÞÞ that coincides with the conventional power series arctanhX ¼
X1

n¼0

X2nþ1

2nþ1
.

Similarly, from the definitions of cos and sin we know that

ejM ¼ cosM þ jsinM; ð76Þ

and once again substitutingM = arcsin X and using cos(arcsin X) = (1 − X2)1/2 we find

arcsinX ¼ �jlogðð1� X2Þ1=2 þ jXÞ: ð77Þ

Similarly we have arccos X = -jlog(X + j(1- X2)1/2).
Hence we produce the result that arcsinh(jX) = jarcsinX, arccoshX = jarccosX and arctanh

(jX) = jarctanX. Therefore, finally

arctanX ¼ � j
2
logðð1þ jXÞ=ð1� jXÞÞ ¼ � j

2
ðlogð1þ jXÞ � logð1� jXÞÞ: ð78Þ

As an example of solving multivector trigonometric equations, if we are asked to solve the
equation sinhM = 0 then we can proceed as follows. Given sinhM ¼ 1

2
ðeM � e�MÞ we therefore

need to solve eM = e-M or e2M = 1. Now

e2M ¼ e2ðaþjtÞþ2ðvþjwÞ ¼ e2aðcos 2t þ jsin 2tÞðcos 2jFj þ F̂sin 2jFjÞ ¼ 1: ð79Þ

Hence we require a = 0, t = nπ and | F |=mπ so we have a solutionM ¼ mpF̂ þ npj, where
m;n 2 Z. We can also identify a second solution in which both terms in the brackets are simul-

taneously negativeM ¼ mþ 1
2

� �
pF̂ þ nþ 1

2

� �
pj.

Inter-relationships in C‘ð<3Þ. We have the well known result from complex number theo-
ry that ii = e–π/2 that is duplicated with the pseudoscalar in Clifford algebra, finding ii = jj = e–π/2.
However with a more general multivector number now available we can also find other more
general relationships. For example, for a unit vector v̂ with v̂2 ¼ 1, we find that v̂ v̂ ¼ v̂ . That is
raising a unit vector to this unit vector power produces the same unit vector. Alternatively, if we

raise a unit vector to an orthogonal unit vector we find v̂ v̂? ¼ 1.
Also, consider the expression ðcos yþ jsin yÞv, where v = v1e1 + v2e2 + v3e3 is a Cartesian

vector, with v̂ ¼ v=
ffiffiffiffiffi
v2

p ¼ v=s, then we find

ðcos yþ jsin yÞv ¼ evlogðcosyþjsinyÞ ¼ esyjv̂ ¼ cos syþ jv̂sin sy: ð80Þ

Now q̂ ¼ cos syþ jv̂sin sy lies in the even sub-algebra and so is isomorphic to the quaternions
with |q| = 1 and ẑ ¼ cos yþ jsin y is isomorphic to the complex numbers, with ẑ representing
a unit complex number. We thus can write

rẑv ¼ q: ð81Þ
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This formula thus links real numbers r 2 <, complex numbers z 2 C, Cartesian vectors
v 2 <3 and quaternions q 2 H into a single relationship, a Rosetta stone for the algebra of
three-dimensional space. Interpreting this formula, we can see that raising a unit complex
number to a vector power produces a quaternion. A unit complex number being a rotation
operator in the plane with a rotation of θ, when raised to a unit vector power in the direction
v̂ produces a rotation operator rotating 2θ about the axis v̂ . Hence raising a complex number
to a vector power v̂ converts a planar rotation operator into a three dimensional rotation
operator about an axis v̂ . This relates to our previous discussion on the Cayley-Dickson con-
struction that generates quaternions from complex numbers, but illustrates an alternate con-
struction to achieve this.

These results are summarized in Table 2.

Multivector in one and four dimensions

We can extend the sequence C‘ð<3Þ, C‘ð<2Þ down to one dimension giving the multivector in

C‘ð<1Þ
M ¼ aþ ve1 ð82Þ

where a,v 2 <. We now do not have a pseudoscalar, however most functions can still be de-
rived and a table similar to Table 1 and Table 3 can be constructed. It should also be noted that
all multivectors are now commuting because we only have a single algebraic variable e1.

The four dimensional case C‘ð<4Þ is significantly harder than three dimensions, due to a
larger sixteen dimensional space as well as a non-commuting pseudoscalar I = e1234. We have a

Table 2. Algebraic relations in three dimensions C‘ð<3Þ.
Main results Notes: j = e123, i = e12, v 2 <3

j j = i i = e–π/2 Compare with
ffiffiffiffiffiffiffi�1

p ffiffiffiffi�1
p

¼ e�p=2

ðjv̂Þjv̂ ¼ e�p=2 v̂2 ¼ 1:E.g. (je1)
je
1 = (e2e3)

e
2
e
3 = e–π/2

ðjv̂Þjv̂? ¼ jŵ v̂? � v̂ ¼ 0,ŵv̂?v̂ ¼ j. E.g. ðje1Þje3 ¼ je2

Powers of vectors v̂2 ¼ 1

v̂ v̂ ¼ v̂ E.g. ee1
1 ¼ e1

v̂ v̂? ¼ 1 E.g. ee2
1 ¼ ee1

2 ¼ 1

v̂ jv̂? ¼ 1 E.g. eje3
2 ¼ 1

v
1
2 ¼ 1ffiffiffiffiffiffiffiffi

2j
ffiffiffiffi
v2

pp ðvþ j
ffiffiffiffiffi
v2

p Þ E.g. e
1
2
1 ¼ 1ffiffiffi

2j
p ðe1 þ jÞ ¼ 1

2
ð1� jÞðe1 þ jÞ

Trigonometric relationships

cos v = cos || v ||, cosv̂ ¼ 1

arcsinhv ¼ logðvþ ð1þ v2Þ1=2Þ
General relationships

r ẑv ¼ q r 2 <, z 2 C, jẑj ¼ 1, q 2 H and v 2 <3

Special cases

ðjv̂Þv̂ ¼ j E.g. ðje3Þe3 ¼ ðe1e2Þe3 ¼ j

jv̂ ¼ jv̂ E.g. je3 ¼ je3

doi:10.1371/journal.pone.0116943.t002
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multivectorM = a + v + B + Iw + It, where v,w 2 <4 and the bivectorsB ¼
X4

i;j¼1
bijeiej. We

have Clifford conjugation �M ¼ a� v�Bþ Iwþ It as well as a new involutionM# = a–v +

B − Iw –It. We can then find a multivector amplitude jMj ¼ ðM �MðM �MÞ#Þ1=4 that allows us to
find an inverseM�1 ¼ �MðM �MÞ#=jMj4 provided |M | 6¼ 0.

If we seek the next space that has a commuting pseudoscalar that squares to minus one we
need to go to a seven dimensional space. This space consists of eight grades with a total of 27 =
128 elements.

Results and Discussion
In this paper, we explore the elementary functions when generalized to act over the space of
Clifford multivectors in two and three dimensions, refer Table 1 and Table 3. Two key points
that need to be kept in mind when working with multivectors, is firstly their non-commutativi-
ty and secondly multivaluedness, as found with the log function and the square root functions,
for example. According to Frobenius’ theorem the only associative division algebras are the
reals, complex numbers and quaternions and conveniently these form subalgebras within

C‘ð<3Þ. For the multivector, as represented in Eq. (37), the reals form the scalar component a,
the complex-like numbers represented by the scalar and trivector components a + jt and the
quaternions by the even subalgebra a + jw. The full multivector in three dimensions, on the
other hand, do not form a division algebra as the inverse operation is not defined for the multi-
vectors with zero amplitude.

Table 3. Multivector functions in three dimensions C‘ð<3Þ.
Main results Notes (j = e123 commuting)

M = a + v + jw + jt F = v + jw, Z = a + jt, v,w 2<3

�M ¼ a� v� jwþ jt Conjugation

jMj ¼
ffiffiffiffiffiffiffiffiffi
M �M

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � v2 þw2 � t2 þ 2jðat � v �wÞp
Amplitude

M�1 ¼ �M=ðM �MÞ: | M | 6¼ 0 Inverse

� ¼ argM ¼ arctan jFj
Z

� �
Argument

M ¼ jMje�F̂ ¼ jMjðcos�þ F̂sin�Þ: | M |,| F | 6¼ 0 Polar form, F̂ ¼ F=jFj, F̂ 2 ¼ �1

M1
2 ¼ M	jMjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mþ �M	2jMj
p : Z± | M |6¼ 0 Square root

Mx ¼ jMjxðcosx�þ F̂sinx�Þ Complex powers x 2 < � ^3<3

eM ¼ eZþF ¼ eZðcosjFj þ F̂sinjFjÞ Exponential If |F| = 0 then eM = eZ(1 + F)

logeM ¼ logejMj þ �F̂ Logarithm

MP = elog(M)P or ePlog(M) General powers

Hyperbolic/Trigonometric functions M ¼ Z þ F ¼ Z þ F̂ jFj
coshM ¼ cosjFjcosh Z þ F̂sinjFjsinh Z eM = cosh M + sinh M

sinhM ¼ cosjFjsinh Z þ F̂sinjFjcosh Z cosh2M—sinh2M = 1

cosM ¼ cosh jM ¼ coshjFjcosZ � F̂sinhjFjsinZ ejM = cos M + j sin M

sinM ¼ �jsinh jM ¼ coshjFjsinZ þ F̂sinhjFjcosZ cos2M + sin2M = 1

arcsinhM ¼ log Mþ ð1þM2Þ12
� �

arcsinh(jM) = jarcsinM

arccoshM ¼ logðMþ ðM2 � 1Þ1=2Þ arccosh X = jarccosX

arctanhM ¼ 1
2
logðð1þMÞ=ð1�MÞÞ arctanh(jM) = jarctanM

doi:10.1371/journal.pone.0116943.t003
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We have used the symbols i and j to replace the unit imaginary in two and three dimensions
respectively. The use of the bivector and trivector for this purpose allows us to duplicate imagi-
nary quantities with real algebraic entities thus remaining within a real space. Also the quanti-
ties i = e1e2 and j = e1e2e3 can be endowed with specific geometrical meaning as a unit area and
a unit volume respectively.

We find that in two and four dimensions with a non-commuting pseudoscalar the elemen-
tary functions lack generality, whereas in three dimensions with a commuting pseudoscalar the
functions are defined more generally, so providing a very elegant mathematical framework. For
example, in three dimensions the exponential form (polar decomposition) exists for all multi-
vectors provided |M |,| F | 6¼ 0, whereas in two dimensions, they only exist if |M| is real. In fact,

in three dimensions with a commuting pseudoscalar allows us to identify C‘ð<3Þ with a com-
plex algebra, isomorphic to complexified quaternions.

We find that because the complex numbers and quaternions appear as subalgebras within
the more general multivector, we can explore their mutual inter-relationships within this con-
text. We find that we can link the three algebraic systems of vectors, quaternions and complex
numbers into a single expression, finding that a complex number raised to a vector power pro-
duces a quaternion, as shown in Eq. (81). A relationship between complex numbers and qua-
ternions is already provided by the Cayley-Dickson construction of quaternions from complex
numbers, however our expression is more explicit generating quaternions from raising a com-
plex number to the power of a Cartesian vector. Inspecting the list of functions we also identify
a single formula that produces the square root, amplitude and inverse in two and three dimen-
sions. Also vectors are given a much more versatile formulation in Clifford algebra compared
to Gibbs formulation of vectors, and indeed we can explore various vector expressions, such as
raising a vector to a vector power, as well as logarithms and trigonometric relationships with
vectors, these and other relationships listed in Table 2. We also find that the elementary func-
tions can be defined using a single involution of Clifford conjugation, although for convenience
two other involutions of reversion and space inversion are also defined. Naturally, the elemen-
tary functions over complex numbers and quaternions can be recovered as special cases from
the three dimensional case.

The two dimensional algebra has the even subalgebra isomorphic to the complex numbers
and has application within planar geometry, such as planar waveguides, and the three-dimen-
sional algebra has the obvious application to three-dimensional space and forms an elegant
space due to the commuting pseudoscalar, as well as possessing complex numbers and quater-
nions as subalgebras that can be utilized for rotations and containing Cartesian vectors that
perform reflections.

It has been found that the multivector can also provide a unifying perspective on physical
phenomena in three dimensions. For example, the Schrödinger, Pauli and Dirac wave func-

tions [10], are all subalgebras within the three-dimensional multivector C‘ð<3Þ. This example
serves to illustrate the value of detailing the functions over multivector variables as undertaken
in this paper.
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