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Abstract

The heartbeat has been proposed as an intrinsic source of motion that can be used in combination with tagged Magnetic
Resonance Imaging (MRI) to measure displacements induced in the liver as an index of liver stiffness. Optimizing a tagged
MRI acquisition protocol in terms of sensitivity to these displacements, which are in the order of pixel size, is necessary to
develop the method as a quantification tool for staging fibrosis. We reproduced a study of cardiac-induced strain in the liver
at 3T and simulated tagged MR images with different grid tag patterns to evaluate the performance of the Harmonic Phase
(HARP) image analysis method and its dependence on the parameters of tag spacing and grid angle. The Partial Volume
Effect (PVE), T1 relaxation, and different levels of noise were taken into account. Four displacement fields of increasing
intensity were created and applied to the tagged MR images of the liver. These fields simulated the deformation at different
liver stiffnesses. An Error Index (EI) was calculated to evaluate the estimation accuracy for various parameter values. In the
absence of noise, the estimation accuracy of the displacement fields increased as tag spacings decreased. EIs for each of the
four displacement fields were lower at 0u and the local minima of the EI were found to correspond to multiples of pixel size.
The accuracy of the estimation decreased for increasing levels of added noise; as the level increased, the improved
estimation caused by decreasing the tag spacing tended to zero. The optimal tag spacing turned out to be a compromise
between the smallest tag period that is a multiple of the pixel size and is achievable in a real acquisition and the tag spacing
that guarantees an accurate liver displacement measure in the presence of realistic levels of noise.
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Introduction

The increasing interest in the development of a non-invasive

tool to assess liver fibrosis had led to several studies on Magnetic

Resonance Elastography (MRE) [1,2]. MRE images the propaga-

tion of shear waves, generated by an external device, whose

transmission speed depends on liver stiffness. MRE has shown a

high correlation between liver mechanical properties and fibrosis

stages [3–7], but it requires a special-purpose external vibration

source as well as dedicated acquisition sequences. Furthermore, it

allows the evaluation of the right hepatic lobe only.

The use of the heartbeat as a transient motion source that

deforms the liver during the cardiac cycle has been proposed as a

more practical alternative to induce motion and deformation in

the left lobe of the liver. The left lobe is a region approached with

difficulty by other methods such as elastosonography and MRE

because of the local anatomy and cardiac pulsatility artifacts [8].

To measure the deformations, which are supposed to be related to

liver stiffness and therefore could be used as an index of fibrosis,

investigators have proposed a method based on the use of tagged

Magnetic Resonance Imaging (MRI). In the last 20 years, tagged

MRI has been used for the non-invasive measurement of material

displacements and deformations in normal and diseased hearts

[9,10]; when thin planes perpendicular to an imaging slice are

selectively saturated prior to data acquisition, dark stripes or grid

patterns appear on the resulting image. The tagged grid persists

for a duration in the order of the longitudinal relaxation time T1,

thus remaining visible for a significant fraction of the cardiac cycle.

If tagging is incorporated at the beginning of a cine sequence, the

change in the shape of the saturation pattern on the image during

the cardiac cycle reflects the local motion of the underlying tissue.

Deformation and strain can then be measured through direct

estimation (analysis of the Harmonic Phase (HARP) images

[11,12]) or indirect estimation (tissue point tracking [13]) of the

displacement field. The use of tagged MRI to quantify cardiac-

induced strain in the liver has shown different patterns of liver

motion and deformation in cirrhotic patients and healthy subjects

[8,14], as well as in two cirrhotic patient groups stratified by Child-

Pugh scores [15]. Liver displacements induced by cardiac pressure

range from less than 1 mm in cirrhotic patients to 5 mm for

normal liver and involve a very limited part of the liver close to the

bottom wall of the heart, identifiable with the second segment of

the liver. It is thus very important to define an acquisition protocol

that identifies the optimal angle and tag spacing of the grid applied
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to the images to maximize the sensitivity to these small liver

displacements (that are in the order of a typical pixel size).

Computer simulations [16,17] are particularly useful to assess

the effect of varying imaging parameters [18,19] and to validate

tag quantification methods: the deformation is exactly known,

non-ideal equipment behavior is not present to confound data

interpretation, deformations can be modeled that are not easily

generated with real phantoms, and a large number of tests can be

done without incurring the cost of MRI system usage. Previous

studies have focused on the presentation of computer simulation

methods. Crum et al. [17] developed a software to reproduce

tagged images in the frequency domain, although they were

dependent on the simulated acquisition sequence. In [16], the

authors added noise to their simulation and explained how

deformations could be included in the model, considering only

deformations induced by radially varying contraction and

reproducing the heart movements. Other studies assessed the

effect of varying imaging parameters. Atalar et al. [18] developed

a mathematical model to optimize the tag thickness for tissue point

tracking analysis methods, while Reeder et al. [19], using Bloch

equation simulations, studied the tag contrast in different

acquisition sequences.

The aim of this paper is to use a computer simulation study

designed to reproduce a quantification model of cardiac-induced

strain in the liver using tagged MRI. Additionally, it aims to

evaluate the performance of the HARP image analysis method

and its dependence on fine-tuning of the tag spacing and grid

angle parameters that are currently selected in a heuristic way. An

optimized clinical acquisition protocol for liver stiffness assessment

with tagged MRI was proposed to maximize the technique’s

sensitivity and to allow detectability of smaller variations of the

mechanical properties of the liver.

Materials and Methods

The simulation study was completely performed using a library

developed in-house for MATLAB (MATLAB R2013a, Math-

Works, Natick, MA). The program generated several sets of tagged

MRI images of the liver with various acquisition parameters and

known deformations, which simulated liver movements during the

cardiac contraction.

Data generation
To simulate realistic tagged MRI images with variable

acquisition parameters, digital grids were generated as the

product of two orthogonal sets of periodic patterns of tags. Two

different grid orientations (0 and 45 degrees) were combined

with tag spacings varying from 4 to 7 pixels and a tag thickness

equal to the nearest integer value of a third of the tag spacing.

The simulated two-dimensional images were obtained by

multiplying each simulated grid by a noise-free liver MRI

image of 3206320 pixels.

To take into account the Partial Volume Effect (PVE), which

occurs in real images when the spacing between lines of the grid is

not a multiple of the pixel size, we used a step size of 0.1 for tag

spacing variation. Corresponding images were accordingly gener-

ated by tagging the interpolated original image (an oversampling

factor of 10 was applied in each spatial direction) with a proper

grid. The actual 3206320 matrix was then reconstructed using an

integral subsampling of the tagged image.

In this way, we obtained a total of 62 different simulated

undeformed images (Figure 1).

Object deformation
To obtain the deformed images, four 2D continuous

displacements maps (Figure 2a) of increasing amplitude were

created by generating two smooth and well behaved functions for

each amplitude using MATLAB’s ‘‘peaks’’ function to describe

the horizontal and vertical displacements, respectively (ground

truth Dg1x = Dg1y = [20.4, 0.6] pixels; Dg2x = Dg2y = [2

1.2, 1.7] pixels; Dg3x = Dg3y = [22.0, 2.8] pixels; Dg4x =

Dg4y = [22.7, 3.9] pixels). For each displacement map, the

corresponding image was generated by interpolating the original

image on the deformed grids.

As in real tagged MRI, tags persisted according to the

longitudinal relaxation time of the tissue. The T1 relaxation effect

was taken into account, simulating tag fading in the deformed

images within frames during the cardiac cycle. This fading was

modelled by multiplying the magnetization of the tags by the

factor 1{e
{t=T1 , where T1 = 850 ms is the estimated longitudinal

relaxation time of the liver at 3T [20] and t = 400 ms is the time

frame considered to simulate the end-systolic cardiac phase in the

worst case of a very low heart rate.

In summary, for each undeformed image, we obtained four

images deformed by displacement maps of different amplitude that

simulated the end-systolic frame for different values of liver

stiffness (Figure 3).

Noise modeling
To include noise in the simulation, the simulated images were

corrupted with different levels of Rician noise [21]. In this model,

the real and imaginary parts of the complex MRI images are

considered to be corrupted by white additive Gaussian noise with

the same noise variance that is transformed into Rician noise by

taking the magnitude of the complex data:

Ir~Azg1,g1*N 0,snð Þ

Ii~g2,g2*N 0,snð Þ

m~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ir

2zIi
2

q
,

ð1Þ

where A is the noise free image, Ir is the real component, Ii is the

imaginary component, sn is the standard deviation of the added

white Gaussian noise g, and m is the noisy magnitude image. To

determine a realistic power of noise for our simulations, we

measured the variance of a background region in a real acquired

image, where the noise has a Rayleigh distribution. The noise

power s2
n was estimated from the measured variance s2

M using the

relation described in [22]:

s2
M~ 2{

p

2

� �
s2

n, ð2Þ

As the value of sn obtained in real tagged images acquired at 3T

was 2.5% of the maximum intensity of the image, for our

simulation, we tested realistic SNRs of 1.5, 2.5, and 3.5%. In

summary, for each noise level, 31 different tag spacings at two

different orientations were considered for the four deformation

fields for a total of 248 simulations.

Data analysis
The displacement maps for each simulation were obtained with

in-house software that implements a HARP-based algorithm

[11,12] improved by a Gabor filter bank [23].
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A tagged image can be considered to be composed of two

spatial signals: the background anatomy, located at low

frequencies in the Fourier domain, and the overlapped grid,

whose signal is represented by two sets of orthogonal harmonic

spectral peaks (one for each periodical pattern of tags) centered

at multiples of the tagging frequency. The idea of the HARP

algorithm is that the spectral energy corresponding to the motion

of the tissue is localized around the first harmonic spectral peak

of each set.

To extract this motion information, the groups of images (one

undeformed and four deformed) with the same grid parameters

were input into a Gabor filter bank. The filter bank was centered

Figure 1. Undeformed images. Images with a tag spacing of 6 pixels and grid angle of (a) 0u and (b) 45u.
doi:10.1371/journal.pone.0111852.g001

Figure 2. Ground truth and computed displacement maps. (a) Map of the deformation field Dg2 applied in both the x and y directions (Dg2x

= Dg2y = [21.2, 1.7] pixel) of the undeformed image. (b) Estimated displacement map in the x direction (Dcx) and (c) in the y direction (Dcy),
obtained from tagged MRI images with grid angle of 0u, tag spacing of 5 pixels, and deformed by Dg2. (d) Estimated displacement maps in the x
direction (Dcx) and (e) in the y direction (Dcy) obtained from tagged MRI images with a grid angle of 0u, tag spacing of 5 pixels, and deformed by Dg2

in the presence of a noise level of 3.5%.
doi:10.1371/journal.pone.0111852.g002
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at a spatial frequency that corresponded to the first harmonic

spectral peak of a periodical pattern of tags. The operation was

repeated while changing the central frequency of the bank to

extract the peaks corresponding to the other direction of the tags.

In summary, for each periodical pattern of tags, we chose a

bank composed of nine filters centered around uo,voð Þ, the

frequency of the first harmonic peak in the Fourier domain, which

can be expressed in polar coordinates as:

u0~
1

tagsp

� �
: cos h

v0~
1

tagsp

� �
: sin h,

ð3Þ

with tagsp equal to the tag spacing (measured in pixels) and h equal

to the orientation of the set of lines considered. The exact position

in the Fourier domain of each filter is u,vð Þ:

u~
1

m:tagsp

� �
: cos hzDhð Þ

v~
1

m:tagsp

� �
: sin hzDhð Þ,

ð4Þ

where m,Dhð Þ belongs to the Cartesian product of

M~ 0:5;f 1; 1:5g and DH~ {p=36; 0;
�

zp=36
�

to cover typical

tag rotations and translations.

For both tag directions, the final filter output was calculated by

a voxel-based interpolation among the three strongest filter

responses at each point in the image, obtaining two complex

images, which are the result of an inverse Fourier transform of an

asymmetric spectrum and are called harmonic images:

Ii x,tð Þ~Di x,tð Þejwi x,tð Þ, ð5Þ

where Di and wi are the magnitude and phase images,

respectively, and i indicates the spectral peak from which the

harmonic image is derived (i = 1, 2). Defining the location of the

spectral peaks as W~ v1,v2ð Þ the information about the 2D

displacement field of the image, u~ u1,u2ð Þ, is contained in the

phase image, in fact:

w x,tð Þ~W T x{W T u: ð6Þ

From (6), the displacement field was computed by subtracting

the unwrapped phase images obtained from a deformed image

and the corresponding undeformed one:

u x,tð Þ~ W T
	 
{1

Dw x,tð Þ: ð7Þ

The computed displacement maps are denoted as Dci

(Figure 2).

The overall process of data generation and processing is

schematically represented in Figure 4.

Statistical evaluation
To evaluate the estimation accuracy for each set of grid

parameters (grid orientations = 0u and 45u, tag spacings = 4,7

pixels), applied displacement (Dgix and Dgiy, i = 1, 2, 3, 4), and

three noise levels (1.5, 2.5, and 3.5%), an Error Index (EI) was

calculated as:

EI~
1

2
: s Dcx{Dgx½ �

s Dgx½ � z
s Dcy{Dgy

� �
s Dgy

� �
 !

, ð8Þ

where Dcx, Dgx, Dcy, and Dgy, respectively represent the estimated

and applied displacement maps in the x and y directions, and s
represents the standard deviation operator over the voxel sample.

We calculated EI for all simulations to evaluate how the amplitude

of the applied deformation, tag spacing, grid angle, and noise level

influence the estimation accuracy.

A pair-sample one tailed t-test was used to determine the

statistical significance of differences in the EI trends. Statistical

analysis was performed using R (R Foundation for Statistical

Computing, Vienna, Austria (http://www.R-project.org). A

threshold of p,0.05 was considered to be statistically significant.

Figure 3. Deformed images. Images with tag spacing of 6 pixels and grid angle of (a) 0u and (b) 45u, deformed according to Dg4. Fading of the
grid is also applied.
doi:10.1371/journal.pone.0111852.g003
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Results

EI values were plotted for each ground truth and both grid

angles as a function of tag spacing for the noise-free images

(Figure 5). Data were fitted with a linear function, as shown in

Table 1, where slope (mDgi, angle) and intercept (qDgi, angle) values

for each Dgi as well as both 0u and 45u grid angles were reported.

In the absence of noise and for each ground truth, the estimation

accuracy of the displacement field increased as the tag spacing

decreased (all regression slopes were positive) over the observed tag

spacing interval.

For all tag spacings and both grid orientations, the EIs were

smaller when the amplitude of the ground truth was higher.

Furthermore, the differences in EI values obtained for the

various tag spacings decreased for increasing Dg. In particular,

for the two grid orientations, both the absolute value of the

intercept and the slope of the regressions decreased with

increasing Dg For displacements on the order of pixel size or

less (Dg1), the EIs dropped from a value of 30% for a tag

spacing of 7 pixels to less than 10% for a tag spacing of 4

pixels. For greater displacements, in the order of 3–4 pixels,

Figure 4. Simulation algorithm. Schematic representation of data generation and data processing steps.
doi:10.1371/journal.pone.0111852.g004

Figure 5. EI in a noise-free simulation. Plot of EI for each Dgi and for grid angles of 0u and 45u as a function of tag spacing.
doi:10.1371/journal.pone.0111852.g005
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accuracy was also high, with higher values of tag spacing (the

EI ranged between 3 and 7%).

For each ground truth, the estimation of the displacement map

obtained at 0u was more accurate than the estimation at 45u, as

expected because of PVE. The difference was statistically

significant for Dg1–3–4 and approached significance for Dg2

(pair-sample one tailed t-test: p = 0.03 for Dg1, p = 0.07 for Dg2,

p = 0.03 for Dg3, and p = 0.003 for Dg4). Moreover, for a 0u grid

orientation, local minima were found to correspond to multiples of

pixel size, i.e., in the absence of PVE.

Given these observations, further analyses were conducted only

for a grid orientation of 0u.
When noise was added, the smoothness of the displacement

measurement was affected (Figures 2(d)–(e)). Plots of EIs calculated

for each Dgi and the three levels of noise as a function of tag

spacing are shown in Figure 6. Fitting the new calculated EIs with

linear functions (Table 2), it can be observed that the slope of the

linear fit decreased for each increase in the level of noise, negating

almost completely the advantage of using the smallest tag spacing.

This was particularly true for Dg1 at the maximum level of noise

(the EI remained over 25%, even at tag spacing of 4).

The optimal tag spacing turned out to be the smallest multiple

of the pixel size (4 pixels) for almost all situations considered. The

very few exceptions referred to the smallest deformation in the

presence of the highest level of noise, where a value of 5 was

preferable.

Discussion

We simulated several acquisition setups and demonstrated how

varying tag spacing and grid angle influences the accuracy of

motion estimates. We also showed how realistic levels of noise

affected the results. The PVE was also taken into account for tag

spacings that were not multiples of the pixel size as well as the T1

relaxation that causes grid fading.

The amplitude of the simulated displacements, for typical pixel

sizes of real abdominal acquisitions, fell within the range of the

observed liver movements in normal and cirrhotic patients

(1,5 mm) [8,14,15].

Table 1. Error index in noise-free simulation fitted to linear equation y = mx +q.

Displacement map 06 456

m Q R2 M q R2

Dg1 7.1?1022 22.1?1021 0.93 8.0?1022 22.6?1021 0.95

Dg2 2.5?1022 26.7?1022 0.94 2.8?1022 28.4?1022 0.96

Dg3 1.7?1022 24.2?1022 0.96 1.9?1022 25.2?1022 0.97

Dg4 1.4?1022 23.2?1022 0.96 1.5?1022 23.9?1022 0.98

doi:10.1371/journal.pone.0111852.t001

Figure 6. EI in the presence of noise. Plot of EI for tag spacings varying from 4.0 to 7.0 pixels, a grid angle of 0u, and different noise levels for (a)
Dg1, (b) Dg2, (c) Dg3, and (d) Dg4.
doi:10.1371/journal.pone.0111852.g006
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In the absence of noise, displacement estimation accuracy

improved as the grid tag spacing decreased and became optimal

for small displacements (pixel size or less). Comparing the values of

EI at different orientations, the estimation of the displacement

fields for each Dg was more accurate for a grid angle of 0u over the

total range of calculated tag spacings.

The simulation of different levels of noise, similar to those

measured on real acquisitions performed at 3T, showed that the

smaller tag spacings, identified as optimal in the noise-free

simulation, were more sensitive to the presence of noise. This is a

crucial point because it is difficult to design an ad-hoc image

denoising step. In fact, there is no simple linear relationship

between the noise statistics in the displacement estimates and the

noise statistics in the image, which undergoes a nonlinear

transformation when the phase is computed.

The result of noise addition thus reduces or even cancels out

the improvement in accuracy at small values of tag spacing,

especially for the smallest ground truth. This imposes a lower

theoretical limit on the width of the tag spacing that guarantees

appropriate noise rejection. The optimal tag spacing was 4 pixels

for almost all the situations considered except Dg1. However, the

results showed EIs comparable to those obtained at a tag spacing

of 5 pixels for increasing levels of noise. The lower tag spacing

limit had to be combined with the physical limit of the tag

spacing boundary values obtainable in a real acquisition that

depends on the implementation of the tagging sequence RF

pulses on the specific MR scanner used. Another parameter that

is dependent on the sequence pulse implementation is tag

thickness. In our simulation, we used a fixed value equal to the

nearest integer to one third of the tag spacing. However, this

should not be a crucial point in our analysis because the HARP

method should not be substantially sensitive to variation in this

parameter, unlike line tracking methods that require an accurate

estimation of the tag centerline position [18].

We limited our simulation to values of T1 relaxation time that

are typical for liver at 3T, but this is not an obstacle to a broader

application of our results. The shorter T1 at lower magnetic field

intensities [20] causes a faster tag fading and affects the CNR of

the tags [24]. Hence, if we simulated an acquisition in this

condition, we would expect estimation results comparable to the

ones obtained with the same T1 and a higher power of noise.

Analogously, the heart rate may influence the CNR of the tags,

according to the Bloch equation for the T1 recovery of the

tagged tissues. This is because the end-systolic cardiac phase may

occur at different delays, thus affecting grid fading.

In conclusion, we suggest the use of a grid angle of 0u and, for

all noise levels, a value of tag spacing that is a multiple of the pixel

spacing to avoid PVE and for which the EI reached local

minimums. This is because in the presence of PVE, if a pixel in a

harmonic image is the mean of several complex numbers,

expressed as (5), there will be an error in the displacement

measurement. This occurs because the resulting phase of the pixel

is not equal to the average of all the component phases, as it is a

nonlinear function. Hence, the optimal tag spacing should be a

compromise between the smallest tag period (a multiple of the

pixel spacing) achievable in a real acquisition and the tag spacing

that guarantees appropriate noise rejection in the presence of a

realistic level of noise (given the scanner used for acquisition).

We believe that future work is needed to verify the impact of

the optimization of the tagging MR acquisition parameters in

clinical studies as well as to accurately quantify the extent of liver

displacement expected at the various fibrosis stages.
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