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Abstract

Coordinated social interaction is associated with, and presumably dependent on, oscillatory couplings within and between
brains, which, in turn, consist of an interplay across different frequencies. Here, we introduce a method of network
construction based on the cross-frequency coupling (CFC) and examine whether coordinated social interaction is associated
with CFC within and between brains. Specifically, we compare the electroencephalograms (EEG) of 15 heterosexual couples
during romantic kissing to kissing one’s own hand, and to kissing one another while performing silent arithmetic. Using
graph-theory methods, we identify theta–alpha hyper-brain networks, with alpha serving a cleaving or pacemaker function.
Network strengths were higher and characteristic path lengths shorter when individuals were kissing each other than when
they were kissing their own hand. In both partner-oriented kissing conditions, greater strength and shorter path length for
5-Hz oscillation nodes correlated reliably with greater partner-oriented kissing satisfaction. This correlation was especially
strong for inter-brain connections in both partner-oriented kissing conditions but not during kissing one’s own hand.
Kissing quality assessed after the kissing with silent arithmetic correlated reliably with intra-brain strength of 10-Hz
oscillation nodes during both romantic kissing and kissing with silent arithmetic. We conclude that hyper-brain networks
based on CFC may capture neural mechanisms that support interpersonally coordinated voluntary action and bonding
behavior.
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Introduction

Brain activity and neural coupling during human social

interaction have become a topic of scientific inquiry [1–6].

Prominent examples for activities requiring the close coordination

of behavior in real time are performing music [7–10], singing [11],

dancing [12,13], collective sports [12–14], and bonding behaviors

such as kissing [15]. Interpersonally coordinated behavior may

reflect basic dispositions and needs [16,17], and pleasure

associated with such behavior may reinforce activities serving

important evolutionary functions such as sexual reproduction and

early mother–child interaction.

There is neurophysiological evidence that coordinated behavior

is accompanied by synchronized brain activity [7–10,18,19] and

oscillatory coupling of other biological functions, such as

respiration and cardiac activity [11]. To investigate these

phenomena, various synchronization or coupling measures have

been proposed and used [7,8,11,20]. Usually, when using time-

frequency decompositions, brain networks are constructed and

considered for specific frequencies [8–10,18,20]. However, based

on conceptual considerations [21,22], it seems important to also

consider coupling across frequencies. For instance, large-scale

theories of neural organization (e.g., [23]) and prior research

[22,24,25] strongly suggest that cross-frequency coupling (CFC)

plays a critical rule in neural information exchange. To overcome

the limitations of single frequency representations, we extended

the phase synchronization measures used in our earlier work

[8,11] to CFC. We then used these coupling indexes to construct

hyper-brain networks that represent intra- and inter-brain

synchronization within and across frequencies. Our novel

approach allows researchers to represent the complex interplay

among different frequencies in the context of a hyper-brain

network (i.e., a network consisting of interacting nodes across two

or more brains of interacting people). In comparison to all earlier

approaches, where different brain sites (different electrodes in the

case of the EEG) are defined as nodes, we considered single brain

sites oscillating at different frequencies as different nodes by using

a CFC measure. In other words, each node is a combination of an

electrode location and of an oscillation frequency. Thus, the

hyper-brain networks considered in this article consist of electrode-

frequency nodes of two brains.

Measures derived from graph theory are increasingly being used

in the neurosciences [26–33]. In modularity analyses, when using

novel CFC approach, the same electrode can participate in

different modules of the hyper-brain network dependent on the

oscillation frequency. It is well known that single neurons and also

brain areas can be involved in multiple overlapping cell assemblies

[34–37]. Such assemblies oscillating synchronously at different

frequencies provide an efficient basis for integrative processes in

the brain [38]. CFC, allowing accurate timing between different

oscillatory rhythms, may indicate integration or communication

between different cell assemblies (cf. [39–41]). We assume that

hyper-brain networks constructed by using CFC both within and
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between brains provide a more comprehensive representation of

neural processes supporting interpersonal action coordination than

hyper-brain networks that only consider couplings within partic-

ular frequency bands.

Accordingly, this study had two major aims: First, the

methodological aim was to introduce a novel CFC approach for

network construction that allows for the investigation of different

oscillation frequencies in a common network. Second, the

substantive goal was to investigate intra- and interbrain coupling

during kissing, which we consider an ecologically valid evolved

behavior. By simultaneously recording the EEG from two brains

(e.g., EEG hyper-scanning), we compared CFC in romantic

couples who engage in different varieties of kissing. We paid

special attention to the way in which theta and alpha oscillation-

nodes participate in hyper-brain modules and together constitute a

theta-alpha subnetwork binding the brains of the kissing couple

together. In particular, we show that CFC network properties

during romantic kissing (RK), a two-person activity with intense

reciprocal sensory and motor contact, but also during another

partner-oriented kissing condition, in which the interaction

partners are asked to perform a secondary, solitary activity while

kissing each other (i.e., kissing while performing silent arithmetic,

K-SA), are associated with elevated levels of intra- and inter-brain

coupling and shorter path length than a solitary control condition

without such contact – kissing one’s own hand (HK).

After the experiment, the participants were asked about

partner-oriented kissing satisfaction as well as other partnership-

related questions. We observed reliable correlations between

network properties and subjectively assessed partner-oriented

kissing satisfaction and self-reported kissing quality. These

correlations point to the functional significance of theta and alpha

oscillations in kissing couples. We complement our analyses with

couplings between lips (assessed by EMG) and brains, again within

and across individuals.

Materials and Methods

Participants
Twenty heterosexual couples who reported to be in love with

each other, not earlier than 2 years ago (to achieve a homogeneous

sample of romantic couples in love), participated in the study. Five

couples were excluded from the data analysis because of recording

artifacts. Analyses presented here are based on the remaining 15

couples. Participants were aged between 18 and 37 years with a

mean age of 25.4 years (SD = 4.4). The Ethics Committee of Max

Planck Institute for Human Development approved the study, and

it was performed in accordance with the ethical standards laid

down in the 1964 Declaration of Helsinki. All participants

volunteered for this experiment and gave their written informed

consent prior to their inclusion in the study.

Procedure
Each couple participated in seven solitary and eight partner-

oriented or common-percept experimental task conditions lasting

for 3–4 minutes each. The seven solitary task conditions were

followed by the eight partner-oriented or common-percept task

conditions. Here we report the data from three different kissing

conditions: HK, RK, and K-SA. To safeguard the ecological

validity of the romantic kissing condition, RK always preceded the

K-SA condition. While kissing, participants were asked to keep

their eyes closed and to either kiss their own hand (solitary

condition) or kiss each other’s lips (partner-oriented condition with

and without additional task). In the task condition (K-SA), the

participants were each asked to subtract 7 repeatedly from the

remaining amount, beginning with the number 1,000 during

kissing. At the end of this kissing condition, participants were asked

to provide their subtraction result.

Psychological assessment
We assessed the partners’ feelings during the test session,

partnership and kissing satisfaction as well as the quality of the

kissing. Most items were based on a 5-point rating scale ranging

from 1 (not at all) to 5 (very much). The items are summarized in

Table 1 and Table S1. The assessment was carried out during and

after the EEG session. Kissing quality was assessed immediately

after the RK and K-SA sessions, correspondingly. The other items

were assessed after the entire EEG session.

EEG data acquisition and preprocessing
EEG measurement took place in an acoustically and electro-

magnetically shielded cabin. Separate amplifiers with separate

grounds were used for each individual, optically coupled to a

computer. Under all task conditions, the EEG was simultaneously

recorded from both participants using two electrode caps with

64 Ag/AgCl electrodes placed according to the international 10–

10 system, with the reference electrode at the right mastoid.

Vertical and horizontal electrooculograms (EOGs) were recorded

to control for eye blinks and eye movements. Additionally, a

bipolar lip EMG was obtained from two EMG electrodes placed

over the orbicularis oris muscle. The sampling rate was 5000 Hz.

Recorded frequency bands ranged from 0.01 to 1000 Hz. EEG

recordings were re-referenced to an average of the left and right

mastoid separately for each subject, resampled at 1000 Hz, and

filtered with a band pass ranging from 1 to 70 Hz. Eye-movement

correction was accomplished by independent component analysis

[42]. Using the lip EMG channels, which were filtered with a high-

pass filter of 4 Hz, we manually pasted markers on the kiss onset.

Spontaneous EEG activity was then divided into epochs of 3 sec,

starting 500 ms before the kiss onset and ending 2500 ms after it.

Artifacts from head and body movements were rejected by visual

inspection, after an artifact rejection based on a gradient (a

maximum admissible voltage step of 50 mV), and a difference

criterion (a maximum admissible absolute difference of 200 mV

between two values in a segment) had not rendered satisfactory

results. Epochs that were artifact-free in both participants were

selected for further analysis. To reduce the amount of data and to

overcome the problem of volume conduction between neighboring

electrodes, we selected 21 electrodes based on the 10–20 system

(Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz,

P4, P8, O1, Oz, and O2). These electrodes are distributed across

the entire cortex so that the information of the remaining

electrodes would be rather redundant.

In the EEG and lip EMG data, power spectra were calculated

using the Fast Fourier Transform (FFT) with the Hanning

window. In the EEG spectra, we then determined the individual

alpha peak frequency and the spectral power in the low (6.8–

9.7 Hz) and high (9.7–12.6 Hz) alpha frequency bands separately

for each kissing condition. In the lip EMG spectra, we determined

average power at the individual maximum (610 Hz) and at 60 Hz

(610 Hz). Power values were normalized using a logarithmic

transformation.

Description of phase synchronization or coupling
measures

To investigate phase coupling in a directed and frequency-

resolved manner, we first applied an analytic or complex-valued

Morlet wavelet transform to compute the instantaneous phase in
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the frequency range from 0 to 100 Hz in 0.5-Hz steps. The

complex mother Morlet wavelet, also called Gabor wavelet, has a

Gaussian shape around its central frequency f:

w(t,f )~ s2p
� �{1=4

e {t2=2s2ð Þz3=2pjftð Þ, j~
ffiffiffiffiffiffiffiffi
{1
p

, ð1Þ

in which s is the standard deviation of the Gaussian envelope of

the mother wavelet. The wavelet coefficients were calculated with

a time step of 5, leading to a time resolution of 5 ms and frequency

resolution of 0.5 Hz. In order to identify the phase relations within

and between any two channels or frequencies, the instantaneous

phase difference was then computed from the wavelet coefficients

for all possible electrode and frequency pairs within and between

the brains. On the basis of instantaneous phases for two signals (X
and Y) given as: WX(fm,t) = arg[QX(fm,t)] and WY(fn,t) = arg[QY(fn,t)],
correspondingly, the n:m phase synchronization between two

oscillations at the frequencies fm and fn were determined. The

generalized phase difference (DW) according to n?fm = m?fn was

calculated by:

DW fm,fn,tð Þ~n:W fm,tð Þ{m:W fn,tð Þ, mod 2p ð2Þ

The n:m phase synchronization index (PSI) was then defined by:

PSI fm,fnð Þ~DSej:DW fm ,fn ,tð ÞTD, j~
ffiffiffiffiffiffiffiffi
{1
p

ð3Þ

where ,N. denotes the averaging across time. In the case of

within-frequency coupling (WFC) with fm = fn, PSI is calculated in

the same way by setting m = n = 1. During calculation of the PSI,

we not only determined the mean direction or the length of the

vector but also the angle of this vector (h) in complex space:

h(fm,fn)~arctan
SisinDW(fm,fn,t)T
ScosDW(fm,fn,t)T

� �
ð4Þ

To determine the directed cross-frequency coupling, we used the

adaptive Integrative Coupling Index (aICI) in this work. In

contrast to our earlier studies [8,11], we used an adaptive

algorithm, which allowed us to calculate coupling depending on

the angle of phase differences determined in a given time window.

In other words, aICI no longer reflects in-phase synchronization,

where the angle of phase differences is close to zero, but is suitable

for the determination of phase coupling at any chosen or

previously determined phase angles (e.g., h).

Given the estimates of the phase difference between two signals,

it is possible to ascertain how long the phase difference remains

stable in defined phase angle boundaries by counting the number

of points that are phase-locked at a defined time window. We

slightly modified the procedure described in Müller and colleagues

[8] in that we defined phase angle boundaries not related to phase

zero but to the phase angle h. The further procedure was similar,

as depicted in Figure 1. After the complex wavelet transform of

the signals (Fig. 1A) and determination of PSI and h (Fig. 1B), we

divided the range between h2p/4 and h+p/4 into two ranges and

distinguished between positive and negative deviations from phase

h (Fig. 1C). As shown in Figure 1D, we marked negative

deviations in the range between h2p/4 and h in blue (coded

with ‘‘21’’) and the positive deviations in the range between h and

h+p/4 in red (coded with ‘‘+1’’). Phase difference values beyond

these range were marked with green (coded with ‘‘0’’) and

represent non-synchronization. In the case of two channels, X
(e.g., Fz) and Y (e.g., Cz), a blue stripe in the diagram would mean

that the phase of channel Y precedes the phase of channel X and a

red stripe would mean that the phase of channel X precedes the

phase of channel Y. We then counted the number of data points

that are phase-locked separately in each of these two ranges.

Before counting, successive points in the defined range (between

h2p/4 and h+p/4) with a time interval shorter than a period of

the corresponding oscillation at the given frequency (Ti = 1/fi)

were discarded from the analysis. In the case of CFC, the lower

frequency was considered. This cleaning procedure effectively

eliminated instances of accidental synchronization. Figure 1E

represents synchronization pattern of several electrode pairs after

this cleaning procedure. On the basis of the counting described

above, we obtained several synchronization indices: (1) the Positive

Coupling Index, PCI, or the relative number of phase-locked

points in the positive range (between h and h+p/4); (2) the

Negative Coupling Index, NCI, or the relative number of phase-

locked points in the negative range (between h2p/4 and h); (3) the

Absolute Coupling Index, ACI, or the relative number of phase-

Table 1. Psychological assessment of partner-oriented kissing satisfaction and immediate kissing quality during the experiment.

Items female male

Partner-oriented kissing satisfaction

How well do you harmonize with your partner while kissing? 4.3 (0.9) 4.5 (0.6)

How well does your partner kiss? 4.7 (0.5) 4.5 (0.6)

How important is kissing in your relationship? 4.3 (0.6) 4.0 (0.9)

Immediate kissing quality during experiment

RK K-SA RK K-SA

How much did your kissing today resemble the way you normally kiss? 3.6 (0.8) 2.3 (1.1) 3.3 (1.0) 2.0 (0.8)

How successful was your kissing during the experiment? 4.1 (0.7) 2.9 (0.8) 3.6 (1.0) 2.7 (1.0)

How intense was your kissing? 4.1 (0.8) 2.9 (1.1) 3.5 (1.0) 2.1 (0.9)

RK = romantic kissing, K-SA = kissing while performing silent arithmetic.
doi:10.1371/journal.pone.0112080.t001
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Figure 1. Calculation of the adaptive Integrative Coupling Index (aICI). A: Complex Morlet wavelet transformation of signals from two
channels (Fz and Cz) in the time-frequency domain. B: The phase difference is depicted in the form of the vectors in complex space, where the blue
arrows reflect single phase angles and the red arrow represents the mean vector of the angular dispersions (its length displays the PSI measure); h is
angle of this mean vector. Boundaries for calculation of aICI (h2p/4 and h+p/4) are indicated by the yellow dashed arrows. C: Time course of
instantaneous phases from two channels (Fz and Cz) at fi = 10 Hz and their phase difference (Fz = violet curve; Cz = green curve; Fz–Cz = red curve).
Angle of the mean vector h and boundaries for calculation of aICI (h2p/4 and h+p/4) are indicated by yellow dotted and dashed lines. D: Coding of
the phase difference of two signals, S1 (e.g., Fz) and S2 (e.g., Cz), at a given frequency (h2p/4,S1–S2, h: blue stripes; h,S1–S2,h+p/4: red stripes;
S1–S2,2p/4 or S1–S2.+p/4: green stripes = nonsynchronization). E: Pair-wise synchronization pattern of all possible electrode pairs with Fz as a
reference electrode. Each line represents one pair of channels.
doi:10.1371/journal.pone.0112080.g001
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locked points in the positive and negative range (i.e., between h2

p/4 and h+p/4) indicating absolute synchronization; (4) the

adaptive Integrative Coupling Index, aICI, calculated by the

formulae:

aICI~
PCIzACI

2:ACI
:
ffiffiffiffiffiffiffiffiffi
PCI
p

ð5Þ

The aICI measure ranges from 0 to 1. It is an asymmetric measure

(i.e., aICIAB?aICIBA) expressing both common (absolute) and

‘‘positive’’ contributions to phase synchronization.

Phase differences and corresponding phase synchronization

measures were determined for six different frequencies of interest

(FOI): 5, 10, 20, 30, 40, and 60 Hz, and all corresponding

combinations between them, reflecting different frequency rela-

tions, such as 1:2, 1:3, 1:4, 1:6, 1:8, 1:12, 2:3, and 3:4. In addition

to the EEG-EEG coupling, we also determined lip–lip EMG and

lip EMG–EEG coupling. In the case of lip EMG, only prominent

60-Hz oscillations were used. We restrict the description of our

study results to the aICI measure, which is most informative due to

its directionality.

Graph-theoretical approach (GTA)
Network construction. The coupling measures determined

as described above were used to construct a connectivity matrix or

a graph determining the network properties. In comparison to all

earlier approaches, where different brain sites (different electrodes

in the case of the EEG) were defined as nodes in such a graph, we

were able to define single brain sites oscillating at different

frequencies as different nodes by using a CFC measure. This

means that the same electrode site at the six FOI (5, 10, 20, 30, 40,

and 60 Hz) represents six different nodes that communicate with

other nodes at the same or different frequencies. In other words,

each node is a combination of spatial representation (electrode

location) and of the oscillation frequency. The structure of such a

graph is represented in Figure S1. The advantages of a network

architecture allowing for CFC are: (1) not only connections

between but also within the brain areas can be captured; (2)

different brain areas can communicate with each other at multiple

frequencies. In addition to the 21 EEG electrodes of each of the

two kissing partners at six different frequencies, two EMG lip

responses of female and male partners at the prominent frequency

of 60 Hz were used for the construction of our hyper-brain

networks. There were 254 nodes altogether (262166+2 = 254) in

each network.

To investigate the network topology of the real networks, we

also constructed regular (lattice) and random networks that have

the same number of nodes and mean degree as our real networks.

For these purposes, we randomized the edges in the real network

to achieve a random network with the same number of nodes and

edges. Lattice networks were configured like random networks, but

in addition edges were redistributed after an initial random

permutation such that they lay close to the main diagonal with

increasing order of their weights. For these purposes, each column

in the adjacency matrix was split into two parts around the

diagonal. Further, all edges in these two parts were redistributed in

increasing order, and then merged again into the column. Lattice

networks reconstructed in such a way have the same number of

nodes and edges as the initial real network but are characterized

by ring or lattice topology incorporating nearest-neighbor

connectivity [43]. These network reconstructions for random

and regular networks were carried out 10 times for each individual

network. Average network topology was then determined for these

repeated reconstructions. Real and correspondingly reconstructed

networks are displayed in Figure 2 for comparison. For this

representation, grand averages of connectivity values were used.

Threshold determination. Before determining the network

properties by means of the GTA in a next step, the threshold of the

synchronization or coupling measures had to be calculated. For

this purpose we generated surrogate data by (a) computing the

amplitude and phase spectrum of a real signal using a Fourier

transformation; (b) phase shuffling, whereby the phase values of

the original spectrum are used in random order and the sorted

values of the surrogate sequence are replaced by the corresponding

sorted values of the reference sequence; and (c) inverse Fourier

transformation back to the time domain. In this way, the real and

the surrogate data retain the same power spectrum but a different

time course. Surrogate data computed in such a way for all epochs

at all considered channels were then used for the calculation of the

corresponding synchronization measures. Thereafter, we applied a

bootstrapping procedure with 1,000 resamples of the coupling

measures gained from the surrogate data set and determined the

threshold as the bootstrapping mean plus the confidence interval

at a significance level of p#0.0001 separately for each frequency

combination. Only coupling values greater than these threshold

values were considered for network construction and further

analyses.

In general, the choice of a threshold plays an important and

nontrivial role in network construction, but is necessarily always

arbitrary. In our case, the use of CFC makes this problem even

more complex. To overcome this, at least partly, we (1) used

different threshold values for different FOI and their combina-

tions, as they were determined using the surrogate data procedure,

and (2) applied a range of thresholds by the multiplication of initial

threshold values by 10 different equidistant multiplication factors

from 1.0 to 1.045 with a lag of 0.005. Thresholds determined in

this way were used to construct different graphs with sparse

connections covering a sparsity-range between 16% and 43% of

the strongest edges preserved. Thus, we could compare the

topological network properties at different sparsity or costs levels.

As we were interested in coupling strengths, we used weighted

networks at different sparsity levels.

Network metrics
Degrees and strengths. As aICI is a directed measure, we

obtained the node in- and out-degrees in the network, in which the

in-degree is the sum of all incoming connections of the node i
kin

i ~
P
j[N

aji, and the out-degree is the sum of all outgoing

connections kout
i ~

P
j[N

aij . To calculate strengths, we then replaced

the sum of links by the sum of weights, kw
i ~

P
j[N

wij , and calculated

in- and out-strength, respectively. Thus, the strength can be

considered as the weighted degree [32]. For statistical evaluation,

we determined out-strengths for each of the nodes of the whole

hyper-brain network of each kissing couple. Additionally, we

determined the within-brain out-strength for each of the kissing

partners, and then calculated the between-brain out-strength by

subtracting the within-brain out-strength from the hyper-brain

out-strength.

Clustering coefficient (CC) and characteristic path length

(CPL). If the nearest neighbors of a node are also directly

connected to each other, they form a cluster. For an individual

node, the clustering coefficient (CC) is defined as the proportion of

the existing number of connections to the total number of possible

connections. In the case of a weighted directed graph the mean CC
is calculated by the formula [44]:

Hyper-Brain Networks during Romantic Kissing
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CCwd~
1

n

X
i[N

CCwd
i ~

1

n

X
i[N

twd
i

kout
i zkin

i

� �
kout

i zkin
i {1

� �
{2

P
j[N aijaji

ð6Þ

with twd
i ~ 1

2

P
j,h[N

wij
1=3wih

1=3wjh
1=3

� �
z wji

1=3whi
1=3whj

1=3
� �� �3

being the number of weighted directed triangles around a node i.
Another important measure is the characteristic path length

(CPL). In the case of an unweighted graph, the shortest path

length or distance di,j between two nodes i and j is the minimal

number of edges that have to be passed to go from i to j. This is

also called the geodesic path between the nodes i and j. The CLP
of a graph is the mean of the path lengths between all possible

pairs of vertices [45]:

CPL~
1

n

X
i[N

Li~
1

n

X
i[N

P
j[N,j=idij

n{1
, ð7Þ

where Li = CPLi is the average distance or average shortest path

length between node i and all other nodes. In the case of a

weighted and directed graph, the weight and direction of the links

are considered.

Global (Eglob) and local (Eloc) efficiency. Global efficiency

(Eglob) is defined as the average inverse shortest path length and is

calculated by [46]:

Ew
glob~

1

n

X
i[N

P
j[N,j=i (dw

ij ){1

n{1
ð8Þ

Like CPL, Eglob is a measure of the integration of a network, but

whereas CPL is primarily influenced by long paths, Eglob is

primarily influenced by short ones. Calculating Eglob is advanta-

geous over distance in disconnected networks: The efficiency

between disconnected pairs of nodes is set to zero (the inverse of

infinity).

Local efficiency (Eloc) is similar to the CC and is calculated as

the harmonic mean of neighbor-neighbor distances [46]:

Figure 2. Representation of real, lattice, and random networks. A: Coupling (aICI) matrices covering within-frequency coupling (WFC) and
cross-frequency coupling (CFC) between the 254 nodes of the network. In the real hyper-brain network (left), the nodes are organized by electrode
location (Fp1, Fpz, Fp2, F7, F3, …, O2), oscillation frequency (5, 10, 20, 30, 40, and 60 Hz), and brains (female, male); the last two nodes are lip EMG
channels oscillating at 60 Hz for a female and a male, correspondingly. The lattice network (middle) was configured by the randomization of the
edges in the real network and consecutive redistribution in such a way that the strongest edges lay close to the main diagonal. The random network
(right) was configured by the randomization of the edges only. The lattice and random networks were reconstructed in such a way that they have the
same number of nodes and edges as the initial real network, but are characterized by ring (lattice) or random network topology. B: The same
networks as in A, represented in the form of a circle, where the nodes are in clockwise order beginning with 0u, marked with arrow. Note: more
information about network construction can be found in Figure S2.
doi:10.1371/journal.pone.0112080.g002
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Ew
loc~

1

n

X
i[N

P
j,h[N,j=i (wijwih dw

jh(Ni)
h i{1
� �1=3

ki ki{1ð Þ ð9Þ

Like CC, Eloc is a measure of the segregation of a network,

indicating efficiency of information transfer in the immediate

neighborhood of each node and showing how fault-tolerant the

system is.

Small-worldness. To investigate the small-world (SW)

properties of a network it has become common to compare its

clustering coefficient and characteristic path length to those of

regular lattices and random graphs. At least two specific properties

of small-world network (SWN) related to control networks

(random and lattice) are significant: (1) The CC of the SWN

(CCSWN) is much higher than that of random networks

(CCSWN..CCrand), but the CPL of the SWN (CPLSWN) is only

slightly higher than that of the random network (CPLSWN$

CPLrand), and (2) the CC of the SWN is lower than that of lattice

networks (CCSWN#CClatt), but the CPL of the SWN is much lower

than that of the lattice network (CPLSWN,,CPLlatt). Specific

quantitative SW metrics were developed in addition to these main

graph metrics. Foremost, the so-called SW coefficient s, is related

to the main metrics of a random graph (CCrand and CPLrand) and

is determined on the basis of two ratios c~CC=CCrand and

l~CPL=CPLrand [47]:

s~
c

l
~

CC=CCrand

CPL=CPLrand

: ð10Þ

The SW coefficient s has been used in numerous networks

showing SW properties and has been found to be greater than 1 in

the SWN (s.1).

The second SW metric was defined by comparing the CC of the

network of interest to that of an equivalent lattice network and

comparing the CPL of the network to that of an equivalent

random network [48]:

v~
CPLrand

CPL
{

CC

CClatt

ð11Þ

This metric normally ranges between 21 and +1 and is close to

zero for SWN (CPLSWN<CPLrand and CCSWN<CPLlatt). In

addition, positive values of v indicate a graph with more random

characteristics (CPLSWN<CPLrand and CCSWN,,CPLlatt), while

negative values indicate a graph with more regular (lattice-like)

characteristics (CPLSWN..CPLrand and CCSWN<CPLlatt). The

clear advantage of the v metric as compared to s is the possibility

to define the extent to which the network of interest is like its

lattice or random equivalents [48].

Community structures and definition of node roles within

the brain networks. To further investigate the topological

properties of the hyper-brain networks, community structures as

well as indices of modularity (M), the within-module degree (Zi)

and the participation coefficient (Pi) were determined (cf. [32]).

For this calculation, the modularity optimization method for

directed networks [49] as implemented in the Brain Connectivity

Toolbox [32] was used (for limitations regarding this method, see

[50]). The optimal community structure is a subdivision of the

network into non-overlapping groups of nodes in a way that

maximizes the number of within-module edges, and minimizes the

number of between-module edges. The modularity (M) is a statistic

that quantifies the degree to which the network may be subdivided

into such clearly delineated groups or modules. It is given for

directed networks by the formula [49]:

M?~
1

l

X
i,j[N

aij{
kin

i kout
i

l

	 

:dmi ,mj , ð12Þ

where l~
P

ij aij is the number of edges in the graph, and aij is

defined to be 1 if there is an edge from j to i and zero otherwise,

kin
i and kout

i are the in- and out-degrees of the node i, and dmi ,mj
is

the Kronecker delta. High modularity values indicate strong

separation of the nodes into modules. M = 0 if nodes are placed at

random into modules or if all nodes are in the same cluster [49].

To test the modularity of the empirically observed networks, we

compared them to the modularity distribution (N = 100) of

random networks, that is, to simulated networks with the same

number of nodes and edges as the original network [51].

The within-module degree Zi indicates how well node i is

connected to other nodes within the module mi. It is determined

by [52]:

Zi~
ki(mi){�kk(mi)

sk(mi )
, ð13Þ

where ki(mi) is the within-module degree of node i (the number of

links between i and all other nodes in mi), �kk(mi) and sk(mi ) are the

mean and standard deviation of the within-module degree

distribution of mi. The within-module degree Zi is zero if all the

nodes of the module have the same number of edges (e.g., if all the

nodes within the module are fully interconnected with each other);

otherwise it has negative or positive values depending on the

number of links at the different nodes.

The participation coefficient Pi describes how well the nodal

connections are distributed across different modules [52]:

Pi~1{
X
m[M

ki(mi)

ki

� �2

, ð14Þ

where M is the set of modules, ki(mi) is the number of links

between node i and all other nodes in module mi, and ki is the total

degree of node i in the network. Correspondingly, Pi of a node i is

close to 1 if its links are uniformly distributed among all the

modules, and zero if all of its links lie within its own module. Zi-

and Pi-values form a so-called Z-P parameter space and are

characteristic for the different roles of the nodes in the network

[52].

The community structures and corresponding measures (M, Zi,

and Pi) were determined for the common networks of the kissing

couples for each kissing condition separately.

Statistical analyses
Partner-oriented kissing satisfaction was analyzed using a two-

way repeated measures ANOVA with a between-subject factor

Sex (female vs. male) and a within-subject factor Items (3 Items,

indicated in Table 1). Immediate kissing quality was assessed

separately for RK and K-SA conditions and analyzed using a

three-way repeated measures ANOVA, Sex6Items6Kissing (RK

vs. K-SA). Alpha peak frequency was analyzed using a four-way

repeated measures ANOVA with a between-subject factor Sex and

three within-subject factors Kissing (RK, K-SA, and HK),

Anterior-Posterior (frontal, central, parietal, and occipital), and

Hyper-Brain Networks during Romantic Kissing
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Left-Right. Spectral power in the low and high alpha frequency

band was subjected to a five-way repeated measures ANOVA with

a between-subject factor Sex and four within-subject factors

Kissing, Alpha Band, Anterior-Posterior, and Left-Right. Lip

EMG at the individual maximum (610 Hz) and at 60 Hz

(610 Hz) were analyzed using a two-way repeated measures

ANOVA with a between-subject factor Sex and a within-subject

factor Kissing (RK, K-SA, and HK). For statistical analyses of

network properties, individual electrodes were collapsed into three

regions along the anterior-posterior axis (frontal, central, and

parieto-occipital) for each FOI separately. Strengths were statis-

tically evaluated for hyper-brain networks and separately for

within- and between-brain connections. Strengths, CC and CPL
were analyzed using a four-way repeated measures ANOVA with

a between-subject factor Sex (female vs. male) and three within-

subject factors Frequency (5, 10, 20, 30, 40, and 60 Hz), Site

(frontal, central, and parietal), and Kissing (RK, K-SA, and HK).

Greenhouse-Geisser epsilons were used in all ANOVAs for non-

sphericity correction when necessary. The Scheffe test was

employed for the post-hoc testing of kissing condition differences.

To assess correlations between kissing satisfaction and quality

and electrophysiological data, Pearson product correlations were

computed between the averaged scores of partner-oriented kissing

satisfaction or kissing quality and the network or other EEG

measures. The difference between the correlation coefficients was

tested using Steiger’s procedure [53].

Results

Psychological assessment
Table 1 summarizes psychologically assessed data (means and

standard deviations) of partner-oriented kissing satisfaction and

kissing quality during the experiment in the female and male

partners. Further results of the psychological assessment can be

found in the Table S1. Immediate kissing quality was assessed

separately for RK and K-SA conditions. A two-way repeated

measures ANOVA Sex6Items for partner-oriented kissing satis-

faction revealed only significant item differences (F(2,56) = 7.30,

P = 0.003, g2 = 0.21). A three-way repeated measures ANOVA

Sex6Items6Kissing for immediate kissing quality revealed signif-

icant main effects of all three factors: Sex (F(1,28) = 5.83,

P = 0.023, g2 = 0.17), Items (F(2,56) = 8.62, P = 0.001, g2 = 0.24),

and Kissing (F(1,28) = 29.90, P,0.0001, g2 = 0.52), but no

significant interactions. As shown in Table 1, women generally

reported higher immediate kissing quality during the experiment

than men, and kissing quality was rated higher for RK than for

K-SA.

EEG and lip EMG spectral power analyses
First, we determined alpha peak frequency and spectral power

in low and high alpha frequency bands in each of the female and

male partners during the three different kissing conditions. The

alpha peak frequency differed by kissing condition (F(2,56) = 3.77,

P = 0.029, g2 = 0.12). A posthoc Scheffe test showed signif-

icant differences between K-SA and HK (K-SA.HK: Mean

Diff. = 0.217, Crit. Diff. = 0.205, P,0.05). Spectral power in the

low and high alpha frequency bands varied as a function of the

kissing condition, as indicated by significant interactions, Kissin-

g6Alpha Band (F(2,56) = 3.62, P = 0.041, g2 = 0.12) and Kissin-

g6Alpha Band6Anterior-Posterior (F(6,168) = 3.00, P = 0.025,

g2 = 0.10), and as a function of Sex (Sex6Alpha Band6Anter-

ior-Posterior, F(3,84) = 8.33, P = 0.003, g2 = 0.23 and 6Alpha

Band6Left-Right, F(2,56) = 4.59, P = 0.025, g2 = 0.14). In gener-

al, spectral power was highest during RK and lowest during K-SA

in the low alpha frequency band, and lowest during HK in the

high alpha frequency band, especially at parieto-occipital regions.

The spectral power in the low alpha frequency band was higher in

men than in women, especially at parieto-occipital sites, and

higher in women than in men in the high alpha frequency band at

occipital and frontal regions.

Second, we determined the average power of lip EMG at the

individual maximum (610 Hz) and at 60 Hz (610 Hz). Lip EMG

oscillations at 60 Hz were used together with EEG channels for

the construction of hyper-brain networks (see Methods). A two-

way repeated-measures ANOVA (Sex6Kissing) revealed only a

significant main effect of Sex for average spectral power at the

individual maximum, F(1,28) = 4.6, P,0.05, g2 = 0.14, and a

marginally significant main effect of Sex for average spectral

power across 60 Hz, F(1,28) = 3.9, P = 0.058, g2 = 0.12, indicating

a higher spectral lip EMG power in women than in men. There

were no significant differences in the frequency of the maximum

amplitude.

Network analyses
As described in Methods and displayed in Figure S1, we

constructed our hyper-brain networks using CFC measures

between 21 EEG electrodes of each of the two kissing partners

at six different frequencies and two EMG lip responses of female

and male partners at the prominent frequency of 60 Hz. There

were 254 nodes altogether (262166+2 = 254) in each network (see

Figure S1 for details). To investigate the SW properties of the real

networks, we constructed two different control networks: regular

(lattice) and random networks containing the same number of

nodes and edges. Figure 2 displays network structures for real,

lattice, and random networks using grand average coupling values.

As expected, the lattice network showed a regular structure with

high connectivity between neighbors, while random networks had

a random structure with equally distributed short- and long-range

connections. Real networks showed SW structure as indicated by

high connectivity between neighbors and also a portion of long-

range connections resembling the random network. Oscillations at

the alpha frequency appeared to fulfill a pace-setting function in

the real network, showing CFCs with all the frequencies used here.

This strong connectivity of the alpha oscillations to all other

oscillation frequencies seems to be a characteristic property of the

real network constructed on the basis of CFC. Whether this

network topology is characteristic for kissing only or has a broader

applicability remains to be seen. Interestingly, lattice and random

networks showed a comparable number of modules (4 modules in

this simulation that are indicated by the different colors in

Figure 2) with a low modularity value for the random network

(M = 0.05) and a high modularity value for the lattice (M = 0.40).

The real network was divided into 9 modules with relatively high

modularity value (M = 0.29).

The real and control networks for each couple were constructed

for 10 different adaptive thresholds (see Methods for details), and

the SW metrics were measured as a function of the threshold

(Figure 3). As expected, increasing thresholds resulted in lower

costs, which indicate sparser networks (Fig. 3A). Sparser networks

have lower global but higher local efficiency (Fig. 3B and 3C),

which are correspondingly related to a higher CPL and also a

higher CC (Fig. 3D and 3E). Thus, sparsity in hyper-brain

networks leads to higher segregation but lower integration of

information flow. The small-worldness coefficient s was always

greater than 1 and increased with lower costs (Fig. 3F) indicating

SW properties for all networks independently of the threshold or

sparseness. The other small-worldness coefficient v ranged

between 20.3 and +0.3 for individual networks and decreased
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with lower costs (Fig. 3G), also indicating SW properties of the

observed networks and a tendency to become more regular with

higher sparseness. Further, we compared network characteristics

at the eighth threshold level (f8 = 1.035) with high sparsity and

optimal SW parameters.

Figure 4 displays the network structures of one of the kissing

couples under the three different kissing conditions. As mentioned

above, alpha frequency interacting with all the other frequencies

plays an exceptional role in the hyper-brain networks (Fig. 4A).

Alpha frequency oscillations showed also strong CFC to theta

oscillations, which remain therefore in a specific connection to

each other and constitute together the so-called theta-alpha

subnetwork binding the brains of the kissing couple together

(Fig. 4B). This subnetwork has been observed practically in all

kissing couples participating in the study. Through strong

interconnection of alpha-frequency nodes with other frequencies,

this subnetwork is strongly incorporated in the whole hyper-brain

network structure and has a particular importance.

Statistical Evaluation of GTA measures
Out-strength, Characteristic Path Length, and Clustering

Coefficient. Statistical analyses carried out for the three graph-

theoretical measures (out-strength, CPLi, and CCi, see Table 2)

showed that: (i) strengths differed between kissing conditions, in

that they were higher during RK and K-SA than during HK, (ii)

CPLi also differed between kissing conditions, with the shortest

path length during RK and K-SA than during HK, (iii) CCi

showed only significant interaction Kissing6Site (F4,112 = 4.39, P,

0.01) with higher clustering during RK at frontal sites and lower

clustering at parietal sites. Additionally, all three measures showed

significant main effects of Frequency and Site, with the strongest

effect for alpha frequency (stronger coupling strength but shortest

path length and lower clustering) and a predominance of coupling

strength, CCi and CPLi (shortest path length) at parieto-occipital

sites (s. Table 2). The kissing effect was also modulated by

Frequency and Site as shown by the significant interaction

Kissing6Frequency6Site for out-strength (F20,560 = 3.12, P,

0.005, g2 = 0.10), with stronger strengths at 10 and 40 Hz, and

at parieto-occipital sites.

Intra- and inter-brain strengths. To test whether the

strength differences between the kissing conditions were not only

due to enhanced within-brain coupling, we determined strengths

separately for intra- and inter-brain connections (s. Methods for

details). We found a significant main effect of Kissing for both

intra- and inter-brain strengths (s. Table 2). The strengths were

higher during RK and K-SA than during HK for the intra-brain

and higher during RK than during HK for the inter-brain

coupling. The differences between kissing conditions for inter-

brain coupling were modulated by electrode site, F4.112 = 3.62, P,

0.05, g2 = 0.12, with stronger differences between kissing condi-

tions at parietal sites. We also found significant main effects of

Frequency and Site, with stronger coupling strength at alpha

frequency and at parieto-occipital sites.

Additionally, we tested the strength of lip EMG channels using a

two-way repeated-measures ANOVA (Sex6Kissing). There were

no significant differences between sex groups or kissing conditions.

Correlation between GTA measures and subjectively

assessed kissing satisfaction. Strength and CPLi for theta-

oscillation nodes (5 Hz) in the hyper-brain network and especially

for inter-brain (but not for intra-brain) connections during RK and

K-SA conditions correlated significantly with items of partner-

oriented kissing satisfaction (see Table 3 and Figure 5). Correla-

tions during HK did not differ reliably from zero, and the

correlation between partner-oriented kissing satisfaction and inter-

brain strength during RK was significantly different from the

corresponding correlation during HK (Zd = 1,97, P,0.05). Intra-

brain strength for alpha-oscillation nodes (10 Hz) during RK and

K-SA correlated significant positively with immediate kissing

quality assessed after K-SA. Furthermore, there were significant

correlations between kissing quality assessed after K-SA and

hyper-brain strength (positive) as well as CPLi (negative) during

RK. Unexpectedly, kissing quality assessed after RK was

negatively correlated to hyper-brain strength and CPLi during

RK and to parieto-occipital hyper-brain strength during K-SA.

Figure 3. Hyper-brain network properties under the three
kissing conditions. A: Changes in hyper-brain network costs
dependent on the coupling threshold. B: Changes in global efficiency
(Eglob) in the hyper-brain, regular (lattice), and random networks
dependent on the coupling threshold. C: Changes in local efficiency
(Eloc) in the hyper-brain, regular (lattice), and random networks
dependent on the coupling threshold. D: Changes in characteristic
path length (CPL) in the hyper-brain and random networks dependent
on the coupling threshold. The CPL of regular networks was always
equal infinity and is, therefore, not presented in the diagram. E:
Changes in the clustering coefficient (CC) in the hyper-brain, regular
(lattice), and random networks dependent on the coupling threshold. F:
Changes in the small-worldness coefficient (s) in the hyper-brain
network dependent on the coupling threshold. G: Changes in the
small-worldness coefficient (v) in the hyper-brain network dependent
on the coupling threshold. RK = romantic kissing, K-SA = kissing while
performing silent arithmetic, and HK = hand kissing. Hyper-brain
network: red line; regular network: blue line; and random network:
green line.
doi:10.1371/journal.pone.0112080.g003
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Modularity structures during kissing
Next, we investigated modularity structures of the 15 individual

hyper-brain networks, which could be partitioned well into

different modules or communities, with modularity values ranging

between 0.24 and 0.47 (M = 0.32, SD = 0.06). Modularity values

were reliably higher than values observed in random networks (p,

0.0001) indicating the presence of nonrandom community

structures. The number of modules varied between 4 and 14 with

an average of 8.4 (SD = 2.2) modules for all individual hyper-brain

networks and kissing conditions. There were no significant

differences in the number of modules and modularity between

kissing conditions.

To define how a node was positioned within its own module and

with respect to other modules, we calculated the within-module

degree (Zi) and participation coefficient (Pi) of the node i for the

hyper-brain networks of the kissing couples. The within-module

degree measures how ‘well-connected’ node i is to other nodes in

the module, whereas participation coefficient reflects how ‘well-

distributed’ the links of the node i are among the other modules.

Together, Zi and Pi form the so-called Z-P parameter space, with

different regions indicating specific universal roles of the nodes

positioned in this space or these regions. Although some attempts

to define these regions or roles were reported in the literature [54–

57], in our opinion, the boundaries of the roles in the given Z-P

parameter space can not always be identical when using different

measures and having different network structures. Therefore, they

should be determined individually based on some specific rules.

Figure 6 displays the Z-P parameter space for the three kissing

conditions including all kissing couples. It can be seen that the

topology of the Z-P parameter space is symmetric to the horizontal

axis at Zi = 0 and have a specific bulb-like form. Nodes with the

within-module degree Zi$1.4 were defined as hubs and nodes

with Zi,1.4 as non-hubs. We adopt this separation Z-value from

our previous study with guitarists [8], which corresponds to the

definition of hubs as nodes containing many more edges than most

of the nodes in the module (cf. [54]). The number of hubs in our

hyper-brain networks calculated across all kissing couples in the

three kissing conditions was 4.8%. The boundary for provincial

and connector nodes was set to 0.65, separating 48.6% of

connector nodes. This separation value for provincial and

connector nodes is close to the value suggested by Guimerà and

Amaral [54]. In addition, we distinguished ultra-peripheral nodes

(P#0.05) and kinless nodes (0.9#P#1.0). Corresponding to this

separation, the Z-P parameter space was divided into six different

roles:

R1 (Pi#0.05) – ultra-peripheral nodes,

R2 (Zi,1.4; 0.05,Pi,0.65) – non-hub peripheral nodes,

R3 (Zi,1.4; 0.65,Pi,0.9) – non-hub connector nodes,

Figure 4. Hyper-brain network coupling matrices and circle network representations for the three kissing conditions. A: Coupling
(aICI) matrices covering WFC and CFC between the 254 nodes of the kissing couple’s hyper-brain network under the three kissing conditions (RK, K-
SA, and HK). B: The same networks as in A, represented in the form of a circle, where the nodes are in clockwise order. Note: The structure of the
coupling matrices and the circle networks is the same as in Figures 1 and S2.
doi:10.1371/journal.pone.0112080.g004
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R4 (Zi.1.4; 0.05,Pi,0.65) – hub peripheral nodes,

R5 (Zi.1.4; 0.65,Pi,0.9) – hub connector nodes,

R6 (Pi.0.9) – kinless nodes.

Figure 7 displays the structure of the Z-P parameter space of a

kissing couple under the three kissing conditions, with the nodes

belonging to different modules coded by colors. It can be seen that

most of the connector and also peripheral hubs share the same two

or three largest modules in the network (Fig. 7A). In most cases of

the kissing couples investigated in the study, the largest module

represents the aforementioned theta-alpha subnetwork. This

module also has the strongest connections to the other modules

(Fig. 7B). However, a more thorough view on the modularity

structure of the kissing couple presented in Figure 7 indicates that

the modular organization of hyper-brain networks have a more

complex structure (see Fig. 7C). During RK, five out of nine (in

total) modules (marked in blue, red, green, yellow, and aquama-

rine) are relatively large and contain alpha-oscillation nodes

together with other frequency nodes distributed across the two

brains. The blue module shares theta- and alpha-frequency nodes

in the two brains and represents the above-mentioned theta-alpha

subnetwork. Furthermore, fronto-temporal alpha-frequency nodes

in male brain share the beta-frequency nodes distributed across

the female brain in the common module marked in red. The

yellow module shares the frontal (and one occipital) alpha-

frequency nodes in the male brain with 30-Hz-oscillation nodes

distributed across the female brain. The green and aquamarine

modules belong practically to the female brain and bind together

alpha and gamma oscillations in the female brain. All this leads to

a very intertwined hyper-brain structure during RK. During K-

SA, there are two (marked in blue and red) out of seven (in total)

largest modules, whereby all the nodes in the female brain belong

to these two largest modules and share these modules with alpha-

frequency nodes in the male brain. Overall, these two modules

represent two very strong hyper-brain subnetworks: (i) alpha-

gamma subnetwork (blue) and (ii) theta-alpha-beta subnetwork

(red). During HK, there are two large modules (marked in blue

and red) that share alpha-frequency nodes in the male brain with

those of the female brain, whereby all the frequencies, with

exception of 60-Hz oscillations in the female brain, join in these

two modules; moreover, the nodes belonging to the first largest

module (marked in blue) lie in the fronto-central regions in both

the female and male brains, whereas the nodes from the second

largest module (marked in red) are localized in the temporal and

parieto-occipital regions, also in both brains. It thus appears that

hyper-brain networks in kissing couples have a complex modular

organization, in which alpha-frequency oscillations and their

subnetworks, especially the theta-alpha subnetwork, play a crucial

role. Figures 7D and 7E show the strongest connections within

and between a couple’s brains, respectively. It should be noted

here that intra-brain networks based on CFC have very strong

large-scale connections binding distributed cell assemblies, espe-

cially between the frontal and parieto-occipital areas. These

regions are also strongly interconnected or synchronized between

the brains. Inter-brain coupling generally reach out from the

frontal regions of one partner to the parieto-occipital or central

regions of the other partner and vice versa, whereas frontal-to-

frontal connections are mostly reduced or attenuated.

Further, we calculated the numbers of nodes lying in the

different regions of the Z-P parameter space for women and men

separately under the three kissing conditions. (see Table 4). A two-

way repeated measures ANOVA (Kissing6Sex) showed no

significant differences between kissing conditions or sex groups

Table 2. Statistical analysis results for network measures (Strength, CPLi, and CCi).

Frequency Site Kissing
Posthoc Scheffe
test for Kissing

Strength F5,140 = 213.26 F2,56 = 29.34 F2,56 = 8.15 MRK.MHK

P,0.0001 P,0.0001 P,0.005 P,0.005

g2 = 0.88 g2 = 0.51 g2 = 0.23 MK-SA.MHK

P,0.05

CPLi F5,140 = 169.45 F2,56 = 16.25 F2,56 = 12.57 MRK,MHK

P,0.0001 P,0.0001 P,0.0001 P,0.0001

g2 = 0.86 g2 = 0.37 g2 = 0.31 MK-SA,MHK

P,0.001

CCi F5,140 = 57.65 F2,56 = 74.19 n.s. n.s.

P,0.0001 P,0.0001

g2 = 0.67 g2 = 0.73

Intra-brain F5,140 = 94.01 F2,56 = 51.25 F2,56 = 7.13 MRK.MHK

strength P,0.0001 P,0.0001 P,0.005 P,0.005

g2 = 0.77 g2 = 0.65 g2 = 0.20 MK-SA.MHK

P,0.05

Inter-brain F5,140 = 102.51 F2,56 = 11.09 F2,56 = 4.90 MRK.MHK

strength P,0.0001 P,0.0001 P,0.05 P,0.05

g2 = 0.79 g2 = 0.28 g2 = 0.15

CPL = Characteristic Path Length, CC = Clustering Coefficient, RK = romantic kissing, K-SA = kissing while performing silent arithmetic, HK = hand kissing, M = mean,
n.s. = non significant.
doi:10.1371/journal.pone.0112080.t002
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at all. There is a tendency for a higher number of hubs and non-

hub connectors and a smaller number of non-hub peripheral

nodes during RK, compared with control conditions, but these

differences were not statistically reliable.

Discussion

In this article, we reported a network analysis based on graph

theory to examine cross-frequency coupling within and between

Figure 5. Correlation plots displaying the correlation between strengths (hyper-, intra-, and inter-brain) and subjectively assessed
partner-oriented kissing satisfaction and immediate kissing quality. A: Correlation between the hyper-brain strength (5-Hz oscillation
nodes) and partner-oriented kissing satisfaction under the two kissing conditions (RK and K-SA). B: Correlation between the inter-brain strength (5-Hz
oscillation nodes) and partner-oriented kissing satisfaction under the two kissing conditions (RK and K-SA). C: Correlation between the intra-brain
strength (10-Hz oscillation nodes) and kissing quality (assessed after K-SA) under the two kissing conditions (RK and K-SA).
doi:10.1371/journal.pone.0112080.g005
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the brains of kissing couples. Our key finding is that CFC hyper-

brain networks consisting of the two brains of the interacting

people have SW properties, and that alpha frequency oscillations

play an essential role in these networks, as they set the pace for

other frequencies in the network. Furthermore, we identified

theta-alpha subnetworks that bind together the two brains of

kissing partners, especially during partner-oriented kissing, and

that play a crucial role during interpersonal action coordination.

Our analyses introduce a new method for capturing CFC in

hyper-brain networks.

Advantages of a network architecture based on
cross-frequency coupling

The human brain is a complex system that shows temporally

coherent activity at multiple scales of time and space. This activity

constitutes functional networks of different topology intermediate

between highly regular lattices and random graphs. This topology

is called SW topology [45]. We have found that our complex

hyper-brain networks based on CFC within and between the

brains of interacting people also possess SW topology, with the

high degree of clustering found in a lattice and the short path

length found in a random graph. We investigated our real and

control networks for each participating couple by using 10

different adaptive thresholds corresponding to different sparsity

levels that increase by threshold. Sparser networks showed higher

local efficiency but lower global efficiency, which are related to

higher CC and also higher CPL. Despite the fact that sparsity in

hyper-brain networks led to higher segregation, but also to lower

integration of information flow, the small-worldness coefficient s

increased with lower costs and was always greater than 1,

indicating that real networks retained small-world network

topology at all threshold levels. Moreover, the other small-

worldness coefficient v ranged between 20.3 and +0.3, also

indicating that the observed networks belong to SWNs. About half

of the kissing couples showed more random properties (v.0),

whereas the other half showed a more regular network properties

(v,0). A decrease of the coefficient v with a higher threshold or

lower costs indicates a tendency of networks to become more

regular. For further analyses, we chose the threshold level that

provided a high sparsity of networks with about equal local and

global efficiency. Modularity analyses showed that hyper-brain

networks at this threshold level had mean modularity values at

about 0.3, which were statistically always higher than that in

random networks. This indicates nonrandom community structure

in hyper-brain networks [56]. Furthermore, community structures

were organized by combining electrode location and oscillation

frequency, whereby each electrode oscillating at different frequen-

cies participated in multiple modules. This gives rise to overlap-

ping community structures within and between the brains.

Normally, low-frequency nodes (e.g., theta and alpha) were

distributed across the two brains and composed the so-called

hyper-brain modules sharing electrodes/nodes from two brains

(c.f. [8,9]). The largest hyper-brain module was normally the

theta–alpha subnetwork, which could be found in practically all

kissing couples. Besides this largest hyper-brain module, there were

also smaller ones composed from other also high-frequency nodes.

Such hyper-brain modules were also found in our earlier studies

based on within-frequency analyses [8,9]. Hyper-brain networks

Figure 6. Z-P parameter space with corresponding roles for all kissing couples. Scatterplot of Z-P parameter space characterized by the
participation coefficient P (X-axis) and the within-module degree Z (Y-axis) representing all kissing couples under the three kissing conditions. Roles
with corresponding regions: R1 (Pi#0.05) – ultra-peripheral nodes; R2 (Zi,1.4; 0.05,Pi,0.65) – non-hub peripheral nodes; R3 (Zi,1.4; 0.65,Pi,0.9) –
non-hub connector nodes; R4 (Zi.1.4; 0.05,Pi,0.65) – hub peripheral nodes; R5 (Zi.1.4; 0.65,Pi,0.9) – hub connector nodes. RK: yellow circles; K-
SA: red circles; and HK: green circles.
doi:10.1371/journal.pone.0112080.g006
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based on CFC, however, have the advantage that they show how

different frequencies interact with each other and build up

overlapping community structures. This allows a better under-

standing of network topology and its organizational principles

[58,59]. Neural cell assemblies are normally organized on the

principle of overlapping communities, with neural units being

shared by different overlapping cell assemblies [34–37]. The

networks observed here follow the same principles and are

therefore suitable for the investigation of hyper-brain networks

arising during interpersonal action coordination.

Kissing satisfaction, lip EMG and EEG alpha activity
In terms of subjective experience, we found that women and

men did not differ regarding partner-oriented kissing satisfaction

but that women generally reported higher immediate kissing

quality during the experiment than men. Not surprisingly, kissing

quality was rated higher during RK than during K-SA. Women

Figure 7. Modular organization of hyper-brain networks under the three kissing conditions. A: Scatterplots of Z-P parameter space with
corresponding role regions (cf. the. 5). Different modules are coded with color of the circles. B: Circle modularity structure. The size of the circle
(module) represents the common connectivity strength of the module, and connectivity strength between the modules is coded by line thickness. In
both cases, the out-strengths were used for calculation. C: Modular organization of the female and the male brains. Each electrode contains six nodes
representing different oscillation frequencies (5, 10, 20, 30, 40, and 60 Hz) in clockwise order, beginning from the top. The size of the circle
corresponds to the out-strength of the node, and modules are represented by color, which is the same as in A and B. D: Within-brain connections in
the female and the male brains, correspondingly. Coupling strength range from blue (low coupling) to red (high coupling). E: Between-brain
connections between the female and the male brains. Coupling strength range from blue (low coupling) to red (high coupling).
doi:10.1371/journal.pone.0112080.g007
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and men did not differ in peak alpha frequency. However, alpha

peak frequency was higher during K-SA than during RK or HK,

which may reflect the cognitive demand of executing both tasks

(kissing and silent arithmetic) simultaneously. Additionally, spec-

tral power in the low and high alpha frequency bands varied as a

function of the kissing conditions and as a function of sex. The

spectral power was generally highest during RK and lowest during

K-SA in the low alpha frequency band, and lowest during HK in

the high alpha frequency band, especially at parieto-occipital

regions. This means that RK enhances spectral power compared

with HK in both low and high frequency bands, whereas K-SA is

associated with higher spectral power in the high frequency band

only. Likewise, men showed enhanced spectral power in the low

alpha frequency band, especially at parieto-occipital sites, whereas

women showed enhanced power in the high alpha frequency

band, specifically at occipital and frontal regions. Despite this

variation of alpha spectral characteristics by the sex and kissing

conditions, neither alpha peak frequency nor alpha spectral power

correlated significantly with kissing satisfaction or quality.

We also determined the average power of lip EMG across the

individual maximum (610 Hz) and at 60 Hz (610 Hz), and the

latter was used together with EEG channels for the construction of

hyper-brain networks. Women showed generally higher lip EMG

power than men, indicating stronger lip activity during kissing,

independently of kissing condition. Lip activity also did not show

any reliable correlations with kissing satisfaction or immediate

quality of kissing during the experiment. It indicates that neither

alpha band activity nor lip muscle activity are responsible for

kissing satisfaction, at least not responsible alone.

Kissing from the viewpoint of network properties
Network analyses showed that hyper-brain networks during

partner-oriented kissing (especially during RK) as compared with

hand kissing have elevated strength and shortest path length

indicating higher connectivity between different brain regions

within and between the brains, and also optimized information

transfer within and between them. The fact that higher strength

during partner-oriented kissing was found for both intra- and

inter-brain connections indicates that neural cell assemblies

synchronize stronger not only within the brains of kissing partners

but also between their brains. Thus, this evolutionarily important

activity is associated with enhanced synchronicity between the

brains of kissing partners. Such elevated inter- and also intra-brain

connectivity was previously found with guitar duets [7–10], during

spontaneous imitation of hand movements [19,60], and during

card playing [18,20]. In these studies, cross-frequency coupling

was not considered, and there was a preference for low (delta,

theta) communication frequencies (cf. [7–9]) to bind two

interacting brains. In other studies, especially when synchroniza-

tion was measured across time [8,9,18–20], higher frequencies

(e.g., alpha, beta, and gamma) were involved as well. The

important role of alpha observed in this study, however, has not

been observed previously. Our results suggest that the important

role of alpha is due to CFC, in the sense that the alpha frequency

sets the pace for other frequencies. This interpretation is consistent

with the available evidence. Alpha oscillations serve an important

function in top-down attentional processes [61–63], and they

synchronize with oscillations at other frequencies in response to

cognitive demands [59,62,64,65]. The theta-alpha subnetwork

identified in this study is in good agreement with these earlier

results. This subnetwork comprises nearly all electrode sites in the

two brains oscillating at theta or alpha frequencies, whereby the

electrodes oscillating at alpha frequency (mostly at parieto-

occipital sites) fulfill the role of a connector hub, with strong

connections to the other nodes of the subnetwork as well as to

nodes or electrodes belonging to other modules or subnetworks.

Based on these observations, we tentatively conclude that parieto-

occipital sites in the kissing partners may have played a leading or

integrating role during kissing.

Kissing differs from other types of social interaction, such as

music or card playing, by stronger reciprocal sensory and motor

connections, including afferent and efferent feedback loops.

Additionally to EEG couplings, we observed significant coupling

between the lip EMGs of the two partners (lip–lip), as well as

couplings between lip EMG and EEG within and across

interaction partners. Within each partner, the EEG oscillations

with the same frequency as the lip EMG (i.e., 60 Hz) were mostly

strongly connected with the lip EMG. On the other hand, alpha

frequency EEG oscillations were also strongly coupled, both with

the own lip EMG and the lip EMG of the kissing partner.

Couplings between EMG and EEG have been reported previously

[66–68], but, for the first time, we show that EMG activity is

synchronized with EMG and EEG activity of the interacting

partner.

A further finding of this study is the significant correlation

between strength (and also CPLi) and subjectively assessed kissing

satisfaction and quality. The coupling strength and integrative

capacity of the frontal nodes and also of other brain regions may

underlie this association. We only tested 5- and 10-Hz oscillations,

which play an important role in the between-brain connectivity

binding two brains together mostly in terms of theta-alpha

subnetworks distributed across the two brains of kissing partners.

Frontal theta hyper-brain strength during RK and K-SA and

CPLi during RK showed reliable relationship to partner-oriented

Table 4. Number of nodes (mean and standard deviation in %) lying in the specific regions of the Z-P parameter space separately
for women and men under the three kissing conditions.

Roles female male

RK K-SA HK RK K-SA HK

R1 0.9 (1.7) 1.2 (2.2) 0.9 (2.1) 0.5 (0.5) 0.3 (0.4) 0.8 (1.1)

R2 47.3 (24.1) 49.9 (27.4) 50.7 (16.3) 44.4 (20.0) 46.2 (25.9) 48.9 (19.1)

R3 46.8 (25.0) 44.3 (24.3) 44.0 (18.6) 50.0 (22.9) 47.9 (28.1) 46.2 (21.2)

R4 2.4 (3.4) 3.3 (3.6) 1.9 (2.3) 3.6 (4.1) 3.3 (4.4) 2.0 (2.6)

R5 2.7 (3.3) 1.4 (1.9) 2.5 (2.8) 1.5 (2.2) 2.3 (3.0) 2.0 (2.9)

R1 = ultra-peripheral nodes, R2 = non-hub peripheral nodes, R3 = non-hub connector nodes, R4 = hub peripheral nodes, R5 = hub connector nodes, RK = romantic
kissing, K-SA = kissing while performing silent arithmetic, and HK = hand kissing. Note that there were no kinless nodes (R6) at all.
doi:10.1371/journal.pone.0112080.t004
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kissing satisfaction. Importantly, this relationship was strongest for

inter-brain connections covering all brain regions during RK, and

frontal and parietal regions during K-SA. Given the fact that intra-

brain strengths did not show a reliable relationship, it can be

concluded that partner-oriented kissing satisfaction is associated

with distributed inter-brain connectivity and frontal nodes in

hyper-brain networks, showing strong connectivity and integration

processes (shortest path length) in common hyper-brain network.

Given the relatively low spatial resolution of EEG, we can only

speculate about the neural circuitry below the frontal electrodes

that form the substrate for this hyper-brain partner-oriented

kissing-satisfaction effect. Neural activity in the medial prefrontal

cortex is selectively enhanced during theory-of-mind tasks and

mentalization [69–71]. Strong involvement of frontal regions in

the within-brain, and especially the between-brain, synchroniza-

tion has also been found with guitar duets [7–9]. Thus, these

coupling strengths may reflect a synchronization of cell assemblies

representing the coordination of one’s own behavior with the

behavior of the interaction partner [2,3,17,72]. This line of

reasoning is further supported by the observation that kissing

satisfaction correlated reliably with inter-brain but not with intra-

brain strength. Thus, the significant relationship of kissing

satisfaction with strength and CPLi during partner-oriented kissing

(RK and K-SA) but not during hand kissing suggests that

orientation toward the partner during kissing not only enhances

frontal hyper-brain circuitry and distributed inter-brain coupling

strength, but also induces neural integration (reduced CPLi) in the

whole hyper-brain network. This, in turn, may enhance the

coordination of kissing behavior and enhance kissing satisfaction.

Surprisingly, the immediate effect of kissing quality during the

experiment showed a different relationship with network indica-

tors dependent on whether kissing quality was assessed after the

RK or K-SA test session. Kissing quality assessed after K-SA

showed a positive association with hyper-brain strength and a

negative association with CPLi for 10-Hz oscillation nodes during

RK, whereas kissing quality assessed after RK showed an inverse

relationship with hyper-brain strength and CPLi during RK, and

also with parieto-occipital hyper-brain strength during K-SA. At

the same time, intra-brain strength for alpha-oscillation nodes

during RK and K-SA correlated positively with immediate kissing

quality assessed after K-SA. This relationship with kissing quality

assessed after RK was not reliable and rather negative. It seems

that the assessment of kissing quality after a K-SA session is more

veridical than after RK. Most of the participants reported after this

session (K-SA) that combining kissing with performing silent

arithmetic has been circumstantial, and they probably paid more

attention to kissing and assessed them more differentially.

Kissing quality correlated reliably with intra-brain strength, but

not with inter-brain strength, whereas the relationship to partner-

oriented kissing satisfaction was inverse, that is, it correlated

reliably with inter-brain, but not with intra-brain strength. It seems

that kissing quality is related above all to within-brain dynamics,

whereas partner-oriented kissing satisfaction addresses above all

the dynamics between the brains. Moreover, the former is related

to alpha oscillations, whereas the latter to theta oscillations, which

are slower. In a previous study [8], we also found that the inter-

brain connectivity was operating at lower frequencies than intra-

brain connectivity. It remains to be seen whether these observa-

tions form part of a more general phenomenon.

Limitations

The present experiment has limitations and leaves room for

questions to be addressed in future research. First, we used only six

frequencies of interest for network construction. Using more fine-

grained frequency components would lead to a more differentiated

representation of hyper-brain networks. At the same time, our

results clearly show the benefits of including CFC in network

construction. Second, our analyses were limited to phase-to-phase

CFC. Other types of CFC (e.g., power to power, phase to power,

power to frequency, or phase to frequency) are likely to provide

further information about functionally relevant network properties

[22]. Third, the coupling measures used in this study were linear

and bivariate. Nonlinear and multivariate couplings [73,74] may

also contribute to inter-brain dynamics and should be investigated

in the future. In conjunction with high-density behavioral

assessments, such measures may shed further light on the

behavioral and neuronal dynamics of interpersonal action

coordination. Finally, the order of RK and K-SA was fixed

instead of counterbalanced to safeguard the ecological validity of

RK. Hence, an unknown portion of the effects attributed to

condition may have been due to sequence effects.

Conclusion

Methodologically, the results of this study show that hyper-brain

networks constructed on the basis of CFC have clear advantages in

the investigation of neural mechanisms of interpersonal action

coordination. Such networks consider the interactions of different

frequencies and incorporate overlapping community structures,

and thereby provide a more complete representation of network

topology and organization. We showed that CFC-based hyper-

brain network topology differ between partner-oriented and

solitary kissing. Significant relations of network properties, such

as strength and average shortest path length (CPLi), to subjectively

assessed partner-oriented kissing satisfaction, point to the func-

tional significance of hyper-brain network properties for interper-

sonal action coordination. Finally, this study shows that data

acquisition and analysis methods for simultaneous EEG and EMG

recordings from multiple persons are important tools to examine

inter-brain oscillatory couplings during interpersonal interactions.

Supporting Information

Figure S1 Construction of the hyper-brain network
using a CFC approach. A: Coupling (aICI) matrix covering

within frequency coupling (WFC) and cross frequency coupling

(CFC) between the 254 nodes of the kissing couple’s hyper-brain

network. The nodes are organized by electrode location (Fp1, Fpz,

Fp2, F7, F3, …, O2), oscillation frequency (5, 10, 20, 30, 40, and

60 Hz), and brain (female, male); the last two nodes are lip EMG

channels oscillating at 60 Hz for a female and a male,

correspondingly. B: The same network as in A, represented in

the form of a circle, where the nodes are in clockwise order for the

female and the male nodes, representing 21 electrodes for each of

the six frequencies used for network construction. The last two

nodes are the lip EMG channels. It can be seen that most of the

long-range connections are between the theta (5 Hz) and alpha

(10 Hz) frequency nodes of the female and the male brains,

representing the so-called theta-alpha subnetwork.

(TIF)

Table S1 Psychological assessment of partner- and
relationship-oriented satisfaction.
(DOCX)
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