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Abstract

Background: Misclassification of patients as low cardiovascular risk (LCR)

remains a major concern and challenges the efficacy of traditional risk markers.

Due to its strong association with cholesterol acceptor capacity, high-density

lipoprotein (HDL) size has been appointed as a potential risk marker. Hence, we

investigate whether HDL size improves the predictive value of HDL-cholesterol in

the identification of carotid atherosclerotic burden in individuals stratified to be at

LCR.

Methods and Findings: 284 individuals (40–75 years) classified as LCR by the

current US guidelines were selected in a three-step procedure from primary care

centers of the cities of Campinas and Americana, SP, Brazil. Apolipoprotein B-

containing lipoproteins were precipitated by polyethylene glycol and HDL size was

measured by dynamic light scattering (DLS) technique. Participants were classified

in tertiles of HDL size (,7.57; 7.57–8.22; .8.22 nm). Carotid intima-media

thickness (cIMT) ,0.90 mm (80th percentile) was determined by high resolution

ultrasonography and multivariate ordinal regression models were used to assess

the association between cIMTacross HDL size and levels of lipid parameters. HDL-

cholesterol was not associated with cIMT. In contrast, HDL size .8.22 nm was

independently associated with low cIMT in either unadjusted and adjusted models

for age, gender and Homeostasis Model Assessment 2 index for insulin sensitivity,
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ethnicity and body mass index (Odds ratio 0.23; 95% confidence interval 0.07–

0.74, p50.013).

Conclusion: The mean HDL size estimated with DLS constitutes a better predictor

for subclinical carotid atherosclerosis than the conventional measurements of

plasma HDL-cholesterol in individuals classified as LCR.

Introduction

It is of particular concern that, depending of the risk score applied, up to 72% of

patients admitted with ST-elevation would have originally been classified to be at

low cardiovascular (CV) risk just prior to the event [1]. Such limitation of risk

algorithms draws attention to the possible inconsistencies between a few of their

risk markers and their true CV risk. In this context, the discriminatory power of

plasma high-density lipoprotein (HDL) cholesterol has been shown to be highly

heterogeneous among individuals and tends to be negligible among those with CV

disease [2]. From a mechanistic point of view, this phenomenon is explained by

an increase in the dysfunctional behavior of HDL that follows the exposition to

CV risk factors. Still, in general, the inclusion of HDL cholesterol (HDL-C) in risk

estimation is expected to improve the real risk assessment in only 2.2% [3].

Hence, it became evident that risk assessment would improve with the use of

simple feasible markers of HDL function.

Cholesterol efflux capacity of HDL has been shown to be a step forward from

plasma HDL-C in discriminating individuals with or without coronary or carotid

atherosclerosis [4, 5]. Such improvement in prediction has been mainly attributed

to phenotypic changes in HDL, which are not discernible from basic lipid profile

assays. Studies using either native HDL or reconstituted HDL particles

demonstrated that cholesterol efflux capacity is directly proportional to HDL size

[6, 7]. As the diameter of HDL enlarges, changes occur in the conformation of the

central region of the apolipoprotein (apo) A-I [6]. In turn, this leads to a greater

HDL affinity for scavenger receptor class B type I (SRBI) and increased cell

cholesterol efflux [6, 7].

Cholesterol efflux assessment, however, is an intricate, labor-intensive

procedure that remains restricted to research laboratories. On the other hand, the

assessment of HDL diameter may be obtained by straightforward and fast

throughput technologies such as nuclear magnetic resonance (NMR) or dynamic

light scattering (DLS) - the latter much less expensive and accessible in the clinical

setting. In light of all of this, our main objective was to investigate whether HDL

size assessment obtained from a simple feasible assay would improve the

predictive value of HDL-C in the identification of individuals presenting

subclinical atherosclerotic disease among those classified as low CV risk according

to the most recent Atherosclerosis Cardiovascular Disease risk score (ASCVD) [8].
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In addition, we investigated the main potential mechanisms that would justify

differences in HDL size.

Methods

Subjects

Participants were selected in tree steps from a database of 598,288 lipid profiles of

individuals who spontaneously sought governmental primary care centers for CV

risk estimation between 2008 and 2011 in the cities of Campinas and Americana,

SP, Brazil. Our goal was to select individuals aged 40 years or older at low CV risk

and without regular use of lipid-lowering treatment or secondary causes for

reduced HDL-C. In the first step, we selected medical reports from individuals

with (i) low-density lipoprotein cholesterol (LDL-C) #130 mg/dL, (ii) trigly-

cerides #150 mg/dL, and (iii) of both genders. In this phase, 53,491 individuals

were considered eligible for telephone interview. We then excluded individuals

who self-reported: (i) body mass index (BMI) >30 kg/m2, (ii) regular use of

medical treatments, (iii) smoking habit, (iv) daily intake of alcohol .14 g or (v)

intensive daily physical exercise. From 1,536 individuals who were selected and

invited for in-person clinical evaluation and blood exams, 919 individuals

attended the second step evaluation. During the second step, exclusions were

made based of reassessment of BMI, LDL-C and triglycerides values as above

reported as well as (i) urea .71 mg/dL, (ii) creatinine .1.20 mg/dL, (iii) glucose

.100 mg/dL, (iv) alanine aminotransferase .50 U/L, (v) aspartate aminotrans-

ferase .33 U/L, (vi) thyroid stimulating hormone ,0.41 or .4.5 uUI/mL, and

(vii) metabolic syndrome as defined by the International Diabetes Federation

(IDF) criteria. In this last step, 284 individuals who were considered eligible by the

abovementioned criteria were enrolled. The flow diagram of this selection process

is depicted in Figure 1.

Ethics statement

The Ethics Committee in Medical Sciences of the University of Campinas

approved this study (409/2010) and the study is registered at ClinicalTrials.Gov by

the following identification NCT02106013. All volunteers signed an informed

consent form before taking part in the study.

Clinical and anthropometric data

Weight, height, BMI, waist and hip circumference, and systolic and diastolic

blood pressure were obtained in duplicates. The ethnicity was self-reported and

categorized as white or non-white. Estimated lipid accumulation product (LAP,

for men5 (waist circumference - 65) 6 triglycerides) for women5 (waist

circumference - 58) 6 triglycerides)) was used for estimating body lipid

accumulation [9].
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Figure 1. Flow-diagram of the study. ALT: alanine aminotransferase; AST: aspartate aminotransferase; THS: thyroid stimulating hormone.

doi:10.1371/journal.pone.0114212.g001
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Biochemical analysis

Blood samples were drawn after a 12-h fast and EDTA plasma was separated by

centrifugation (4 C̊, 10006g, 10 minutes) and stored at 280 C̊ until analysis.

Total cholesterol, triglycerides, HDL-C and glucose measurements were

performed in an automated chemical analyzer Modular Analytics Evo (Roche

Diagnostics, Burgess Hill, West Sussex, UK), using Roche Diagnostics reagents

(Mannheim, Germany). LDL-C was calculated by Friedewald’s equation. Apo A-I,

apo B and lipoprotein (a) were determined by nephelometry in a BNII automated

system and reagents from Dade-Behring (Marburg, Germany). C-reactive protein

(CRP) was measured using the Tina-quant CRP (latex) high sensitivity assay

(Roche Diagnostics, Mannheim, Germany) by immunoturbidimetry. Plasma

insulin was determined by ELISA (Human Insulin ELISA kit, Millipore

Corporation, MA, USA).

The Modification of Diet in Renal Disease (MDRD) equation estimated

glomerular filtration rate (GFR). The Homeostasis Model Assessment 2

(HOMA2) Calculator version 2.2 was used to estimate b cell function (HOMA2B)

and insulin sensitivity (HOMA2S) [10]. Cholesteryl ester transfer protein (CETP)

[11] and phospholipid transfer protein (PLTP) activities in plasma were

determined using radioassays with exogenous substrates and PLTP mass was

measured by ELISA as previously describe [12]. PLTP specific activity was

calculated as the ratio of PLTP activity and PLTP concentration. Paraoxonase-1

(PON-1) activity was measured using paraoxon (diethyl-p-nitrophenylphosphate,

Sigma, St. Louis, MO, USA) as substrate [13]. A subgroup of 159 individuals were

randomly selected and were analyzed the exogenous lecithin cholesterol

acyltransferase (LCAT) activity (nmolCE/mL/h), performed using a recombinant

HDL as substrate [14], additionally, LCAT endogenous activity (% cholesterol

ester) was measured through the rate of esterification of 14C-free cholesterol by

LCAT in the subject’s HDL [15]. Moreover, lipoprotein lipase (LPL) and hepatic

lipase (HL) activities were assessed in post-heparin plasma samples, based on fatty

acid release, using a radiolabeled triolein emulsion as substrate and NaCl 1M as

LPL inhibitor [16].

HDL particle size analysis

HDL particle size was measured after chemical precipitation of apo B-containing

lipoproteins with polyethylene glycol (PEG) 8000 (400 g/L) in glycine solution

0.2 mol/L, adjusted to pH 10 (Sigma-Aldrich, St. Louis, MO, USA) [17].

Measurements of HDL particle size were made using the Nanotrac Particle Size

Analyzer (Microtrac, North Largo Florida, USA) by DLS technique, as described

by Lima & Maranhão [18].

CV risk and carotid atherosclerotic burden estimation

The 10-year risk of coronary fatal or nonfatal myocardial infarction or fatal or

nonfatal stroke, and peripheral arterial disease of supposed atherosclerotic origin
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was estimated by the ASCVD [8]. Measurement of the intima-media thickness

(cIMT) of the left and right common carotid arteries was obtained at the far wall

and 1 cm from the bifurcation [19] by using a high resolution B-mode carotid

ultrasonography (ATL HDI 3500, 6–9 MHz linear transducer, ATL Ultrasound,

Bothell, EUA), by a single trained sonographer, according to standardized

method. Individual results correspond to the mean of the left and right cIMT in

mm.

Statistical analysis

Distribution of the variables was tested using the Kolmogorov-Smirnov test.

Comparative analyses were performed using Kruskal-Wallis for non-normal data,

expressed as median (interquartile range), and analysis of variance (ANOVA) for

normal data, expressed as mean ¡ standard deviation. Bonferroni’s or Mann-

Whitney tests were used for post-hoc analysis. Chi-Square test was used for

categorical variables. Analysis of covariance (ANCOVA) adjusted by gender and

age was used to compare cIMT between groups. Multivariate ordinal regression

models were used to assess the association between cIMT >80th percentile

(0.90 mm) across increasing levels of lipid parameters. In order to minimize the

effect of the differences in magnitudes of the absolute values and make

comparable the association between the independent variables and the odds ratios

(OR), tertiles of HDL size, HDL-C, LDL-C, non-HDL-C and apo A-I were used as

independent variables with the reference group being the lowest tertile. HDL-C

was not included in the same model of HDL size due to the presence of

colinearity. In the models, we included age, gender, HOMA2S, ethnicity and BMI

as covariates because of their known influence on cIMT. A two-sided p-value

,0.05 was considered statistically significant. Analyses were performed using

SPSS Statistics version 17.0.

Results

Clinical characteristics and biochemical data

As shown in Table 1, participants were grouped into tertiles of HDL size

(,7.57 nm; 7.57–8.22 nm; and .8.22 nm). Individuals in the 1st tertile presented

higher BMI, waist circumference and LAP than those in the 2nd tertile while both

were higher than those in the 3rd tertile. Likewise, participants in the 1st tertile had

lower levels of HDL-C, apo A-I, HOMA2S, PLTP mass and activity of PON-1 as

well as higher levels of insulin, HOMA2B and endogenous LCAT and HL activity

as compared to their counterparts. Plasma triglycerides were lower in 3rd tertile

group as compared to the others groups. Mean apo B and non-HDL-C were lower

in 3rd tertile than in the 2nd tertile. CRP levels and cIMT were also lower in 3rd

tertile when compared with others groups.
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Table 1. Baseline characteristics according to the tertiles of HDL size.

1st tertile 2nd tertile 3rd tertile p

(,7.57 nm) (7.57–8.22 nm) (.8.22 nm)

N 92 93 99

HDL size, nm 7.24 (0.36) 7.86 (0.34) 8.51 (0.42) -

Female, % 49 54 64 0.112

Ethnic group White/non-white, % 77/23 75/25 79/21 0.802

Age, years 49 (13) 51 (14) 52 (13) 0.115

Body mass index, kg/m2 24.8¡3.1 23.9¡2.8 23.4¡2.6 0.004a

Waist circumference, cm 82¡11 78¡9 75¡9 0.0001a,b

Lipid accumulation product - LAP, cm.mmol/L 17 (22) 15 (12) 10 (9) 0.0001a,c

Systolic blood pressure, mmHg 120 (20) 120 (15) 120 (20) 0.969

Diastolic blood pressure, mmHg 80 (0) 80 (11) 80 (3) 0.940

HDL-C, mg/dL 39 (22) 63 (25) 75 (13) 0.0001a,b,c

Non-HDL-C, mg/dL 124¡26 126¡27 116¡24 0.022c

Triglycerides, mg/dL 85 (49) 81 (41) 66 (28) 0.0001a,c

LDL-C, mg/dL 106¡25 109¡24 102¡22 0.099

Glucose, mg/dL 87¡8 85¡10 85¡7 0.324

Insulin, uU/mL 5.29 (5.15) 3.70 (3.63) 3.66 (2.95) 0.001a,b

HOMA2S, % 169 (148) 239 (279) 232 (250) 0.002a,b

HOMA2B, % 81¡36 65¡28 60¡25 0.001a,b

Apo A-I, mg/dL 124¡29 157¡40 178¡29 0.0001a,b,c

Apo B, mg/dL 82¡18 83¡19 77¡18 0.043c

Lipoprotein (a), mg/dL 10.4 (25.0) 17.1 (21.0) 10.7 (23.0) 0.066

GFR, ml/min/1.73m2 90 (23) 90 (18) 87 (20) 0.868

CETP, % 14¡6 13¡6 12¡5 0.206

PLTP activity, mmolPC/mL/h 5.74¡2.53 5.83¡2.49 6.11¡2.35 0.564

PLTP mass, mg/L 5.62¡1.20 6.54¡1.42 6.87¡1.23 0.0001a,b

PLTP specific activity (mmol/mg/L) 1.07¡0.37 0.98¡0.30 0.91¡0.25 0.019a

Hepatic lipase, mmolFFA/mL/h 6.27 (4.98) 4.34 (2.86) 4.12 (4.02) 0.002a,b

Lipoprotein lipase, mmolFFA/mL/h 3.29 (3.87) 3.28 (3.79) 4.13 (3.35) 0.408

Exogenous LCAT, nmolCE/mL/h 17¡9 17¡9 17¡8 0.957

Endogenous LCAT, %CE 3.88¡1.52 2.86¡1.08 2.63¡1.10 0.0001a,b

PON-1, mmol/min 19 (31) 31 (33) 36 (48) 0.008a,b

C-reactive protein, mg/L 1.30 (1.50) 1.06 (1.60) 0.83 (1.30) 0.007a,c

PON-1/Apo A-I 0.16 (0.27) 0.20 (0.26) 0.22 (0.26) 0.947

cIMT, mm 0.80 (0.35) 0.71 (0.24) 0.70 (0.19) 0.0001

10-Year ASCV Risk, % 1.25 (2.70) 1.10 (2.60) 0.90 (1.15) 0.156

HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; HOMA2S: homeostasis modeling assessment 2 for insulin
sensitivity; HOMA2B: HOMA2 for insulin secretion; Apo: apolipoprotein; GFR: glomerular filtration rate estimated by Modification of Diet in Renal Disease
equation; CETP: cholesteryl ester transfer protein; PLTP: phospholipids transfer protein; PC: phosphatidylcholine; FFA: free fatty acids; LCAT: lecithin
cholesterol acyltransferase; CE: cholesteryl ester; PON-1: paraoxonase 1; cIMT: carotid intima-media thickness; normal and non-normal data presented as
mean ¡ standard deviation or median (interquartile range) respectively; p values were obtained by ANOVA or Kruskal-Wallis. cIMTcomparisons were made
by ANCOVA adjusted by age and gender. Significant a posteriori differences were obtained by Bonferroni or Mann-Whitney test and were indicated as:
a51st tertile ?3rd tertile; b51st tertile ?2nd tertile; and c 2nd tertile ?3rd tertile.

doi:10.1371/journal.pone.0114212.t001
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HDL size, CV risk and atherosclerosis

The median 10 years ASCVD risk was below 2% in the three groups. There was no

significant difference in the mean risk among the HDL size tertiles. Multiple

ordinal regressions were performed to estimate the degree of association between

the presence of cIMT > the 80th percentile and the independent variables

expressed in tertiles: HDL size, HDL-C, LDL-C and non-HDL-C. Displayed in

Table 2, the 3 models for each variable: (1) unadjusted; (2) adjusted by age,

gender and HOMA2S; (3) adjusted by age, gender, HOMA2S, ethnicity and BMI.

HDL particle size .8.22 nm was independently associated with low cIMT both in

the unadjusted and adjusted models. We added PON (p50.012), CRP (p50.028)

or LDL-C (p50.019) to the third model and the highest tertil of HDL size

remained statistically associated with cIMT. HDL-C values (Table 2) and Apo A-I

(p50.24) were not significantly associated with cIMT. LDL-C>98 mg/dL and

non-HDL-C>113 mg/dL were both independently associated with higher cIMT

in the three models. We did not include waist circumference or LAP due to

collinearity between these variables. Be that as it may, exchanging these

covariables did not change the statistical significance of the analyses. Insulin was

also not included in the models because it is a component of the HOMA2S

equation. Since LCAT, HL and PLTP are involved in influencing HDL size these

variables were not included in the multivariable models.

Discussion

The main finding of the study is that it is not HDL-C levels but HDL particle size

that improves the discrimination of individuals with or without increased cIMT

among those considered at low CV risk. This association remains significant after

adjustment for LDL-C, insulin sensitivity and the presence of traditional CV risk

factors.

In NMR studies, plasma concentration of large HDL (9.4–14 nm) has been

shown to be inversely associated with CV risk, whereas small HDL (7.3–8.2 nm)

has been shown to be positively associated with risk [20–22]. Mean HDL size

obtained by NMR was inversely associated with cIMT in individuals with familial

hypercholesterolaemia and in asymptomatic volunteers [23]. In our study, we

enrolled individuals systematically stratified to be at low CV risk by the current

ASCVD score. In addition, we used a less costly, easy and consequently more

broadly applicable assay for measuring HDL particle size. Consistently, we found

that large HDL size (.8.2 nm) is more effective than high HDL-C plasma

concentration in discriminating cIMT-estimated atherosclerotic burden in low

risk individuals. Furthermore, the observed association was independent of

insulin sensitivity, age and LDL-C. In contrast, as expected, both LDL-C and non-

HDL-C were strong predictors for increased cIMT.

Although metabolic syndrome as defined by IDF standards was considered an

exclusion criterion, individuals in the lower HDL size tertile had higher

triglycerides levels, waist circumference and lower insulin sensitivity than their

HDL Size and Carotid Atherosclerosis

PLOS ONE | DOI:10.1371/journal.pone.0114212 December 3, 2014 8 / 12



counterparts. Endogenous LCAT and exogenous HL activities were also higher in

the 1st tertile, which may have contributed to the reduced HDL size and was

possibly favored by the decline in insulin sensitivity [24–26]. Likewise, PLTP

activity has also been reported to be inversely related to insulin sensitivity and

involved in the remodeling of HDL [27]. In agreement with prior studies [28], we

found that PLTP mass differed between groups but PLTP activity did not.

Table 2. Multivariate ordinal logistic regression analysis using cIMT , and >0.90 mm (80th percentile) as dependent variable.

HDL size ,7.57 nm 7.57–8.22 nm .8.22 nm

N592 N593 N599

Model 1 Ref group 0.57 (0.23–1.43) 0.40 (0.17–0.97)

p50.229 p50.042

Model 2 Ref group 0.57 (0.19–1.71) 0.23 (0.07–0.70)

p50.316 p50.010

Model 3 Ref group 0.49 (0.16–1.54) 0.23 (0.07–0.74)

p50.222 p50.013

HDL-C ,49 mg/dL 49–71 mg/dL .71 mg/dL

N591 N5101 N592

Model 1 Ref group 0.73 (0.30–1.82) 0.58 (0.24–1.38)

p50.503 p50.216

Model 2 Ref group 0.57 (0.18–1.77) 0.40 (0.13–1.27)

p50.331 p50.120

Model 3 Ref group 0.44 (0.13–1.48) 0.43 (0.13–1.38)

p50.187 p50.156

LDL-C ,98 mg/dL 98–116 mg/dL .116 mg/dL

N592 N596 N596

Model 1 Ref group 4.36 (1.35–14.05) 4.00 (1.25–12.84)

p50.014 p50.020

Model 2 Ref group 5.80 (1.37–24.59) 6.07 (1.52–24.25)

p50.017 p50.011

Model 3 Ref group 5.76 (1.30–25.58) 6.45 (1.56–26.64)

p50.021 p50.010

Non-HDL-C ,113 mg/dL 113–133 mg/dL .133 mg/dL

N592 N596 N596

Model 1 Ref group 4.00 (1.25–12.84) 4.36 (1.35–14.05)

p50.020 p50.014

Model 2 Ref group 4.45 (1.09–18.24) 5.05 (1.28–19.98)

p50.038 p50.021

Model 3 Ref group 3.96 (0.94–16.72) 5.05 (1.26–20.26)

p50.061 p50.022

Model 1: unadjusted; Model 2: adjusted by age, gender and HOMA2S; Model 3: age, gender, HOMA2S, ethnicity (white and non-white) and body mass
index. Independents variables HDL size, HDL-C, LDL-C e Non-HDL-C divided in tertiles. Results are presented as the odds ratio (95% confidence interval)
of cIMT above 80th percentile.

doi:10.1371/journal.pone.0114212.t002
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Consequently, PLTP specific activity, which reflects the relative proportion of

active and inactive isoforms, was lower among individuals in the higher tertile of

HDL size. Although PLTP effect on HDL size is still controversial, specific PLTP

activity seems to be more clearly related to a decreasing effect on particle size [29].

Given this potential modulation of insulin sensitivity in the mechanisms involved

in the enlargement of HDL particles, multivariate analyses were performed and

confirmed the existence of a direct association between the HDL size and cIMT

and plasma CRP. Thus, it is possible that the declined insulin sensitivity and

resulting increase in PLTP, LCAT and HL act jointly as a set of stimuli that leads

to a reduction in the size of HDL. In turn, this directly and indirectly favors the

increase in carotid atherosclerotic burden and systemic inflammatory activity.

In line with this assumption, we found that the overall plasma PON-1 activity

was associated with larger HDL size. Besides the effect on cholesterol efflux

capacity, this overall antioxidant activity may contribute to the lower association

between large HDL and atherosclerotic burden or systemic inflammation. Since

small sized HDL particles have been shown to express a higher PON-1 specific

activity [30], it is likely that such an increase in overall plasma PON-1 activity in

individuals with large HDL size results from the positive association between HDL

size and the number of HDL particles. In fact, statistical significance disappeared

when the ratio of PON-1 and apo A-I were compared between groups.

In conclusion, the present study indicates that the mean HDL size estimated by

DLS constitutes a better predictor for subclinical carotid atherosclerosis than the

conventional measurement of plasma HDL-C in individuals classified by the

current guidelines as being at low CV risk.
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