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Abstract

The Trypanosoma cruzi clade is a group of parasites that comprises T. cruzi sensu lato and its closest relatives. Although
several species have been confirmed phylogenetically to belong to this clade, it is uncertain how many more species can be
expected to belong into this group. Here, we present the results of a survey of trypanosome parasites of the bat Artibeus
jamaicensis from the Panamá Canal Zone, an important seed disperser. Using a genealogical species delimitation approach,
the Poisson tree processes (PTP), we tentatively identified five species of trypanosomes – all belonging to the T. cruzi clade.
A small monophyletic group of three putative Trypanosoma species places at the base of the clade phylogeny, providing
evidence for at least five independent colonization events of these parasites into the New World. Artibeus jamaicensis
presents a high diversity of these blood parasites and is the vertebrate with the highest number of putative trypanosome
species reported from a single locality. Our results emphasize the need for continued efforts to survey mammalian
trypanosomes.
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Introduction

How to separate one species from the other – species

delimitation – is a central problem in organismal biology, and

the complexity of the argument increases when dealing with

potentially cryptic species. Usually, species delimitation relies on

morphological characters and in similarity of DNA sequences, and

often the chosen criteria can be arbitrary and misleading. This is

particularly true for eukaryotic microbes where morphologies

could be conserved and where distinctive characters are scarce or

at least not easy to obtain [1]. Novel approaches that are based

exclusively in gene genealogies, such as coalescent species

delimitation may offer an alternative to this long-standing problem

[2]. Recently, Poisson tree processes (PTP), a new model for

coalescent species delimitation has been proposed [3]. Here we are

interested in using PTP to explore the diversity of trypanosome

parasites in a common Neotropical bat species, Artibeus
jamaicensis.

Trypanosomes are protozoan blood parasites that use all classes

of vertebrates as reservoir hosts, and certain blood-feeding

invertebrates (e.g., cimicid bugs, leeches, triatomine bugs, tsetse

flies) as vectors [4]. One of the best known trypanosome species is

Trypanosoma cruzi, which causes Chagas disease. This species has

several close relatives that together form a monophyletic group

known as the T. cruzi clade [5,6]. Despite recent progress [6–8],

the evolutionary history, including the overall diversity and

biogeographic patterns of this clade are far from understood.

Several species have been confirmed phylogenetically to belong to

this clade, but it is uncertain how many more can be expected

within this group. Because of this uncertainty, biogeographic

inferences regarding the origin of the clade and posterior dispersal

events may be inaccurate.

Here we explore the diversity of trypanosome parasites in

Artibeus jamaicensis from the Panama Canal Zone. Using PTP, a

fast coalescent species delimitation approach, we recovered 5

different putative species of trypanosomes, all belonging to the T.
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cruzi clade [6,8]. We discuss the impact of these findings on the

biogeography and taxonomy of this important clade of parasites of

mammals.

Materials and Methods

Ethics Statement
Permits for field research and exporting of samples were granted

to VMC by the Panamanian Autoridad Nacional del Ambiente (#
SEX/A-145-05). Manipulation of bats and procedures of Data

collection followed a protocol of the Institutional Animal Care &

Use Committee (IACUC) of the Smithsonian Tropical Research

Institute (STRI).

Collection of bat trypanosomes and genetic data
During field work conducted in 2005, we collected blood

samples of 216 Artibeus jamaicensis in the Panamá Canal Zone,

Panamá [9]. We extracted DNA, performed nested PCRs to

screen for trypansomes and, for positive bats, we sequenced a

fragment of the 18S ribosomal RNA gene [10]. We obtained a

total of 81 sequences, trimmed to 543 bp after alignment.

Detailed protocols, microscopy results, correlations with habitat

fragmentation, and the finding of Tcbat have been published

previously [9,11].

Sequences and alignment
We built two alignments, one for the 18S rRNA gene that

included our generated sequences together with the data used in

the most comprehensive study to date of the T. cruzi clade [8], and

another only with published sequences of the gGAPDH gene [8].

We constructed alignments using MUSCLE [12] within Geneious

v. 6.1.8 [13], and manually edited obvious misplacements.

GenBank accession numbers and codes of the samples used are

presented in Table S1.

Phylogenetic analysis
We concatenated both gene alignments with SequenceMatrix v.

1.7.9 [14]. For this concatenated matrix we selected the best model

and partition scheme using Partition Finder 1.1.1 [15]. We divided

the data into four data blocks, one for the 18S rRNA gene, and

three for the gGAPDH gene – one for each codon position. We

chose the model following the Bayesian information criteria scores,

which suggested grouping all blocks under a single partition with

the model GTR+I+G We ran Bayesian and maximum likelihood

analyses in MrBayes v. 3.1.2 [16] and RAxML v. 8.0.12 [17],

respectively. We set the Bayesian analysis with two independent

runs with 1 cold and 3 heated chains, for 10 million generations,

sampling the chains every 100 generations. The analysis was

allowed to run until reaching stationarity (stopval set at 0.01) and

confirmed by MrBayes’ potential scale reduction factor values

close to 1.00. At the end of the run, 10% of the generated trees

were discarded as burn in. For the maximum likelihood analysis,

we used the option GTRCATI, which implements the CAT

approximation – an optimization of the parameter Gamma – but

the final tree was evaluated with the traditional GTR+I+G model.

We estimated nodal support with posterior probabilities for the

Bayesian analysis and with 1,000 bootstrap pseudo replicates for

the maximum likelihood analysis.

Species delimitation
We used the Poisson tree processes (PTP) model for species

delimitation [3] to infer the most likely species numbers in our

Panama data and the entire T. cruzi clade. PTP is an operational

criterion of a gene coalescent view of the phylogenetic species

concept [18]. The PTP method outperforms the commonly used

GMYC model [19], possibly because PTP models the speciation

rate directly from the number of substitutions in a non-ultrametric

phylogeny, while GMYC uses time from an ultrametric tree,

which is a computationally expensive and error-prone practice [3].

We ran a PTP species delimitation analysis in the bPTP web

server [3]. As input, we used a maximum likelihood phylogeny of

the concatenated dataset, estimated as above but with a reduced

number of terminals (n = 28), because PTP tends to overestimate

the number of recognized species when there is uneven sampling

of individuals per species [3]. In our matrix most of our terminals

belonged to T. cruzi (Figure 1), so first, we removed all identical

sequences and later we pruned additional members of T. cruzi that

showed little variation in our dataset – mostly belonging to Tcbat

and T. cruzi marinkellei. We ran the PTP analysis for 200,000

MCMC generations, with a thinning value of 100, a burn-in of

25%, and opted for removing the outgroup to improve species

delimitation. We visually confirmed the convergence of the

MCMC chain as recommended [3].

Mapping of New World invasions
Following previously published geographic records [4,6,8,20],

we determined the number of invasions of members of the T. cruzi
clade to the New World by identifying the branches containing

species with representatives in the Americas.

Results

Phylogenetic relationships
The topology of both the Bayesian and maximum likelihood

trees largely agree, except with the placement of the most basal

species of the T. cruzi clade, which was either Trypanosoma
livingstonei, the monophyletic group consisting of three lineages of

Panamanian bat parasites, or the group formed by the two

Australian trypanosomes (Figure 1). This is reflected in the low

bootstrap support values and Bayesian posterior probabilities at

the base of the tree, while the support values at other branches of

the tree are high for most part.

Species delimitation
The PTP model identified a total of five putative species of

Trypanosoma in the samples of Artibeus jamaicensis from Panamá

(Figure 2). Three of these putative species clustered together

forming a monophyletic group positioned in the periphery of the

T. cruzi clade and the other two were identified as T. cruzi and

Trypanosoma rangeli. Including the putative species detected in

Panamá, the PTP model detected 18 species as members of the T.
cruzi clade. Both, T. cruzi cruzi and T. cruzi marinkellei were

recognized as a single species and the PTP model also recognized

at least three putative species within what is known as T. rangeli
and two putative species within Trypanosoma dionisii (Figure 2).

T. cruzi clade invasions to the New World
We recognize a total of five independent invasions to the New

World (Figure 3). Two invasions correspond to species with

multiple-continent distributions: T. dionisii, and T. conorhini.
Two other invasions produced small radiations of three putative

species each: the basal group of Panamian samples and the group

of putative species assigned to T. rangeli. Another invasion gave

rise to T. cruzi and all of its subspecific lineages.

High Diversity of Trypanosoma in Common Bat Species
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Discussion

Our finding of five putative trypanosome species in a single bat

host species from a small geographic area is remarkable for the

implications that it has for understanding the diversity, evolution,

and biogeographic origins of mammalian Trypanosoma in the New

World.

Diversity
Artibeus jamaicensis is a common bat species in the Neotropical

forests, and it is considered a key species for its ecological services

as a seed disperser [21]. Here we demonstrate that A. jamaicensis
carries the largest number of putative trypanosome species

reported for a vertebrate host in a single locality; no other

vertebrate species has been found to carry a higher number of

trypanosome species at one particular geographic area [8,22–25].

Potentially, this high diversity of parasites in this host species is

driven by several factors. Artibeus jamaicensis is the most common

bat species in the area [26], and Barro Colorado has a high

diversity of triatomine insect vectors (e.g., Panstrongylus genicu-
latus, Panstrongylus rufotuberculatus, Rhodnius pallescens, Micro-
triatoma trinidadensis), which have been found in association with

bats at other localities [27]. In addition, the location of Barro

Colorado relatively close to the equator may suggest that

trypanosome parasites – at least of bats – could follow the general

latitudinal gradient of diversity, where higher numbers of species

are recorded near the equator and the numbers decrease towards

the poles [28]. Both bats and their bat flies also show this

latitudinal diversity gradient [29,30].

Other than the biotic drivers reported above, undoubtedly the

detection and analytical methods that we employed also played a

role in finding a high number of putative trypanosome species.

First, detection of trypanosomes by PCR is more sensitive than

detection by microscopy alone [31]. Also, DNA sequencing and

phylogenetic analyses with comparative sequences allow more

reliable identification of species than morphological characters or

Figure 1. Phylogeny of the Trypanosoma cruzi clade. Maximum likelihood tree constructed with concatenated 18S rRNA and gGAPDH genes.
Numbers on the branches represent support values corresponding to bootstrap replicates (right) and Bayesian posterior probabilities (left). Clades
highlighted with colored boxes correspond to trypanosomes detected in Panamá. Collapsed branches at the base of the phylogeny indicate low
support for the placement of the three Panamian lineages. The symbol//on the branch to the outgroup indicates a shortened branch. GenBank
accession numbers of the samples used in this phylogeny are provided in Table S1.
doi:10.1371/journal.pone.0108603.g001
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the ‘‘one-host-one-species paradigm’’ [32]. Moreover, species

delimitation models are efficient and theoretically sound, and

become a good alternative given the intrinsic subjectivity in

delimiting species using genetic distances or arbitrary morpholog-

ical groupings [33].

Taxonomy
Our results indicate that the T. cruzi clade has more species

than previously reported, especially in the New World, and this

high diversity warrants further surveys and taxonomic study. More

genetic sampling of taxa will help to resolve new and outstanding

taxonomic issues within this clade. It seems that the most pervasive

problems are the high number of species names available [22] and

the lack of genetic data corresponding to several of these names.

For instance, the Panamanian putative species 1, 2, and 3 form a

monophyletic clade, which indicates that their morphologies may

be very similar. It’s possible that some of these lineages could be

synonymous with Trypanosoma leonidasdeanei or Trypanosoma
pessoai [38] from Costa Rican bats. Moreover, it is possible that

the strain called Z or ‘‘T. c. marinkellei III?’’ [39] – a trypanosome

highly divergent from T. cruzi marinkellei in electrophoretic

patterns and nucleotide sequences [39,40] – could belong to one of

our Panamanian putative species. Unfortunately, there are not

publically available DNA sequences of this lineage.

A particularly interesting taxonomic issue is the case of T.
rangeli, a parasite also found in humans, which we show is

actually composed from at least 3 different putative species

(Figure 2). In the last two decades, the taxonomy of T. rangeli
has been reviewed using molecular methods and, because shallow

divergences were reported, Trypanosoma leeuwenhoeki, Trypano-
soma legeri, Trypanosoma minasense, Trypanosoma preguici, and

Trypanosoma saimiri were all recommend to be treated as junior

synonyms of T. rangeli [41,42]. The shallow divergences

reported within T. rangeli in these previous studies probably

were the result of the removal of all columns of the alignment

that contain gaps, which, paradoxically, are the more informative

columns of the 18S rRNA gene alignments, thus resulting in the

observed reduced variation. Current software such as RAxML

[17] treats the gaps as undetermined characters ‘‘Ns’’, and the

entire alignment column is kept.

Figure 2. Putative species delimitation of members of the Trypanosoma cruzi clade. Maximum likelihood phylogeny with Bayesian support
values presented for all 18 lineages recognized as species for the PTP analyses. Monophyletic groups in red indicate a single putative species as well
as terminal branches in blue. Names of terminals indicate codes of the samples. Names in bold after a | symbol are taxonomic or geographic
identifiers of the putative species. Arrows indicate the 5 putative species found in Artibeus jamaicensis in Panamá.
doi:10.1371/journal.pone.0108603.g002
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Biogeography
With this new phylogeny we recognize five invasions of T. cruzi

clade members to the New World (Figure 3). This number is

greater than has been detected in previous phylogenetic analyses

[6–8], and it suggests that we would find signs for an even higher

number of invasions if more thorough bat trypanosome surveys

are conducted. Also, it is interesting that most of these invasions

did not generate more diversity. The only exceptions are the sub-

clade containing T. rangeli and the three putative species from

Panama that seem that have undergone small radiations

(Figure 2).

Two invasions appear to be rather recent and while one is the

result of natural dispersal, the other seems facilitated by human

activity. Trypanosoma dionisii is a parasite of bats that has been

recorded in Europe and South America, and it has been

hypothesized that the colonization of South America has occurred

relatively recently, probably by vagrant bats, since there are no

species of bats shared between the Americas and Europe [20]. In

addition, T. conorhini uses Old World rats and vectors as hosts –

Rattus spp. and Triatoma ribrofasciata, respectively – and its

presence in the New World could be explained by the recent

human-mediated introduction of rats and associated parasites

[43]. This is highly plausible since Trypanosoma lewisi, also a

parasite associated with rodents of the genus Rattus, has been

reported in several continents including oceanic islands [36,44,45].

In our phylogeny, it is not possible to determine the branching

order at the base of the T. cruzi clade due to the low support

values (Figure 1); however, either the group formed by Panama 1,

2 and 3 or T. livingstonei should be at the base of the tree. Because

the most basal species of the T. cruzi clade are distributed on

different southern continents, including Africa, there is support for

a wider Gondwanan origin of the clade, rather than a more limited

South American-Australian origin [5]. Further, trypanosome

surveys may help discovering more basal trypanosome lineages

that might allow a finer inference of the ancestral distribution area

of this clade by limiting the ancestral origin to a single southern

continent. Nonetheless, all of the potential basal species of the T.
cruzi clade are parasites of bats; which further supports a likely

origin of this clade in bats, as well as the bat-seeding hypothesis

that indicates that bats are the main hosts of the T. cruzi clade.

Episodic host switches towards terrestrial mammals may have

occurred along the evolution of this clade including the host

switches that ultimately gave rise to the pathogen T. cruzi that

causes Chagas disease in humans [43].

Outlook into future trypanosome surveys
We advocate the use of DNA sequence data and coalescent-

based methods for species delimitation because these will speed up

biological discovery, especially of microscopic organisms with

plastic morphologies. We recommend that species descriptions of

new taxa continue to include morphological analyses, since at least

major groupings can be identified reliably through gross morpho-

logical characters and measurements [34] and this may allow the

tracking of names available from older literature. In this study, the

recognition of T. cruzi as a single species despite the pronounced

divergence between T. cruzi cruzi and T. cruzi marinkellei, may

indicate that the PTP model, applied on trees of the 18S rRNA

and gGAPDH genes, is a conservative approach that is not

oversplitting taxa. Species delimitation results may be highly

dependent of the loci used; a fast evolving gene might recognize a

higher number of putative species than a slow evolving marker.

Also, it is important to emphasize that computational species

delimitation methods have different assumptions and may target

different areas of the parameter space that is relevant for

delimiting species (e.g., divergence time, shifts in diversification),

thus resulting in different outputs depending on the methods used

[33]. The genes used in this study are slow evolving, and PTP

model has shown to be reliable at species delimitation [3]; thus, we

may have confidence in this approach as an efficient way to

rapidly delimit putative species, at least preliminarily, until more

genetic data (e.g., dozens of loci) could be gathered and several

more robust delimitation methods could be applied (e.g., Bayesian

species delimitation, bpp) [2,33].

We also suggest more efforts to survey trypanosomes of

mammals, either by conducting field expeditions targeted on

collecting trypanosome material [9,35], or by surveys of trypano-

some DNA in mammalian specimens and tissues deposited at

museum collections [36,37]. Sustained efforts should be devoted

for trypanosome sampling in Africa and the Americas to truly

understand the diversity of this clade. In the Americas in

particular, it would be important to survey localities in Central

and North America, and in South America on the western side of

the Andes and the Guiana Shield.

Supporting Information

Table S1 GenBank accession numbers of the samples
used. Codes in bold represent the new sequences generated for

this study, hyphens indicate absence of the gGAPDH sequences

for the respective samples.

(XLSX)
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