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Abstract

We take a system point of view toward constructing any power or ranking hierarchy

onto a society of human or animal players. The most common hierarchy is the linear

ranking, which is habitually used in nearly all real-world problems. A stronger

version of linear ranking via increasing and unvarying winning potentials, known as

Bradley-Terry model, is particularly popular. Only recently non-linear ranking

hierarchy is discussed and developed through recognition of dominance

information contents beyond direct dyadic win-and-loss. We take this development

further by rigorously arguing for the necessity of accommodating system’s global

pattern information contents, and then introducing a systemic testing on Bradley-

Terry model. Our test statistic with an ensemble based empirical distribution

favorably compares with the Deviance test equipped with a Chi-squared asymptotic

approximation. Several simulated and real data sets are analyzed throughout our

development.

Introduction

For many decades, the Bradley-Terry model [1] on paired competition data has

remained the most popular approach for ranking and estimating probabilities of

possible outcomes. This popularity is due to its simplicity in conceptualization

and efficiency in computation. The fundamental concept underlying this model is

that each player, may it be an animal, or a human or a sport team in a society

under study, is equipped with an unvarying wining potential. The probability of

seeing a win or loss between two players is a logistic function of their potential

difference. In other words, this imaginary winning potential never changes when

facing different opponent player. Consequently an estimate of the vector of wining

potential would determine a rigid linear ranking structure. Specifically, if a player,
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A, is estimated as likely to win against competitor B, and B is likely to win against

competitor C, then the model purports that A is likely to win against C.

Furthermore, the probability that A wins against C should be greater than the

probability that B wins against C. This Bradley-Terry model assumption is often

taken for granted with no verification despite being far from universally true for

real problems.

The computational foundation for estimation in Bradley-Terry model is the

likelihood approach built upon the logistic probability function and independence

assumptions among all dyadic games. This generalized linear model framework

renders that individuals’ total wins and losses are the natural sufficient statistics

for the vector of winning potentials. This fact immediately points to a severe

drawback of this modeling. In order to produce reasonable results, the scheduled

number of games across all players are required to be rather uniform. This is an

implicit requirement for Bradley-Terry model to be successful. Heterogeneity in

the scheduled number of games can lead to players achieving a rank higher or

lower that does not match the true relative ability. We illustrate an extreme case of

this counter-intuitive estimation in a simulated example in the following section.

Furthermore, we demonstrate through a simulation an important shortcoming of

the Bradley-terry model: it can not handle conflicting information such as a

dominance circle. For example, A wins over B, B wins over C, but C wins over A.

There might be many such conflicting data in real data sets. Under the Bradley-

Terry model, the estimates will suggest that all involving players have equal wining

potentials. This phenomenon indeed points to an important fact that this

estimation restricts itself on direct win-and-loss data, and nearly completely

ignores the dominance information flows from one dominant player to other less

dominant players.

By following the argument in Simon [2], a stable system is most likely to be

equipped with a hierarchical structure as its global manifestation. Therefore, any

endeavor to construct a structural hierarchy is better considered from the systemic

perspective; a perspective that is fundamentally different from classic mathema-

tical or statistical views. Consider an example of the latter as a concave

distribution function, F(x), against an un-rooted tree hierarchy, T , of the former.

The concavity of F(:) is defined with respect to a variable value to every each node,

while a tree, T , is one whole complex arrangement for all involved nodes. A result

of not referring to any other variable is that a tree, T , is very fluid in comparison

to the rigid shape of a concave functional form. The Bradley-Terry model is based

on a rather rigid conceptualization, and its likelihood based estimation ignores

important information content available in the observed win-and-loss matrix.

This matrix as a whole is a directed network, so it is a system and should be

treated as such.

We must consider the flow of dominance information from a systemic

perspective. Since real-world games usually involve many aspects of skill, a win or

loss between two players is hardly just a simple comparison of the two linear sums

of talents but two complicated combinations of each player’s talents. The source

of dominance information is not limited to directly observed wins and losses, but

Systemic Test for Linear Hierarchy

PLOS ONE | DOI:10.1371/journal.pone.0115367 December 22, 2014 2 / 18



includes many indirect ones as well. For instance, given an observed circular

dominance among three players A, B, and C, if A also wins over a fourth player, D,

and D wins over C, then this dominance path through intermediate player D
should also contribute dominance information of A over C. There might be many

such dominance paths of different lengths contribute different amounts of

dominance information. This dominance path idea, which is called ‘‘flow’’ in

network research, makes the sharp contrast between direct dominance probability

estimation with the one taking into many dominance paths into account. This

significant contrast would show up vividly in the Bradley-Terry model testing as

well.

Considering the flow of dominance brings out the significant aspects of the data

that need to be not only factored into the dominance probability matrix

estimation but also factored into the Bradley-Terry model testing. In our

development here, we propose a systemic test statistic by comparing a non-

parametric dominance-path based estimation of a dominance probability matrix

with the maximum likelihood estimation (MLE) based on Bradley-Terry model.

The non-parametric estimation is an improved version of Fushing, et al. [3], while

the Bradley-Terry model’s MLE is the version studied in Hunter [4]. Our systemic

test statistic is compared with the popular Deviance test, which is derived under

the Generalized Linear Model literature. This Deviance test statistic considers only

direct win-and-loss records by comparing the MLE with the direct empirical

dominance probability estimations.

Specifically the distribution of our test statistic is generated based on an

ensemble of simulated win-and-loss matrices under the Bradley-Terry model with

the same competition schedule matrix. The generating mechanism for such an

ensemble is based on Beta Random field technique developed in Fushing et al. [3]

and the adaptation of empirical transitivity developed in Fujii et al. [5], both of

which take advantage of the inherent transitivity of dominance actions in a

competitive society. Dominance information is transmitted through dominance

paths so that we may indirectly infer the relationship between two players, even if

we observe no direct conflicts between them. The quantity of dominance

information passed through a given dominance path depends on the calculation

of transitivity, the empirical probability that a dominance path between two

players is indicative of an observed concordant dominance action between the

same two players. Fujii et al. [5] combine empirical transitivity with the

estimation of the tiered hierarchical power structure of a competitive society to

produce dominance probability estimates between any two players in that society.

This provides two important advantages over the Deviance test statistic: 1) by

adapting empirical transitivity, one of the major systemic characteristics of the

game of interest is accommodated; 2) the uncertainty of game is incorporated.

These two features are exemplified as follows. A professional American or NCAA

football game has obvious characteristic differences from a professional tennis

game, and even more differences from the children’s game of Rock-Paper-

Scissors. The transitivity can summarize the characteristic differences with respect

to the uncertainty to a reasonable extent so that the generated ensemble can better
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mimic the system from which the original data is observed. These are the systemic

features emphasized here.

In contrast, the Deviance test is based on an asymptotic Chi-squared

distribution. Its degrees of freedom is calculated as the number of pairs having

directly estimable dominance probabilities subtracting the number of players plus

one. Therefore, this Deviance test has a tendency to reject a true null hypothesis

when many pairs of competitors are unrepresented in the data. This undesirable

feature is simply due to the approximation of asymptotic Chi-square distribution

of the deviance test statistic with few degrees of freedom. Additionally, we

demonstrate that the most fundamental shortcoming of the deviance test statistic

is its lack of the systemic perspective of the information contents embedded

within the observed win-and-loss data matrix.

The Bradley-Terry Model

The Bradley-Terry model [1] for ranking individuals of a group based on

outcomes of paired conflicts suggests a model for the probability that one

individual dominates another with the relation,

P( individual i beats individual j )~
edi

edizedj
ð1Þ

where di, the dominance index for individual i, is a real-valued parameter that

measures an individual’s relative ability to compete. For the purpose of

identifiability, an individual, i, is chosen to be a baseline with di~0. For example,

if sports teams were the agents being compared, the dominance index would

represent a team’s overall skill level relative to other team’s and the probability

team i would win a match-up against team j would be given by Equation (1).

Thus, one would expect the winner of a championship game to have a large

dominance index. Suppose that the outcomes of all paired comparisons are

independent and let wij denote the number of times i dominates j, then the

negative log-likelihood is given by,

l(d)~{
X
ivj

wij log
edi

edizedj

� �
zwji log

edi

edizedj

� �� �
ð2Þ

The Bradley-Terry model was first conceived as early as 1929 by Zermelo [6] to

rate the skill of chess players. The model was independently rediscovered by

Bradley and Terry [1] and has remained a popular choice to this day due to its

ease of use for a wide range of problems. It has been employed by the World Chess

Federation and the European Go Federation as a method to rank competitors as

well as in Biology to reconstruct social hierarchies of a community of animals, and

was even reinterpreted for classification [7]. It can be used in any situation in

which the data can be expressed in a directed graph with non-negative integer

weighted edges. The versatile construction of the method has made it possible to
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modify and generalize it for use in more complicated problems. Modifications to

the model have been made to allow for home field advantage [8], ties [9], and to

account for competitions between subsets of the individuals [10]. In all these

cases, provided certain assumptions on the data are met, efficient algorithms exist

to maximize the likelihood and produce an estimate of dominance probabilities.

However, the ability to always produce an estimate is an attractive and not always

beneficial property if proper goodness of fit checking is not utilized.

Unfortunately, few methods exist currently for the Bradley-Terry model.

2.1 Obtaining the MLE

Provided the MLE exists, standard optimization methods can easily solve for the

MLE. Hunter (2004) provides a minorizing-maximization (MM) algorithm that is

very efficient for identifying the MLE of the Bradley-Terry model and can easily be

modified to work with generalizations of the model. The MM algorithm updates

each dominance index one at a time. Equation (3) gives the (kz1)th step for di

under the standard Bradley-Terry model.

ed(kz1)
i ~Wi

X
jvi

wijzwji

ed(k)
i ze

d(kz1)
j

z
X
jwi

wijzwji

ed(k)
i ze

d(k)
j

2
4

3
5

{1

, ð3Þ

where Wi is the total number of wins by individual i. The baseline remains set to 0

for each update.

Hunter [4] shows that the MLE exists in the boundary and Equation 3 will

converge if and only if the following assumption is met.

ASSUMPTION 1: For every possible partition of the competitors into two non-empty

subsets, one competitor in the second subset must have defeated a competitor in the

first subset.

Because of this requirement on the data, there can be no group of one or more

competitors that always wins or always loses against another group of one or more

competitors in order to ensure the existence of the MLE in the parameter space.

Fig. 1 (a) demonstrates why the MLE cannot exist if this is the case. Furthermore,

this assumption guarantees that there are not two groups that have absolutely no

interaction. It is clear that this is important as there is no information for which to

compare the two groups, however, this requirement is not necessary to guarantee

convergence to the MLE. The Bradley-Terry model will still provide an estimate in

the case that two groups cannot be compared, so it is requisite that this

assumption must be checked to be true before using the model. When there is a

large number of competitors it can be difficult to check whether the data meets

the requirements for the existence of the MLE.

Assumption 1 also has a graph-theoretic interpretation that states that if the

competitors are represented by a directed graph, a path exists from any given node

to another node. A path represent a chain of observed wins of one individual over

the next in the chain, so we will refer to paths on the directed graph as a
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dominance path. Checking Assumption 1 then comes down to identifying the

existence of a dominance path between every ordered pair of competitors.

2.2 The Bradley-Terry Assumption

As a consequence of parameterizing the model by the dominance indices, d, the

Bradley-Terry model makes an assumption that the true dominance relationship

of the competitors is linear as well as characterized by increasing dominance by

rank. That is, if a competitor A is dominant against competitor B, and B is

dominant against competitor C, then not only should A be dominant against C
but, for a single conflict, the probability of A dominating C should be greater than

the probability of B dominating C. This relationship is stated in assumption 2 in

terms of the dominance probabilities.

ASSUMPTION 2 (BRADLEY-TERRY ASSUMPTION): If pijw0:5 and pjkw0:5, then

pikw0:5 and pikwpjk.

Assumption 2 provides that no cycles in the dominance structure exist and that

the probability to win against a given competitor monotonically decreases with

decreasing rank. In other words, if the dominance probabilities were arranged in

the matrix with rows and columns ordered by decreasing rank, the dominance

probabilities would increase from left to right and decrease from top to bottom.

Often, the true dominance structure is more complicated than this. For example,

in many sports it is common to see specialized teams which can take advantage of

another team’s weakness. This could yield a situation where, given any pair of

teams, one team is clearly dominant, but when all three are considered there is no

linear ordering which reflects all the teams’ abilities. The rigid structure of the

Bradley-Terry model disallows the consideration of many plausible dominance

structures. Note that Assumption 2 is distinct from assuming a linear dominance

ordering exists. Even in certain cases where the data has a clear linear structure the

Bradley-Terry model provides unintuitive results due to the model’s assumptions.

Fig. 1. Two examples in which the Bradley-Terry model fails. The Bradley-Terry estimate does not exist for
the left graph despite strong evidence of a linear dominance structure. The right graph yields an unintuitive
Bradley-Terry estimate for ranking the three competitors that does not seem to match the order suggested by
the data.

doi:10.1371/journal.pone.0115367.g001
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Consider three individuals competing as shown in Fig. 1 (a). The clear ordering

should be AwBwC as A is undefeated against B, and B is undefeated against C,

but the data does not satisfy Assumption 1 since A is undefeated and C won no

conflicts. Intuitively, estimates for P(A beats B) and P(B beats C) should be close

to 1. Let dB~0 for identifiability, then dA and dC would not be finite for the

previous statements to be true, so the Bradley-Terry MLE does not exist in this

situation. Only if Assumption 1 is satisfied by the data does the maximum

likelihood estimate lie within the parameter space.

Fig. 1 (b) demonstrates a case in which Assumption 2 has been violated. Due to

the large number of observed wins of B over C, P(B beats C) is much larger than

P(A beats C). The data suggest a clear linear ordering of AwBwC, but the

Bradley-Terry model estimates dA~4:489, dB~5:075, and dC~0:000 suggesting

the ordering BwAwC due to the requirement of increasing dominance with rank.

Even in less extreme cases, the Bradley-Terry model might still estimate the

ordering correctly, but dominance probability estimates could be far from the true

values.

The Bradley-Terry model can also be interpreted in the context of logistic

regression. The model can be rewritten as logit(pij)~di{dj. Define the vector

corresponding to the kth paired comparison (say it is between individuals i and j)
xk~(xk1,xk2, . . . ,xkn), where

xkl~

1 l~i

{1 l~j

0 otherwise

8><
>:

This is equivalent to a logistic regression model with covariates xk and no

intercept.

The relationship between the Bradley-Terry model and logistic regression

suggests that standard methods for testing goodness-of-fit based on analysis of

deviance [11] could be used to determine the efficacy of the model. Using

deviance you can test if the Bradley-Terry model is an improvement upon the null

model of equal ability (H0 : di~0, for all i) or if the observed dominance

probabilities match those observed for each pair in the data

(H0 : edi=(edizedj)~wij=nij for all i=j). In an ideal setting with a balanced design,

the former test would require at least 15 observations per pair for the sampling

distribution of the likelihood-ratio to be satisfactorily close to hypothesized X2

distribution. A smaller sample size would result in inflated type I error rates [12].

The latter test, which effectively tests the Assumption 2 and is the subject of this

manuscript, has similar issues which we will demonstrate in Section 3.

Testing the Bradley-Terry assumption requires testing if the parameters fall into

a class with a specific structure. A result of this is that some observations carry

much more information about this structure than others. For example, the first

and second best competitors may have very similar skill levels with one having a

slight edge over the other. For this pair, many more observations will be required
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to properly determine their relationship than would be required to properly

determine the relationship between the best and worst competitor. The deviance

test checks the linearity assumption by summarizing each paired comparison

through the likelihood function which is inefficient without an experiment

designed with a priori information. For example, NCAA conferences attempt to

group teams of similar skill levels and many games are played within each

conference, but much fewer games are played between conferences. This is more

ideal than a balanced design as less information is contained per observation

between similarly skilled teams than is contained in observations between

conferences with a larger skill gap.

If no knowledge of the structure is known a priori, a method that more

efficiently uses the empirical data is required to test the linearity assumption even

for a moderately large number of observations. In the next section we propose

another test which works by utilizing the structure of the empirical data through

observed dominance paths and rankings instead of individual conflicts. This yields

a more robust test than the standard methods offer.

Nonparametric estimation of Dominance Probabilities

3.1 Conductance Estimation

Fujii et al. [5] have developed a nonparametric procedure for estimating

dominance probabilities, which takes advantage of the transitivity of dominance

information in a similar manner to Beta Random Field estimation. As proposed

by Fushing et al. [3], we begin by assigning the prior distribution Beta (b,b) to the

dominance probability pij. If any dominance actions are observed between the pair

of competitors fi,jg, we may update the prior distribution which results in the

posterior distribution Beta (awijzb,awjizb). However, we often do not observe

conflicts between many pairs of competitors. In this case, it is possible to impute

dominance information between a pair of competitors using dominance paths.

We denote a particular dominance path from subject i0 to imz1 passing through

subjects i1, . . . ,im by s(i0,i1, . . . ,im,imz1). The order of this dominance path is

defined as the number of intermediate nodes in the path. Thus, the dominance

path s(i0,i1, . . . ,im,imz1) is of order m. We enumerate dominance paths of order

m by sm
1 , . . . ,sm

Km
, where Km is the total number of dominance paths of order m.

We index the f th element of dominance path sm
k as sm

k (f ), where the starting node

corresponds to f ~0 and the ending node corresponds to f ~mz1.

We identify all dominance paths up to a reasonable order M, and use them to

fill dominance path matrices D1, . . . ,DM whose fi,jgth elements contain the

number of dominance paths of order m beginning at competitor i and ending at

competitor j. We construct the ensemble conflict matrix E�, whose entries e�ij are

calculated by
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e�ij~wijz
XM

m~1

XKm

k~1

P
m

f ~0

awsm
k

(f )sm
k

(f z1)zb

�w(a(wsm
k

(f )sm
k

(f z1)zwsm
k

(f z1)sm
k

(f ))z2b)

 !
, ð4Þ

where �w~
1
N

X
i
wi is the average number of observed dominance actions per

subject. We include �w in the ensemble matrix calculation as a correction for the

number of imputed dominance actions, since the number of dominance paths of

any order increases exponentially with �w. The inclusion of �w in the above

calculation also helps to ensure that the estimation of the dominance probability

matrix is consistent.

If at most one dominance action is observed between any given pair of subjects,

the calculation in Equation (4) simplifies significantly. Since wsm
k (f )sm

k (f z1)ƒ1 and

wsm
k (f )sm

k (f z1)zwsm
k (f z1)sm

k (f )ƒ1 for any k, m, and f , Equation (4) simply counts the

number of dominance paths, weights them depending on their order, then adds

each dominance path’s contribution to the win totals. Thus, Equation (4)

simplifies to

e�ij~wijz
XM

m~1

dm
ij

azb

�w(az2b)

� �m{1

, ð5Þ

under the assumption that wijzwjiƒ1.

We can then use this ensemble conflict matrix to produce the posterior

distribution Beta (aeijzb,aejizb) for pij. A dominance probability matrix P̂ is

then filled with the posterior means p̂ij~
aeijzb

aeijzaejizb
.

At the end of this section we propose how to choose a and b that could reflect

the overall characteristics of the game of interest. As mentioned in the

Introduction, one important global feature of any game is its transitivity. Here we

consider its triplet version of transitivity. Initially, all triads with fewer than three

edges are excluded from the transitivity computations. For any triple of nodes

with three directed edges, there are only two possibilities: being coherent or

incoherent between the direct and the order-1 indirect dominance direction, see

Fujii, et al. [5] for details. The proportion of coherent triads is taken as the

empirical estimate of the transitivity of the win-and-loss matrix W0~½wij�, and

denotes this estimate as T̂(W0). For simplicity, we choose b~1. For choosing a,

we approximately equate the transitivity estimate T̂(W0) to the dominance

probability computed through an order-1 dominance path:

T̂(W0)~
az1
az2

� �2

, ð6Þ

where
az1
az2

is the mean value of Beta (az1,1).
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3.2 Example Comparing Bradley-Terry and Conductance

To illuminate the difference in between the Bradley-Terry and Conductance

estimates consider the 4|4 contingency table show in Table 1 containing citation

counts between the journals: Biometrika, Communications in Statistics, JASA, and

JRSS-B. These data were originally extracted from a larger table in Stigler [13] and

this table is featured in the bradleyterry2 R package [14] and used on p448 of

Agresti [8]. Here we count a win as being cited by another journal and a loss as

citing another journal.

The estimated dominance (i.e. citation) probabilities from both the Bradley-

Terry model and Conductance are given below in Table 2 along with a Bonferroni

adjusted 95% family confidence interval. With samples so large, the true

relationships should be apparent here. Only one estimate from the Bradley-Terry

model falls within its respective interval while 5 out of the 6 estimates from

Conductance fall within their confidence intervals. These data do not satisfy

Assumption 2, and even though there is little uncertainty, the Bradley-Terry

model must force estimates into a rigid structure. Conductance however is able to

respect the flow of dominance through the system and produces sensible estimates

that reflect the empirical information. While the Bradley-Terry model is

convenient, it is not reliable unless the Bradley-Terry assumption is sure to be

satisfied.

Testing the Bradley-Terry Assumption

3.3 Residual Deviance

The standard approach to testing the Bradley-Terry assumption is to use a

likelihood ratio test to determine if the residual deviance is significantly large. The

deviance is calculated by,

D~{2
X
i=j

wij log
p̂ij

wij=nij

 !
: ð7Þ

D, is approximately X2 with c{pz1 degrees of freedom, where c is the number of

pairs with at least one observed conflict, and p is the number of competitors.

Table 1. Citation counts between journals. These counts are extracted from a larger table in Stigler [13].

Cited

Citing

Biometrika Comm Statist JASA JRSS-B

Biometrika 714 730 498 221

Comm Statist 33 425 68 17

JASA 320 813 1072 142

JRSS-B 284 276 325 188

doi:10.1371/journal.pone.0115367.t001
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3.4 Systemic Test

The Bradley-Terry assumption prescribes a structure for the parameters and the

data should resemble this structure. The deviance test fails to take the structure or

the information content of the data into account. If the true dominance

probability is close to 1 or 0, it takes fewer observations to determine which is the

more dominant of the pair than if the true value was near 0.5. Without the

observations being proportionally concentrated on the pairs with the most

uncertainty the deviance test will misrepresent the structure of the data and

require a large sample for the test-statistic to converge close to the X2 distribution.

A test for the Bradley-Terry assumption should take into account the entire

structure of the data. To this end, we propose the following test.

STEP T1 Obtain the conductance estimates and the Bradley-Terry model estimates.

The conductance estimates, denoted as ~p, are obtained as described in Section 1.4

and the Bradley-Terry estimates, p̂, can be obtained with the method given by

Equation (3).

STEP T2 Calculate the test statistic.

The test statistic is a function of the difference between all the dominance

probability estimates weighted by the difference in ranks of the two competitors

represented. The function is given by,

d̂~
X
i=j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp̂ij{~pijj:jri{rjj

q
, ð8Þ

where ri is the rank of competitor i as given by the MLE. The purpose of using the

ranks is to penalize a difference in estimates that should have lower variance; that

is, estimating the dominance of a skilled player versus an unskilled player. The

choice of this function is discussed further in Section 4.

STEP T3 Simulate a sampling distribution for d̂.

An approximate sampling distribution for d̂ is created by generating conflict

matrices similar to what would be expected under the estimates given by the

Bradley-Terry model. These new observations are the outcomes of the set of

binomial random variables given by,

Table 2. Bradley-Terry and Conductance estimates for citation probabilities with Bonferonni adjusted 95% family confidence intervals.

Pr(Citation) Bradley-Terry Conductance 95% Family-wise CI

Pr(Comm. cites Bio.) 0.950 0.957 (0.955, 0.959)

Pr(Comm. cites JASA) 0.618 0.609 (0.605, 0.613)

Pr(Comm. cites JRSS) 0.567 0.438 (0.434, 0.441)

Pr(Bio. cites JASA) 0.078 0.077 (0.074, 0.081)

Pr(Bio. cites JRSS) 0.064 0.059 (0.055, 0.061)

Pr(JASA cites JRSS) 0.448 0.304 (0.299, 0.309)

doi:10.1371/journal.pone.0115367.t002
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fw’ij*Binomial (nij,p̂ij) : ivjg and fw’ji~nij{wij : ivjg ð9Þ

For each new data set, repeat Step T1 and Step T2 to obtain a simulated statistic

under the null hypothesis that the Bradley-Terry assumption is true. Simulate a

large number, N, of these statistics.

STEP T4 Decide the result.

A conclusion is drawn from the simulated sampling distribution based on a

predetermined confidence level, a. If the number of simulated statistics greater

than d̂ is less than Na, then conclude there is significant evidence that the

underlying dominance structure does not meet the requirements of the Bradley-

Terry assumption.

Simulations and Examples

In this section we first explore the three example data sets shown below in Fig. 2.

The first example in panel (a) is a data set that could possibly arise when the true

dominance structure satisfies the Bradley-Terry assumption. There are few

violations of the assumption in the data given here. The data in panel (b) removes

the observations between competitors B and C so that no direct comparison can

be made between the two competitors. As the two competitors with no direct

observations could possibly have equal dominance indices under the Bradley-

Terry model, missing information does not represent a violation of the Bradley-

Terry assumption. A circular relationship between competitors B, C, and D is the

case show in the final example in panel (c). There is strong evidence here to

suggest that the true relationship between the three competitors may not satisfy

the the Bradley-Terry assumption. By construction of the Bradley-Terry model,

the MLE cannot possibly reflect the empirical data here. If our proposed test is

working as intended, it should fail to reject the null hypothesis of the Bradley-

Terry assumption for the first two examples and it should reject the null

hypothesis for the third example.

The estimates for both the Bradley-Terry model and conductance will be very

similar if data shows no significant deviations from the structure suggested by the

Bradley-Terry assumption. Table 3 shows the both estimates of dominance

probabilities and their differences. Example (a) and Example (b) do in fact have

similar estimates with generally only small differences. Note that in Example (b)

both conductance and the Bradley-Terry model estimate the dominance

probability between B and C to be about 0.5 due to the missing data. Alternatively,

the cycle in Example (c) causes large differences in the estimates as the Bradley-

Terry model attempts to imply players B, C, and D have a similar level of skill

while conductance allows the estimates to represent a cycle in the dominance

structure. In all three examples the Bradley-Terry model estimates the rank

ordering to be AwBwCwD, so the term, jri{rjj, is the same for the three test-
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statistics. As expected, Example (c) has a much larger test-statistic than the other

two examples.

Fig. 3 and Table 4 show the results of the systemic test as well as the deviance

test. The test-statistic was in the lower tail of the sampling distribution for

Example (a) and Example (b), resulting in large p-values which the deviance test

confirmed. At a significance level of a~0:1, there is no significant evidence to

suggest the Bradley-Terry assumption had been violated. In contrast, Example (c)

had a very large test-statistic well into the upper tail of the distribution. The p-

values from both the deviance test and the proposed test are very small, so we

reject the null hypothesis. There is strong evidence to suggest that the Bradley-

Terry model is not appropriate for these data.

Both the proposed test and the deviance test agreed on all three results. These

cases with a relatively large sample and a low number of competitors are ideal for

Fig. 2. Examples of three basic data structures. Example (a) is an ideal case where the data suggests a linear ordering. Despite missing information on
the relationship between B and C, Example (b) is still appropriate for the Bradley-Terry model. Example (c) has a cycle producing an estimate that does not
match the structure of the data.

doi:10.1371/journal.pone.0115367.g002

Table 3. Computing the test-statistic for the systemic test.

pij jri{rjj
Example (a) Example (b) Example (c)

p̂ij ~pij dij p̂ij ~pij dij p̂ij ~pij dij

pAB 1 0.640 0.660 0.020 0.684 0.655 20.029 0.750 0.661 20.090

pAC 2 0.758 0.718 20.040 0.715 0.712 20.003 0.763 0.718 20.045

pAD 3 0.902 0.892 20.010 0.899 0.885 20.014 0.775 0.893 0.118

pBC 1 0.638 0.691 0.053 0.537 0.500 20.037 0.517 0.691 0.174

pBD 2 0.838 0.724 20.114 0.804 0.728 20.076 0.534 0.281 20.253

pCD 1 0.746 0.774 0.028 0.779 0.776 20.003 0.517 0.775 0.258P
i=j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp̂ij{~pijj:jri{rjj

q
2.943 2.179 5.658

For each example in Fig. 2, the estimated dominance probabilities from both the Bradley-Terry model and conductance and their differences are given. The
value of the test statistic is also provided in the bottom row.

doi:10.1371/journal.pone.0115367.t003
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the deviance test, so there are no doubts regarding the convergence of the test

statistic. Here there is no advantage of the systemic test over the deviance test,

however, we will show that even with a moderate number of players, the deviance

test may fail to perform as intended.

3.5 Simulations for Type I Error

The systemic test is advantageous compared to testing the residual deviance in

cases when the sample size is not sufficiently large. Even cases with just a moderate

number of competitors, the deviance test performs poorly and a large number of

observed conflicts is needed for the sampling distribution of the deviance test

statistic to converge to an approximately chi-square distribution. Table 5 shows

the Type I error rates of simulated, 10 competitor data sets for both tests. The data

was simulated by simulating conflicts between a randomly selected pair of agents

with win probability determined by the true dominance indices given by,
i{1

4
, for

i[f1,2, . . . ,10g. For data sets consisting of 100, 500, 1000, and 2000 conflicts, 1000

tests were conducted for each sample size at a significance level of a~0:1.

The results of the experiments, shown in Table 5, indicate the deviance test has

an inflated type I error rate for all sample sizes up to 2000. A requirement of a

sample size of 2000 is extremely prohibitive, and this requirement will be even

greater for more than 10 competitors. With a stark contrast, with a sample size of

just 500, our proposed test performs with the specified type I error rate.

Fig. 3. Results of the systemic test for the Bradley-Terry assumption. The sampling distribution of the test
statistic for each of the three examples shown in Figure 2 is displayed by the histograms. The red line
indicates the value of the test-statistic.

doi:10.1371/journal.pone.0115367.g003

Table 4. P-values from the deviance and systemic tests resulting from the examples in Fig. 2.

Method Example (a) Example(b) Example(c)

Deviance 0.907 0.942 0.044

Systemic Test 0.859 0.986 0.011

doi:10.1371/journal.pone.0115367.t004
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3.6 Applications on two real examples

We now look at two typical applications of the Bradley-Terry model to determine

whether the linearity assumption has been met, and consequently if the Bradley-

Terry model is appropriate for the data. The outcomes of the Major League

Baseball regular season games in 2011 provides a typical case of measuring a

player or team’s relative skill. The next data set comes from the California

National Primate Research Center (CNPRC) at University of California, Davis

and consists of observation of aggressive behavior in a group of rhesus macaques.

Here, it is the goal of the researcher to reconstruct the dominance hierarchy of the

macaques. The win/loss matrices for both of these examples are supplied as S1 File

and S2 File respectively.

Major League baseball consists of 30 teams with 162 games per team in the

regular season with 2430 total games. Baseball is a sport known for its

unpredictability and the Bradley-Terry model reflects this with most of the

estimated dominance probabilities between 0.4 and 0.6 and nothing greater than

0.75, so at first glance, the data appears to be very much non-linear with every

team having numerous wins over any other team. Applying the proposed test to

the data we get the results shown in Fig. 4 (a). With a p-value of 0.930, there is no

significant evidence the Bradley-Terry assumption as been violated.

The data from the CNPRC included observations from 95 unique apes with

4565 observed interactions. The researchers observed an aggressive interaction

between two macaques as a game between the two. The macaque that was clearly

dominant in the interaction was given a win, and the macaque that acted

submissive was given a loss. For example, if one macaque bit a second and the

second ran away, the first macaque would be awarded the win and the second

would be awarded a loss. The data is further made more complex by the fact that

rhesus macaques tend to organize by matriline, a family of female macaque. There

is competition between matrilines as well as competition within matrilines.

Finally, there is usually an alpha male and alpha female residing over the entire

cage.

Researchers suspected that due to the complex structure of the society that the

Bradley-Terry model would not be appropriate. The results of the linearity test,

shown in Fig. 4 (b) are consistent with the researchers’ assertion with a small

p-value of 0.01. The Bradley-Terry model is not appropriate for these data and

another method should be used.

Table 5. Comparison of type I error rates between the deviance test and the systemic test.

Method n~100 n~500 n~1000 n~2000

Deviance 0.337 0.202 0.140 0.117

Systemic Test 0.184 0.109 0.121 0.096

doi:10.1371/journal.pone.0115367.t005
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Discussion

The Bradley-Terry assumption is potentially too restrictive to apply to many data

sets, and it is therefore imperative that this assumption must be tested. The

Bradley-Terry model involves a linear ranking hierarchy due to its parametriza-

tion. This linearity is merely, and specifically, meant to restrict transitivity by

asserting the fact that if A is above of B, and B is above C, then A is above of C. In

contrast to this, we also introduced Conductance to estimate dominance as it

takes into account transitive information. This is the motivation behind testing

the Bradley-Terry model from a systemic perspective and why we have seen vast

improvements over the deviance test.

We are not claiming here that the Bradley-Terry model should be abandoned.

We demonstrated Major League Baseball is a setting that tends to satisfy the

Bradley-Terry assumption, and due to its ease of use the Bradley-Terry model

persists to be a good choice for estimation. The danger is the use of the Bradley-

Terry model for more complicated systems such as was seen in the rhesus

macaque society. It follows that, the Bradley-Terry assumption must be tested by

the deviance test or our proposed systemic test; however, the deviance test is

hardly ever appropriate.

The deviance test retains one significant advantage in computational tractability

over the systemic test. The deviance test is easily and quickly calculated for nearly

any size data set, whereas the systemic test will need careful implementation for

data sets with a large number of competitors. The ensemble method used to carry

out the systemic test is ideal for parallelization providing a simple way to reduce

the computation time on a typical home computer by nearly 50% or 75%.

Fig. 4. Results of the systemic test for real data examples. Panel (a) shows that there is no significant evidence to show that the MLB teams violate the
Bradley-Terry assumption. The results in Panel (b) show the systemic test verifies that the complicated structure of the rhesus macaque society cannot be
modeled accurately by the Bradley-Terry model.

doi:10.1371/journal.pone.0115367.g004
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Nonetheless, when scientific rigorousness is a major concern, our systemic

testing approach becomes indispensable. And when the Bradley-Terry model is

found not well supported the data, then constructing a nonlinear ranking

hierarchy is necessary.

Supporting Information

S1 File. MLB 2011 regular season. This file contains a comma separated matrix of

the wins and losses in the 2011 Major League Baseball regular season. The rows

correspond to the winner and the columns correspond to losers with the cell

counts being the number of wins of the corresponding row over the

corresponding column.

doi:10.1371/journal.pone.0115367.s001 (CSV)

S2 File. Rhesus macaque aggression data. The matrix given in this file provides

the counts for aggressive interactions between pairs of rhesus macaque monkeys

in an enclosure. The row corresponds to the monkey that was observed to be

dominant in an aggressive interaction and the column corresponds to the monkey

that was observed to be submissive with the cell counts signifying the number of

times the row monkey was dominant over the corresponding column monkey.

doi:10.1371/journal.pone.0115367.s002 (CSV)
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