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Abstract

Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic
compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in
metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic
pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and
phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92
genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted
metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray
containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical
pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs) and transcript QTLs (eQTLs). Co-
localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of
carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway
and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that
such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new
insights into the genetic regulation of metabolite composition of Brassica vegetables.
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Introduction

Brassica crops are important food sources (oil, vegetables and

condiments), and are considered to have beneficial nutritional

properties such as antitumoral activities [1], [2], [3]. The

presumed healthy components such as phenylpropanoids, pheno-

lics, flavonoids and glucosinolates have been widely characterized

in Brassica [4], [5], [6]. For example, Brassica leaves have been

found to accumulate conjugated forms of both flavonols (querce-

tin, kaempferol and isorhamnetin) and flavones (apigenin and

luteolin) [5]. In recent years, breeding for nutritional quality

became an important research topic and in this context

metabolomics approaches, using NMR, LC-MS and or GC-MS,

have enabled the parallel assessment of the relative levels of a

broad range of metabolites [7], [8], [9], [10]. In Arabidopsis, a

Brassica rapa relative, the metabolite variation was found to be

abundant and its genetic regulation complex, plausible candidate

regulators could be identified after LC-MS mass peaks were

assigned to genomic loci [11].

The components of the metabolome can be regarded as the end

products of expressed genes and define the biochemical phenotype

of a cell or tissue. Several complementary analytical methods can

be applied in order to enable profiling, either relatively or

quantitatively, of the various chemical classes of metabolites

present in an organism [12], [13].

Transcriptomics measures the variation in mRNA transcript

abundance and expression profiles can be treated as heritable

traits to genetically map expression quantitative trait loci (eQTL);

this type of analysis has been denominated as genetical genomics

[14].

Thus, the integration of metabolomics with transcriptomic and

genomic platforms has frequently been used as a strategy to

identify candidate genes involved in the regulation of the levels of

specific metabolites in plant systems [11] [15], [16], [17], [18].
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The investigation of selected biochemical pathways of pre-defined

metabolites showed that the connections between gene expression

and metabolite variation are complex [19], [20].

The variation in B. rapa morphology is huge (oil, turnip, pak

choi, Chinese cabbage and several Asian leafy morphotypes) and

the variation in metabolite composition is similarly large [21],

[22], [23]. This variation has increased the interest of plant

breeders to breed for improved phytonutrient quality in Brassica.

Several studies in A. thaliana, B. rapa and B. napus aimed to

identify QTL for phytonutrients. The most studied secondary

metabolites are the glucosinolates and the detected QTL not only

confirmed the quantitative nature of this trait, but also allowed the

identification of key biosynthetic and regulatory genes (Hasan et

al. 2008, Kliebenstein, 2001,Lou et al. 2008, Wentzel et al. 2007,

Feng et al. 2012).

The triplicated genome of B. rapa has a well described synteny

with Arabidopsis [24], [25], [26]. As a consequence of the

evolutionary gene triplication event, many genes have paralogues.

The triplicated nature of the Brassica genome represents a

challenge to unravel the genetics of metabolic traits using genetical

genomics approaches.

In the present study we profiled both metabolite and transcript

abundance in the leaves of six weeks-old plants from a Doubled

Haploid (DH) population developed from an F1 cross between a

yellow sarson (R500) and a pak choi (PC175) plant. We applied

both an untargeted metabolomics approach for semi-polar

secondary metabolites, including glucosinolates, flavonoids and

phenylpropanoids, using liquid chromatography-mass spectrome-

try (LC-MS), and targeted analytical approaches to profile lipid-

soluble isoprenoids (carotenoids and tocopherols) and folates.

Additionally, the whole genome transcript level was performed on

leaves of six week old plants from all DH lines using a distant pair

design with a 60-mer oligo microarray assembled using EST

sequences mainly from three species: B. napus, B. rapa and B.
oleracea [27]. To prioritize the number of candidate genes, we

subsequently focused on six known biochemical pathways of

health-related phytonutrients, with the aim to identify regulatory

genes. Furthermore, for the construction of a transcriptional

regulatory network we used the very well described glucosinolate

pathway [28], [29]. These data are an important reference for

breeding purposes and a step to gain insight in the genetic factors

responsible for the metabolite variation in B. rapa.

Materials and Methods

Parental materials to develop a doubled haploid (DH)
population

A B. rapa DH population was developed from a cross between

pak choi PC-175 (cv.Nai Bai Cai; accession number VO2B0226),

as the male parent, and yellow sarson YS-143 (accession number

FIL500). The parental accessions were selected based on their

differences in phenotypic characteristics and genetic distance [30],

[31]. Actually, this population is a reciprocal cross of the

previously developed population DH38 as described in [31].

The DH population was created using the microspore culture

protocol described in [31], [32] [33] and [34]. The progeny of the

DH plants from three F1 plants were used for the phenotyping and

genotyping. The resulting population was named DH68 and

consisted of 92 DH lines and for each line the corresponding F1

parent was known.

Plant growth conditions
The plants of the DH lines were grown in the greenhouse under

the following conditions: 16 hrs light and temperature between 18

and 21uC. After one week, germinated seedlings were transplanted

and randomly distributed over three different blocks. Five weeks

after transplanting, the 3rd and 4th leaves of each replicate were

collected and immediately frozen in liquid nitrogen to be grinded

into fine powder and stored at 270uC. Each replicate was grinded

individually and a pool of equally weighed amount of each of the

three replicates was used for metabolic and transcriptomic

profiling, as well as for DNA marker profiling to construct a

linkage map and perform QTL analysis.

Construction of a genetic linkage map
Leaf material for DNA extraction was collected from seedlings

and then ground using a Retsch 300 shaker (Retsch BV, Ochten,

the Netherlands). DNA was isolated based on modified CTAB

methods [35]. The AFLP analysis was performed according to Vos

et al. (1995) [36].The AFLP and marker primer combinations used

for the mapping were those combinations used for map

construction in [37]. Linkage analysis and map construction were

carried out using JoinMap 4.0 (http://www.kyazma.nl) for each

population. Linked loci were grouped on the basis of pairwise

LOD values between 4 and 7. The Kosambi mapping function

was used to convert recombination data to map distances.

LC-MS metabolic profiling
Leaf samples were analyzed for variation in semi-polar

metabolite composition using LC-QTOF-MS, essentially as

described in [10]. In short, 0.5 g FW of frozen leaf powder of

each DH line and the parents was extracted with 1.5 ml of

methanol containing 0.1% formic acid. Samples were sonicated

and then filtered (Captiva 0.45 mm PTFE filter plate, Ansys

Technologies) into 96-well plates with 700 ml glass inserts (Waters)

using a TECAN Genesis Workstation equipped with a 4-channel

pipetting robot and a TeVacS 96-wells filtration unit. Samples

were injected (5 ml) using an Alliance 2795 HT instrument

(Waters), separated on a Phenomenex Luna C18 (2) column

(2.06150 mm, 3 mm particle size) using a 5–35% acetonitrile

gradient in water (acidified with 0.1% formic acid) and then

detected on-line firstly by a Waters photodiode array detector

(wavelength 220–600 nm (Waters) and secondly by a Water-

Micromass QTOF Ultima MS with negative electrospray ioniza-

tion (m/z 80–1500). Leucine enkephalin was used for online mass

correction.

Metalign software (www.metalign.nl) was used to automatically

extract and align all relevant mass signals (signal to local noise ratio

.3) from the raw data files. The total of 6,673 mass peaks was

filtered for signals being present in at least 15 samples and having

amplitudes of at least 100 ion counts per scan (about 6 times the

noise value) in at least one of the samples. Then, mass signals

originating from the same metabolites were clustered based on

their similar retention times and variation over samples, using

MSClust software [13]. This retained 228 so-called centrotypes, or

reconstructed metabolites, of which the relative abundance was

represented by the total ion counts of the clustered signals.

Targeted analyses of folates and lipid-soluble isoprenoids
Lipid soluble isoprenoids, including carotenoids, tocopherols

and chlorophylls, were extracted using Tris-buffer/methanol/

chloroform and analyzed by HPLC-PDA-fluorescence as de-

scribed before [21]. Folates were extracted in a Na-acetate buffer

pH 4.7 containing 20 mM DTT, and total folate levels were

determined using a Lactobacillus casei-based microbiological

assay, after enzymatic deconjugation by c-glutamyl hydrolase [21].

Secondary Metabolite Regulation in Brassica rapa
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RNA isolation
Total RNA was extracted using the TRIZOL reagent

(Invitrogen) starting with approximately 300 mg of frozen leaf

material. RNA concentration and purity were quantified with

Nanodrop measurements and the quality of the total RNA was

checked on a 1% RNase free agarose gel.

Total RNA (5 ul) was treated with the DNase I Amplification

Grade kit (Invitrogen) for digestion of single and double stranded

DNA according to manufacturer’s intructions.

Total RNA was cleaned using the RNeasy Mini Kit (Qiagen)

starting with the 100 ml of DNase I treated RNA.The concentra-

tion of the cleaned RNA was measured and the samples were

diluted with nuclease free water (Qiagen) to 400 ng/ml in a total

volume of 10 ml.

Microarray design
The distant pair design proposed for two colour microarrays

experiments by 35 was followed and implemented in the R

package designGG (http://gbic.biol.rug.nl/designGG/). This

design uses genetic marker information to identify pairs of

individuals with maximum dissimilarity across the mapping

population and improves the efficiency of eQTL studies. In our

study we used information obtained from 48 pairs of DH lines and

the information on parental lines was additionally hybridized in

two microarrays with dye swap of Cy3 and Cy5. The probes were

classified in correspondence to the EST sequence origin: (1)

B.rapa, (2) B.napus, (3) B.oleracea and (4) other Brassica species

[27].

QTL mapping analyses
QTL analysis was performed using the basic single marker

regression procedure present in R/qtl [38]. This was done for both

the expression ratio values and the metabolite datasets in a similar

fashion, leading to results that could be easily combined in the end.

A total of 78,688 expression probes together with the 228

reconstructed metabolites and the values of targeted metabolites

(carotenoids,tocopherols and folic acid) were mapped back to the

genetic map of B. rapa (Figures S1, S2, S3, S4) using the basic

model. The expressions were measured using two-color array

technology and for the mapping we used the ratio’s between two

genotypes

Yi~azbGizError

(Yi = Probe intensity, Gi = Genetic effect).

In this model the genetic effect was annotated for the expression

ratio’s as described in [39]; b is the effect of the different allele (1

for A.B 0 for A = = B and 21 A,B). This model was evaluated

at each marker to get an estimate of the allelic effect on the

expression probes. This results in a P-value, which was

transformed into a LOD score. These LOD scores where then

visualized in different ways to show underlying genetic architec-

ture, by using QTL profile plots and heat maps.

Six single-copy genes with eQTLs detected using the microarray

profiles were selected to compare results obtained from the

microarray and real-time PCR (BrARR3_A09, BrFRL2_A09,

and BrCAM1_A07, BrCYCLIND1:1_A02, BrKRP2_A03 and

BrDRL1_A08). Transcripts of these genes were profiled with two

technical replications using the RNA samples of the 92 DH68 lines

that were previously used for microarray analysis, as described in

[40], [37]. The eQTLs for these six single-copy genes identified

using the microarray were confirmed by RT-qPCR, with higher

LOD scores for RT-qPCR data.

We constructed the glucosinolates mQTL profile based on the

metabolites detected by the untargeted LC-MS analysis. LOD

scores for each marker were calculated using an MQM procedure

[38]. The output of the transcriptional data of the candidate

regulatory genes (eQTLs) was filtered for a LOD threshold value

of .3.5. The data was analyzed using the MetaNetwork

computational protocol as described in [41] to obtain second

order correlation values. The generated files were plotted using

Cytoscape [42].

Identification of known regulatory genes for network
analysis

To identify eQTL involved in the regulation of the biosynthesis

of common Brassica phytochemicals, we first screened the probes

represented on the microarray against a compiled list of genes that

are known to be involved in the regulation of six biosynthetic

pathways leading to the production of flavonoids, phenylpropa-

noids, glucosinolates, carotenoids, tocopherols and folate [28],

[29], [43], [44], [45] (Table S1). The nucleotide sequences of the

microarray probes were compared with the gene sequences of the

current version of the B. rapa genome sequence available in the

Brassica database (BRAD) (http://brassicadb.org/brad/) [46]. To

identify cis and trans effects, the paralogues information of the

selected candidate genes were also obtained from the BRAD

website. The glucosinolate reference pathway was drawn in

Cytoscape [42]. The reference KEGG pathway was imported

after the implementation of the kgml reader plugin in Cytoscape.

Results

Genetic linkage map of DH68
A genetic linkage map was constructed for population DH 68. A

total of 456 markers were mapped in the DH population (Figure

S1). The total map length was 1233.221 cM and consisted of 10

linkage groups, corresponding to the 10 chromosomes of Brassica
rapa. The largest linkage group was A03 with a size of 192.22 cM

and the smallest linkage group was A04 with a size of 63.646 cM.

Each of the linkage groups had at least one SSR marker, which

allowed the identification of the corresponding chromosome and

the comparison with previously published maps [31]. In addition

to the SSR markers, gene targeted markers related to the

glucosinolate pathway were mapped in this population as well. A

total of 21 markers related to the glucosinolate (GLS) biosynthetic

pathway were mapped in all the linkage groups except for A08,

A05,A04 and A10. The linkage group with most GLS genes

mapped was A03 with eight genes mapped. The mapping of this

particular group of markers together with the SSRs was of aid for

the identification of the map orientation and for further syntenic

comparison with Arabidopsis thaliana in the search of candidate

genes for metabolic pathways and cis/trans effects.

Whole genome QTL analysis of metabolic content
Making use of targeted metabolic extraction and analyses

procedures, including quantification using reference compounds, it

was possible to measure the variation in absolute levels of selected

health-related phytochemicals, i.e. tocopherols, carotenoids and

folic acid, in the leaves of B. rapa. The parental line YS-143

produced significantly more of c-tocopherol, a-tocopherol, lutein,

b-carotene and folate than the parental line PC-175. Variation of

carotenoids, tocopherols and folate within the DH population are

presented in Table 1. A transgressive segregation for the quantity

of content of these targeted compounds was observed: most of the

levels were transgressive in a positive and negative direction. QTL

analysis of these targeted compounds revealed significant mQTL

Secondary Metabolite Regulation in Brassica rapa
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regions LOD .3 distributed across the whole genome table S2.

Overlapping QTL regions, with a possible regulatory function for

more than one carotenoid, were located on linkage groups A03,

A05 and A10. No significant results were found for d-tocopherol.

(Figures S2, S3, S4).

The LC-MS untargeted profiling resulted in the identification of

228 reconstructed metabolites; from this set 41 were identified as

corresponding to the flavonoids pathway (Table S3).

Significant mQTLs were detected for 166 out of the 228

reconstructed metabolites (i.e. 73%). These mQTL were not

equally distributed over the B. rapa linkage groups, as coldspots

and hotspots for the genetic regulation of metabolite content could

be identified (Figure 1). The most important regulatory region was

located on linkage group A07, where mQTLs were detected for

47% of all LC-MS metabolites.

Whole genome QTL analysis of transcriptomics data and
candidate gene filtering

We followed a regression analysis of the transcript abundance

represented by 78,278 informative probes on the microarray

against 456 mapped markers. In total, 44,358 probes were

detected as significant against a genetic marker with a LOD score

.3.5.The whole genome profile of the number of eQTL versus

chromosome position indicates that there is no evidence of eQTL

clustered as hotspots. Instead, the eQTL were distributed

randomly across the genome with a higher number than average

on linkage groups A02, A03 and A09. (Figure 2).

In general, to identify regulatory genes we searched for genomic

regions in which metabolite levels (mQTL) seem to co-localize

with significant LOD values of annotated probes (eQTL)

corresponding to candidate genes of their biochemical pathway.

While the region in linkage group A07 was detected as a hotspot

for mQTLs, no eQTLs were observed among the known

biosynthetic genes. However, when the complete set of probes

with a significant LOD score of more than 3.5 in linkage group

A07 was filtered for GO terms related to flavonoid regulation, we

could identify three probes representing genes involved in positive

regulation of flavonoid biosynthesis. (Table S4)

For most metabolites we could identify at least one eQTL

overlapping with one mQTL. Only for a-tocopherol, having a

QTL on linkage group A02, none of the annotated probes showed

an eQTL at the same genomic region, and also for folic acid we

were unable to identify probes that co-localize with its mQTL in

A05 and A09, even when the selected LOD value of the annotated

probes was lowered to LOD = 3. In general we were able to

identify cis and trans eQTLs for the target metabolites in several

linkage groups. The eQTL results corresponding to each pathway

are summarized in table S5 and figures S2, S3, S4.

Additionally, correlation analysis was performed between all the

significant probes, annotated as known regulatory genes or

transcription factors, with eQTL LOD scores .3.5 and a

correlation value .0.3. The correlation analysis indicated a high

within and between pathway correlation (Figure 3). The highest

correlation values .0.8 were found between eQTLs results from

different paralogs and between different genes belonging to the

flavonoid pathway.

Glucosinolate mQTLs Analysis
To further analyze the regulatory network of a specific

phytochemical pathway we focused on the very well characterized

glucosinolate biosynthetic pathway (Figure 4).

The parental lines yellow sarson (R500) and a pak choi (PC175)

are known to differ in their metabolic and genetic compositions

[21], [22]. We detected 20 glucosinolates in the parental lines and
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within the DH population (Table S6). Significant mQTLs were

detected for 13 out of the 20 glucosinolates, mostly representing

aliphatic glucosinolates, while mQTLs were not detected for the

aromatic glucosinolate and for two out of the three indolic

glucosinolates.

The mQTLs representing 12 aliphatic glucosinolates showed

co-localization mostly in the genomic regions on linkage groups

A03 and A09 (Figure 5). This co-localization indicates a high

genetic correlation between glucosinolates. In the case of linkage

group A03, mQTLs were found for the long chain aliphatic

glucosinolates and in A09 the mQTLs were mostly detected for

the short-chain (C3 to C5) aliphatic glucosinolates and their

modified forms. In the case of the indolic glucosinolates we could

identify one mQTL for neoglucobrassicin, which was located in

linkage group A02. This mQTL had a lower LOD score value in

comparison to the LOD scores for aliphatic glucosinolates.

Transcriptional regulation of the glucosinolate pathway
In an effort to enrich the genetic map with informative markers,

we mapped genetic markers related to the glucosinolate pathway

in the different linkage groups. Although we found significant gene

expression QTLs (eQTLs) for the regulation of glucosinolate

metabolism in all the chromosomes, two hot spots were identified

in chromosome A03 and A09 (Figure 4, 6). Along linkage group

A03 three positions were identified as important because of the co-

localization of significant eQTLs. At top of chromosome A03

(38.4 cM) we mapped a genetic marker for the GLS transcription

factor Myb29, while a putative eQTL representing Myb 29 was

found at 22.4 cM (with LOD of 2.1, which is lower than the

significance threshold). At the Myb29 eQTL position at 22.4 cM,

we found co-localizing eQTLs representing GLS biosynthesis

genes: 2CYP79F1A06, 1-2CYP83A1A04, 2BCAT4A05, 2GSL-

OHA03(2) and 2UGT74C1A05. We mapped a marker for GSL-

OH at the middle of chromosome A03 (70.4cM), while the eQTL

for the probe representing GSL-OH mapped in an interval

spanning the same location. The GSL-OH eQTL interval co-

located with the genetic map position of 3IPMISSU1A03 and

1MAM1A03. At the lower bottom position of A03, eQTL

corresponding to 3IPMISSU1A03 and 1–2MAM1A03 colocalized

at the position where a genetic marker for BCAT4 was mapped

Figure 1. Whole genome QTL analysis of 228 reconstructed metabolites from the LC-MS data (mQTL). X-axis represent linkage group,
and y-axis indicates lod score.
doi:10.1371/journal.pone.0107123.g001

Figure 2. Whole genome QTL analysis of gene expression data (eQTL). On x-axis linkage group and on y-axis number of QTLs per map
location.
doi:10.1371/journal.pone.0107123.g002
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(121.1 cM). Finally, also in linkage A03, cis-regulation was found

for the MAM gene, as the 1–2MAMA03 probe showed an eQTL

at the position of the MAM genetic marker (126.0 cM). In

addition, the same MAM probes had a significant eQTL at the

position of a Myb28 marker (mapped at 127.2 cM on A03),

although we did not find a Myb28-eQTL at this position.

Along linkage group A09 several regions were identified as

eQTL hotspots. Many regions in linkage group A09 showed either

colocalization of eQTLs or cis-effect of genes, which have been

mapped at the corresponding positions in this population.

The Myb28 eQTL mapped at the Myb28 genetic locus

(30.7 cM), where also significant eQTL colocalized for 1–

2AOP2A01, 1AOP2A03, 2CYP79F1A06, 2CYP83A1A04, 1SU-

R1A09, 2BCAT4A03, 2BCAT4A05(2), 2FMOGS-OX2A09(2),

2GSTF6A02, 2UGT74B1A09, and 2ST5b(SOT18) A07 (2). The

gene BrC-lyase (SUR1) was cis regulated, as eQTL (57.8 cM) and

SUR1genetic marker (56.5 cM) colocalized. At the same position

of the SUR1 eQTL the genes 2FMOGS-OX2A09 and

2UGT74B1A09 also had an eQTL. In an eQTL interval between

73.7 and 83.7cM on A09 the genes: 1AOP1A01, 2AOP2A01,

2GSTF6A02, 1AOP2A03, 2MAM1A03, 1MYB29A03,

2BCAT4A03, 2BCAT4A05(2), 2UGT74C1A05, 2CYP79F1A06,

1-2 (2) ST5b (SOT18) A07, 1MYB51A08, 2SUR2A08,

2MYB28A09, 1SUR1A09, 2FMOGS-OX2A09(2),

2BrBCAT3A01 and 2UGT74B1A09 had eQTL, suggesting that

this is an important trans regulatory locus. Within this interval a

genetic marker for UGT74B1 was also mapped, which could point

to a regulatory role for this gene. Finally, within this linkage group

at the position of the genetic marker for the transcription factor

BrMYB51 (130.2 cM) significant eQTL were found for the

following genes: 1MYB29A09, 2MYB28A09 and FMOGS-

OX2A09 (2). The marker for FMOGS-OX5 was also mapped

at the 136.8 cM position, and thus this gene is likely cis regulated.

Glucosinolate Biosynthesis in Brassica rapa
The comparison of the mQTL and eQTL data revealed several

GLS biosynthesis genes and transcription factors involved in the

regulation of glucosinolate biosynthesis in B. rapa (Figure 6). In

linkage group A03, for example, we were able to dissect the

genetic function of the paralog of GSL-OH in A03 in the

biosynthesis of progoitrin: its mQTL colocalized with both the

eQTL and the genetic marker for 2GSL-OHA03 (2). In linkage

group A03 at the large interval containing the eQTLs for

3IPMISSU1A03 and 1–2MAM1A03, the mQTLs for gluconapin,

glucoraphanin, heptyl (I, II, III) and hexyl III glucosinolates co-

localized within the region where genetic markers for the MAM

gene and for the BrBCAT4 gene mapped. In linkage group A09

overlapping mQTLs were found for glucobrassicanapin, glucoer-

ucin, gluconapin, hexyl-GLS III, methylsulphonylbutyl-GLS and

progoitrin. These mQTLs co-localized at the interval containing

several eQTLs and the genetic marker for UGT74B1.

Figure 3. Correlation plot of eQTL location between metabolic pathways. Microarray probes representing pathway genes are represented
by colored circles. Green: glucosinolates; red: phenylpropanoids/flavonoids orange: carotenoids; yellow: tocopherols; black: folate; dark yellow:
tocopherols-carotenoids. Correlation values .0.3 are indicated.
doi:10.1371/journal.pone.0107123.g003

Figure 4. Reference Glucosinolate KEGG pathway. A. Cysteine and methionine metabolism. B. Phenylalanine, tyrosine and tryptophan
biosynthesis.Yellow and green colored rectangles represent glucosinolates identified in the untargeted LC-MS dataset. Green colored rectangles
indicate significant mQTL (lod values .3). Gray shading indicate side chain elongation step, green shading indicate core structure biosynthesis and
red shading indicate the secondary modification steps.
doi:10.1371/journal.pone.0107123.g004
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In summary, for the eQTL analysis a total of 94 probes were

selected as representatives of candidate genes for the GLS

pathway. Forty-two from these 94 probes, representing 25

candidate genes, showed at least one eQTL. These genes had

both cis and trans eQTL in most hotspots in the genomic regions

at A03 and A09, with most of the genes showing trans-eQTL

effects at the position of Myb29 in A03, and both UGT74B1 and

Myb28 in A09.

Discussion

A genetical genomics approach combining metabolic and

expression data obtained from a DH population was chosen to

gain insight into the genetic regulation of the metabolite

composition in B. rapa leaves. To illustrate the strength of this

approach, we selected six biosynthetic pathways involved in the

production of health-related phytochemicals: carotenoids, tocoph-

erols, folates, glucosinolates, flavonoids and phenylpropanoids.

These pathways have very well been studied in Arabidopsis
thaliana and most of the genes involved in these pathways have

been characterized [28,29], [43], [44] [47], [48], [49].

Traditionally, the synteny between Brassica and Arabidopsis
and the recent availability of the B. rapa genome sequence have

assisted in the prediction of candidate genes in genomic regions

where a phenotypic QTL has been detected [25], [26], [31]. In the

present study the use of large scale metabolomics approaches using

both targeted and untargeted analytical platforms, combined with

transcriptome analysis of a selection of annotated probes, allowed

us to further analyze the QTL results and predict a group of

Figure 5. QTL analysis results of the glucosinolate pathway data. Top indicates mQTL and the bottom shows eQTL results of candidate
genes. Names are presented on the right.Colours indicate different levels of significance: turquoise (logp = 3), dark turquoise(logp = 3–4), darkcyan
(4–5), red (logp = 5–7), dark red (logp = 7–10), white (logp = .10).
doi:10.1371/journal.pone.0107123.g005
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candidate genes. The QTLs detected for many metabolites

detected by untargeted LC-MS clustered within a genomic region

at linkage group A7, indicating that these metabolites possibly

shared a common genetic regulator.

To identify influential genes and gene products, the genetical

genomics approach emerged as a tool to combine expression

profiling with molecular marker analysis through the use of

quantitative trait loci (QTL) analysis in a segregating population

[14]. For our study we profiled the transcript abundance of the 92

DH lines with a microarray assembled from B. napus, B. rapa and

B. oleracea EST sequences [27]. The direct comparison of

metabolite mQTL and eQTL maps has shown the predictive

capacity of eQTL to detect candidate genes for phenotypic

differences in Arabidopsis and B. rapa [19]. This comparison

between mQTL and eQTL in our study revealed co-localization

of both in many cases. The predictive value of the QTL

comparison through co-localization was very successful in the

case of the isoprenoids and the glucosinolate pathway, but not in

the case of both total folate and the phenylpropanoid and

flavonoids with mQTL on A07. However, in the case of the

flavonoids further inspection of significant eQTL (LOD.3.5) in

linkage group A07 helped us to identify three genes with predicted

function in flavonoids regulation in Arabidopsis.
To further analyze the regulatory network of a phytochemical

pathway, we focused on the very well characterized pathway

leading to the biosynthesis of glucosinolates. The variation and

genetic regulation of the glucosinolate content has been widely

studied [50], [51], [52], [53], [54], [55]) at different developmental

stages and organs and with different approaches [49]. In the Ler vs

Cvi RIL population of Arabidopsis, two major loci were found

through QTL analyses to explain the observed variation for most

of the aliphatic glucosinolates [11], [52], [53]. The MAM locus is

responsible for the variation in chain length [56] and the AOP

locus is responsible for the variation in side chain modification

[53]. In a previous QTL study for glucosinolate variation in B.
rapa leaves, a major QTL for the content of a number of aliphatic

glucosinolates was identified on linkage group A03 in a DH

population of a cross between a yellow sarson and a pak choi

accession [31].

With the B. rapa sequence information available several

candidate genes for glucosinolate regulation have been identified

[28], [45]. However, these candidate genes have never been

identified as loci underlying QTL and their functions have not

been validated in B. rapa. In our study we were able to identify a

metabolic network that clearly suggests a differential regulation of

different glucosinolate classes. In the case of linkage group A03,

mQTLs were detected for the long-chain aliphatic glucosinolates

while at A09 mQTL were mostly detected for short-chain (C3 to

C5) aliphatic glucosinolates and their modified forms. In these

hotspot regions in A03 and A09 cis and trans effects were observed

and most of the genes showed trans effects at the position of

Myb29 in A03 and Myb28 - UGT74B1 in A09.

The analysis of expression differences, within a DH population,

of a selected group of candidate genes for these selected pathways

from the Arabidopsis research helped us to focus on well-known

and characterized genes. Although these candidate genes are

potential regulators of important pathways leading to metabolites

of interest, the results indicated that the relevance of these genes is

Figure 6. Metanetwork second order correlations results between eQTL and mapped markers. Colors indicate genomic location of the
annotated microarray probe. Gray: A01, green: A02, red: A03, black: A04,orange: A05, turquoise: A06, brown: A07, yellow: A08, dark green: A09, blue:
A10.
doi:10.1371/journal.pone.0107123.g006
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different in B. rapa. For example in our population the hotspot

Myb28 - UGT74B1 in A09 is more relevant in B. rapa and also in

B. napus seeds [57] than the AOP locus in A. thaliana. One

difference that can have an effect in the QTL analysis is the

triplication of the genomes in Brassica with the presence of

paralogues. Our results with the presented genetical genomics

approach indicate a possible sub-functionalization of the para-

logues in B. rapa. For example, for the gene SUR1 we found two

microarray probes annotated as corresponding to SUR1 copies

mapping to linkage groups A07 and A09, with one copy showing

significant eQTL values only at A07 (therefor called SUR1A07)

and the other copy showing cis and trans eQTLS effects at A09

(thus called SUR1A09).

Significant genetic contribution to the regulation of the level of

secondary metabolites in B. rapa opens the possibility for

application of metabolic engineering in Brassica crops. However,

it is important to realize that correlation between different

pathways can exist, preventing the identification of a hotspot for

regulation of specific metabolites. Our results of eQTL analysis

indicated cross talk between several pathways, which means that

they are interdependent, most likely as these pathways use

common substrates (Figure 3). The data generated in our study

is valuable for the selection of B. rapa accessions with higher or

lower content of specific metabolites, which can help in marker-

assisted selection for breeding purposes based on the identified

candidate regulatory genes.
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MYB76 and HAG3/MYB29 exert a specific and coordinated control on the
regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New

Phytol 177: 627–642.
51. Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge U (2007) The R2R3-

MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived

glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 51: 247–261.
52. Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, et al. (2001)

Genetic control of natural variation in Arabidopsis glucosinolate accumulation.
Plant Physiol 126: 811–825.

53. Kliebenstein DJ, Lambrix VM, Reichelt M, Gershenzon J, Mitchel-Olds T
(2001) Gene duplication in the diversification of secondary metabolism: tandem

2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in

Arabidopsis. Plant Cell 13: 681–693.
54. Halkier BA, Du L (1997) The biosynthesis of glucosinolates. Trends Plant Sci 2:

425–431.
55. Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT (2000) The nutritional

significance, biosynthesis and bioavailability of glucosinolates in human foods.

J Sci Food Agric 80: 967–984.
56. Kroymann J, Textor S, Tokuhisa JG, Falk KL, Bartram S, et al. (2001) A gene

controlling variation in Arabidopsis glucosinolate composition is part of the
methionine chain elongation pathway. Plant Physiol 127: 1077–1088.

57. Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, et al. (2014) Genome-Wide

Association Study Dissects the Genetic Architecture of Seed Weight and Seed
Quality in Rapeseed (Brassica napus L.). DNA Research. doi: 10.1093/dnares/

dsu002.

Secondary Metabolite Regulation in Brassica rapa

PLOS ONE | www.plosone.org 11 September 2014 | Volume 9 | Issue 9 | e107123


