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Abstract

Late-stage or post-market identification of adverse drug reactions (ADRs) is a significant public health issue and a source of
major economic liability for drug development. Thus, reliable in silico screening of drug candidates for possible ADRs would
be advantageous. In this work, we introduce a computational approach that predicts ADRs by combining the results of
molecular docking and leverages known ADR information from DrugBank and SIDER. We employed a recently parallelized
version of AutoDock Vina (VinaLC) to dock 906 small molecule drugs to a virtual panel of 409 DrugBank protein targets. L1-
regularized logistic regression models were trained on the resulting docking scores of a 560 compound subset from the
initial 906 compounds to predict 85 side effects, grouped into 10 ADR phenotype groups. Only 21% (87 out of 409) of the
drug-protein binding features involve known targets of the drug subset, providing a significant probe of off-target effects.
As a control, associations of this drug subset with the 555 annotated targets of these compounds, as reported in DrugBank,
were used as features to train a separate group of models. The Vina off-target models and the DrugBank on-target models
yielded comparable median area-under-the-receiver-operating-characteristic-curves (AUCs) during 10-fold cross-validation
(0.60–0.69 and 0.61–0.74, respectively). Evidence was found in the PubMed literature to support several putative ADR-
protein associations identified by our analysis. Among them, several associations between neoplasm-related ADRs and
known tumor suppressor and tumor invasiveness marker proteins were found. A dual role for interstitial collagenase in both
neoplasms and aneurysm formation was also identified. These associations all involve off-target proteins and could not have
been found using available drug/on-target interaction data. This study illustrates a path forward to comprehensive ADR
virtual screening that can potentially scale with increasing number of CPUs to tens of thousands of protein targets and
millions of potential drug candidates.
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Introduction

Adverse drug reactions (ADRs) are detrimental, rare and

complex perturbations of biological pathways by pharmacologi-

cally active small molecules. Each year ADRs cause 100,000

fatalities in the US [1]. One cost estimate of drug-related

morbidity and mortality is $177 billion annually [2], which is

comparable to the public health burden of chronic illnesses like

diabetes ($245 billion in 2012 [3]). A systematic and accurate

capability for reliably ruling out severe ADRs early in the drug

development process currently does not exist. As a result, billions

of research and development dollars are wasted as drugs present

with serious ADRs either in late stage development or post-market

approval. Highly publicized examples of phase IV failures include

rosiglitazone (‘‘Avandia’’) [4] and rofecoxib (‘‘Vioxx’’) [5]. Early

identification of serious ADRs would be ideal.

Although many ADRs are multi-factorial and depend on

patient- and treatment-specific factors (e.g. genetic polymorphisms

and medical history of the patient, treatment dosages, environ-

mental exposures, dynamics and kinetics of the relevant systems

biology, etc.), all ADRs are initiated by the binding of a drug

molecule to a target, whether these binding events are intended,

on-target binding or promiscuous binding to one or more off-

target proteins. Currently, pharmaceutical companies commonly

employ experimental in vitro toxicity panels to assay small

molecule binding to potentially critical protein receptors [6].

Unfortunately, these panels probably do not include all of the

proteins and receptors needed for high-accuracy prediction of

serious ADRs [7]. Even if it were known how to augment toxicity

panels to include a minimally complete set of receptors relevant for

serious ADRs, there is uncertainty about how efficiently it could be

screened.
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An in silico platform that could accurately predict serious ADRs

prior to costly in vitro screening panels and clinical safety trials is

highly desirable and has been the focus of several recent studies.

A popular approach is to data-mine the publicly available

databases for experimentally elucidated interrelationships between

the chemical structures of drugs, their known interactions with

proteins (most often their intended targets), and their known ADR

profiles. An early study by Fliri and co-workers [8] clustered drugs

based on their ability to inhibit a selected set of proteins. They

showed that similar inhibition profiles indicate a similar set of side

effects. More recently, Cobanoglu and co-workers [9] performed

probabilistic matrix factorization on a 1,413 drug61,050 known

target protein matrix to learn a latent variable correlation

structure between drugs and proteins. Drugs were then clustered

in this latent variable space, and it was found that drugs with

similar therapeutic actions clustered together, independent of

similarities in chemical structure. A highly cited effort by

Campillos et al. [10] indicated that drugs with similar side effects

have a correspondingly similar profile of protein targets. Another

series of studies applied statistical machine learning approaches

like support vector machines and sparse canonical correlation

analysis (SCCA) to publicly available datasets to train models for

ADR prediction. Pauwels et al. [11] used SCCA to relate

PubChem [12] chemical substructure fingerprints of 888 approved

drugs to 1385 side effects in SIDER. Yamanishi and co-workers

[13] used a similar approach to integrate drug-protein target data

found in DrugBank and Matador with PubChem fingerprints to

predict 969 SIDER side effects, applying both SCCA and a kernel

regression method. They used the models to predict side effects in

730 previously uncharacterized small molecules in DrugBank,

where side-effect information was not available in SIDER. Finally,

Liu et al. [14] found that adding phenotypic data on the drug (i.e.
the presence or absence of side effects, excluding the one being

predicted) to a similar feature representation to that considered in

[13] greatly enhances prediction of the ADR of interest, obtaining

AUCs.0.9. However, since their approach relies on health

outcomes data on the drug compound, the method is unsuitable

for ADR prediction in the early-stage development of nascent drug

compounds, prior to in vitro studies or clinical trials. In all of the

cases listed above, only global quality-of-performance metrics,

aggregated across all considered side effects, are reported, making

it difficult to assess how the models performed on individual side

effects or classes of side effects.

There is another group of studies that more fully exploit the

network structure of drug, protein, and ADR entity relationships.

A network-oriented approach by Cami [15] analyzed a dataset

consisting of 809 drug feature vectors (consisting of drug features

from DrugBank and PubChem) and proprietary data on the drug

side effect profiles. A unique aspect of the dataset is that the time

ordering of when specific side effects appeared is reported. Starting

with side effect profiles on the drugs from 2005, they trained a

logistic regression model that could predict the side effects that

manifested between 2006–2010, preserving the temporal order of

how they manifest. The preservation of the time-ordering of the

side effect appearance is appealing, but it is unclear how their

approach would generalize to a different dataset. Mizutani [16]

applied SCCA to find relationships between the drug-protein

interaction network of 658 drugs from DrugBank and 1368

proteins extracted from DrugBank and Matador [17] databases to

1339 side effects associations as found in SIDER [18]. They found

significant enrichment in most of the correlated protein-side effect

sets for proteins involved in the same KEGG [19] and Gene

Ontology biological pathways [20]. Similarly, Kuhn [21] con-

structed an explicit network to predict and characterize proteins

that cause side effects by drawing statistical inferences between

drug-target and drug-ADR links. Their method is able to reveal

causal relationships between targets and ADRs but is highly

sensitive to outliers. For instance, there was insufficient statistical

power to associate side effects to proteins that were an off-target of

only a small number of drugs.

Indeed, the main weakness of these QSAR-like studies is their

reliance on what is present in experimental data, which will tend to

feature a strong bias towards approved drugs (i.e. little represen-

tation of serious ADRs) and on-target or intended effects. It is

difficult to see how analysis of drug-intended target binding data

could be applied to explore correlations between off-target drug-

protein binding and possibly rare ADRs.

Recently, systems biology approaches have been used to predict

ADRs by viewing ADRs as perturbations of biological pathways.

These approaches seek to transcend the ‘‘one drug-one target’’

paradigm used in traditional drug design, which ignores system-

wide effects that cause a drug to have unforeseen pharmacological

effects [22]. Scheiber et al. [23] integrated several chemical and

biological databases by comparing perturbed and unperturbed

pathways in a set of compounds that have a common toxicity

phenotype. They use this analysis to link pathways with particular

ADRs. Huang and co-workers [24] combined clinical observation

data with drug-target data and the gene ontology (GO)

annotations of the target proteins to predict ADRs. They find a

significant improvement in the quality of their models by

incorporating features from the protein-protein interaction (PPI)

network of the targets. Similarly, Huang et al. [25] increased the

median AUCs of their support vector machine models from 0.591

to 0.700 by adding both PPI network and small molecule

structural features to their feature set.

In all of these cited cases, the efforts to solve the ADR prediction

problem have focused on integrating publicly available and (in

some cases proprietary) biological (e.g. physical and chemical small

molecule properties, drug-protein associations, protein-protein

interaction networks, biological pathway and gene annotations,

etc.) and epidemiological data on side effect-related health

outcomes (e.g. FDA package label data, clinical trial data) to

train statistical models to predict ADRs with various degrees for

success.

A key drawback of using experimental data is that the type and

quality of data that exists is influenced as much by the financial

limitations of experimental drug development as by the relevant

biological science. The drug-protein associations aggregated from

DrugBank and Matador can be represented as a Boolean matrix

where ‘1’s (‘0’s) would indicate the presence (absence) of an

association. This matrix has been used for some of the previous

efforts, as noted above, and is highly sparse with ‘0’s indicating

both negative results of assays and unperformed assays. ADR-

protein associations derived from these data limit us to patterns in

known, intended ‘‘on-target’’ associations and limit the ability to

find novel off-target associations. Also, data on lead compounds

that have failed in the development pipeline are typically regarded

as proprietary information and are generally unavailable for

inclusion in analysis. Clearly, the majority of publicly available

data is biased in ways which are difficult to correct.

An alternative approach is to leverage ever-growing databases

of high-resolution, experimentally-solved, protein structures, such

as the Protein Data Bank (PDB) [26], and use molecular modeling

to infer putative off-target interactions of drugs with known ADRs.

Technical advances in drug-protein binding modeling, protein

sequencing, and homology modeling allow high-throughput

virtual screening early in the drug discovery process. Vast libraries

of small molecules can be docked to a large array of protein

ADR Prediction Using Molecular Docking on High-Performance Computers
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structures in order to simultaneously predict putative drug targets

and ancillary off-target binding interactions that may have

associations to serious ADRs. Yang et al. [27] used virtual docking

to propose possible interactions between a set of 845 proteins and

a set of 162 drugs that induced at least one of four ADRs.

Lounkine et al. [28] predicted the activity of 656 marketed drugs

on 73 targets from the Novartis in vitro safety panel using the

similarity ensemble approach (SEA). This was not a true docking

study per se, in that SEA calculates the chemical similarity of each

drug with each of the native ligands of the 73 targets.

Two previous efforts, in particular, are similar to our current

study. First, Wallach and co-workers [29] applied multiple stages

of logistic regression to docking scores involving 730 drugs, 830

human protein targets and then applied multiple stages of logistic

regression to these data and data on 506 ADRs, producing 32

ADR-pathway associations supported by the scientific literature

(i.e. PubMed). Second, Xie et al. [30] developed a methodology

that identified 3D protein structures in the PDB that had similar

ligand binding sites to those of the primary targets of Cholesteryl

Ester Transferase Protein (CETP) inhibitors. Subsequently, they

applied molecular docking to help rank order the atomic-level

interactions of the drugs with the putative off-targets. This analysis

led to 204 structures with binding sites similar to CETP. This set of

off-targets was then integrated into a network that included

multiple metabolic signal transduction and gene regulation

pathway constituents, drugs, and clinical outcomes. From this

network, they were able to elucidate several ADRs known to be

associated with the CETP inhibitors: the negative effect of

Torcetrapib on blood pressure observed in Phase III clinical trials

and the increased death rates from infection and cancer.

These studies used the ‘‘first principles’’ approach to circumvent

the bias issues in experimental data outlined above, but none of

these previous efforts describe computational frameworks scalable

to the data sizes required for a high-accuracy, high-throughput

ADR screening panel for nascent compounds.

More recently, Reardon [31] reported on a computational effort

that uses publicly available profiles of 600,000 chemical com-

pounds and assesses their ability to bind to ,7000 chemical

pockets on 570 human proteins. The known expression profiles of

the proteins and receptors on human organs is then used to predict

where in the body a given drug will most likely have effects. While

these efforts certainly operate at the necessary scale, they do not

report a method to statistically associate the docking scores with

ADR phenotypes, which is precisely the goal of our work here.

Our working hypothesis is that it is valuable to predict ADRs as

early in the lead identification phase as possible. Structure-based,

high throughput, virtual screening is already widely applied in the

early stages of drug discovery because of its low cost and high

efficiency in identifying putative drug-candidate/drug-target

interactions. Molecular docking-based screening studies involve

fitting a large library of N small molecules into the active sites of M

target protein structures, to calculate estimates of binding affinities.

M and N can be quite large. Currently, the PDB has M.90 K

protein structures, increasing at a rate of over 7500 per year [26].

The combinatorics of the possible chemical structural space

occupied by small molecules is immense, i.e. N < 1060 possible

drug compounds [32].

These numbers, combined with the complexities of conforma-

tional sampling to find the best fit of the small molecule (i.e.
‘‘pose’’) in the target, and the computational cost of the scoring

function itself, make high-throughput ADR screening ideal for

high-performance computing.

Zhang et al. [33] implemented a mixed parallel scheme using

Message Passing Interface (MPI) and multithreading in a parallel

molecular docking program, called VinaLC, by modifying the

existing AutoDock Vina molecular docking program. One million

flexible docking calculations took about 1.4 hours to finish on

,15 K CPUs. The docking accuracy of VinaLC has been

validated against the DUD (Directory of Useful Decoys) database

[34] by the re-docking of X-ray ligands and an enrichment study.

The statistical results presented in their study [33] show VinaLC is

one of the better performing docking codes on the DUD set of

decoys/ligands, having a mean receiver operator characteristic

area-under the curve (ROC AUC) of 0.64 (95th CI: 0.60-0.68).

VinaLC identified 64.4% of the top scoring poses with an RMSD

under the 2.0 Å cutoff, while that for the best poses is 70.0%. For

the best poses, all the targets have RMSD values within 10 Å and

about half of the targets have RMSD values less than 1 Å. Overall,

the VinaLC docking program performed well for re-docking the

X-ray ligands back into the active site of the X-ray structures with

the default setting for the grid sizes and exhaustiveness = 8. To

improve the enrichment of the docking results, Zhang et al. [35]

have also developed a massively parallel virtual screening pipeline

using Molecular Mechanics/Generalized Born Surface Area

(MM/GBSA) rescoring and have shown improvements in the

docking benchmark AUC to 0.71, on average. Overall, the results

demonstrate that MM/GBSA rescoring has higher AUC values

and consistently better early recovery of actives than VinaLC

docking alone.

A significant fraction of these molecules (e.g. drugs approved by

regulatory agencies like the U.S. Food and Drug Administration)

are annotated with known associated ADRs in public databases,

such as SIDER. As in the prior work we cited, machine learning

methods can identify statistical associations between these ADR

outcomes and patterns in drug-protein binding as revealed by our

VinaLC docking scores. The results can be used to build predictive

models so the probabilities of certain ADRs can be predicted for a

nascent or theoretical small molecule drug candidate that may not

have undergone in vitro or clinical trial testing.

This study potentially provides a technological and methodo-

logical path forward to large-scale, high-throughput, in silico,

comprehensive ADR screening. Our results indicate that molec-

ular docking performed with sufficiently detailed docking models

on high performance computers (HPC) may provide reliable, cost-

effective, comprehensive high-throughput screening of a drug

candidate for binding across many known on- and off-targets to

predict clinically important ADRs.

Materials and Methods

Dataset creation
We extracted 4,020 Swiss-Prot protein knowledgebase UniProt

ID numbers (http://www.uniprot.org/) for proteins that were

identified as drug targets in DrugBank as of October 12, 2012

(http://www.drugbank.com/). Mappings to 587 experimental

structures in the Protein Data Bank (http://www.rcsb.org/pdb/)

(PDB) were obtained using the pdbtosp.txt file (Nov 2, 2013) from

http://www.uniprot.org/docs/pdbtosp which links PDB ID

numbers to UniProt IDs. A set of quality control rules were then

applied (Figure S1 in File S1) which further reduced the list of

proteins down to a final set of 409 experimental PDB structures. If

multiple structures were given for the same protein, structures

were selected by the following criteria in priority order: (1) human

species; (2) X-ray crystal structure; (3) higher structural resolution

(smaller Å). This set of PDBs included 33 structures belonging to

16 UniProt IDs that are a subset of a larger consensus in vitro
toxicity panel. This panel consists of 44 targets that were presented

as a minimum in vitro toxicology panel from a collaboration of
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four major pharmaceutical companies [6]. The structures of 906

FDA-approved small molecule compounds in SDF format were

obtained from the ‘‘Orange Book’’ of approved products [36].

Drugs that have more than 20 rotatable bonds were not included

because most of them are natural products. The 3D structures of

target proteins and the small molecule compounds were then

prepared for molecular docking calculations as described below.

A set of 85 side effects were selected from the SIDER database

(http://sideeffects.embl.de/; extracted on November 26, 2012)

because they were associated with high morbidity, high case

fatality ratio, and/or the need for extended hospitalization.

Individual side effects were grouped into higher-level health

outcome groupings to reduce noise and provide signals at the

organ or system level. Individual side effects were identified as

lowest level terms in the medical dictionary for regulatory activities

(MedDRA) [37]. Following the work of Huang and co-workers

[25], the side effects of interest were grouped into ten MedDRA-

defined system organ classes: (1) Neoplasms, benign, malignant,

and unspecified (‘‘neoplasms’’), (2) Blood and lymphatic system

disorders (‘‘bloodAndLymph’’), (3) Immune system disorders

(‘‘immuneSystem’’), (4) Endocrine disorders (‘‘endocrineDisor-

ders’’), (5) Psychiatric disorders (‘‘psychDisorders’’), (6) Cardiac

disorders (‘‘cardiacDisorders’’), (7) Vascular disorders (‘‘vascular-

Disorders’’), (8) Gastrointestinal disorders (‘‘gastroDisorders’’), (9)

Hepatobiliary disorders (‘‘hepatoDisorders’’), and (10) Renal and

urinary disorders (‘‘renalDisorders’’). A subset of 560 of the 906

compounds in our docking score set were found to have

associations to at least one of the 85 side effects we consider.

The complete list of side effects by organ class is presented in

Table S1 in File S1. We produce a 560610 drug-ADR matrix

where a ‘1’(‘0’) indicates the presence (absence) of one or more side

effects in the group.

At the end of the dataset creation stage, we have a total of 906

compounds (560 with ADR associations), 409 proteins, and 10

outcome groups, comprising 85 severe side effects.

In order to compare the ADR prediction capability of ‘‘off-

target’’ effects, obtained by the molecular docking calculations,

with that of experimentally derived ‘‘on-target’’ drug-protein

associations, a 560 drug6555 target protein association matrix was

extracted from DrugBank. More precisely, in order for a specific

protein to be in the list of 555 proteins, it must be identified as a

‘target’ in the DrugBank database of one or more of the 560 drugs

in our dataset. The matrix is boolean-valued where a ‘1’(‘0’)

indicates the presence (absence) of the association in DrugBank.

Drug-protein target molecular docking calculations using
VinaLC

The 409 target protein structures retrieved from the PDB were

processed for molecular docking calculations. The raw PDB files

were processed by our in-house Protein Function Prediction (PFP)

pipeline [38]. The structures of the protein targets were cleaned

and protonated. ‘‘Cleaning’’ was defined by the following:

alternate location ‘‘a’’ records for atoms were kept, and any

ligands (i.e. atoms designated as ‘HETATM’ after the TER record

in the PDB file that are not part of common ions) were deleted.

Molecular modeling software (Schrodinger Inc.) was used to

protonate the protein structure. In those cases where a known

catalytic site was identified, the centroid coordinates for the active

sites/binding sites of the protein targets were determined by

CatSId (Catalytic Site Identification) [39], otherwise, these sites

were determined by Sitemap [40]. A similarity to a known

catalytic site was identified in 83 cases. Cofactors, metals, and

crystallographic waters were removed from the protein structure

when performing the docking calculation [34], [41], [42], [43].

Missing residues in the active site were reconstructed. For

structures with residues having multiple positions, the first one

was used. These pre-treated protein target structures were further

processed by the in-house program, preReceptor [35]. The

program preReceptor provides interfaces to integrate several

external programs for target protein preparation. The preRecep-

tor program determines the dimensions of docking grids by

utilizing the DMS [44] and SPHGEN programs [45]. The DMS

program calculates the molecular surface of the target protein, and

the SPHGEN program fills the active site of the target protein with

non-overlapping spheres of uniform dimension. The dimensions of

the docking grid for each protein were determined by first finding

the distribution of spheres along the X, Y, and Z axes. The grid

boundaries were set to the location where the density of spheres

falls off drastically. In order to reduce the computer time, the

docking grid determination was limited to portions of the target

protein within 30 Å of the centroid of the active site (60 Å

maximum diameter) because binding pockets typically are less

than 40 Å in diameter. The dimensions of the docking grids and

centroid of active site were stored for the docking calculation in the

next step. The AMBER force field f99SB [46] was employed in the

calculations. Non-standard amino acids distant from the binding

site were converted to alanine. Otherwise, non-standard amino

acids were stored in the library, if present in the active site. [47].

The energy minimization of the protein target was carried out

using MM/GBSA [35] implemented in the Sander program of the

AMBER package [46]. The structures were minimized with

whole-protein heavy atom (i.e. all atoms that are not hydrogens)

constraints so the geometry of the active site remains unchanged.

The PDB files of energy-minimized protein structures were

converted to PDBQT files, which are used in the docking

procedure. During the conversion, the non-polar hydrogen atoms

are removed from the protein target structures. Parameters for

non-standard amino acids were calculated by the Antechamber

program from the AMBERTOOLS suite. The set of 906

approved drugs were processed by the in-house program,

preLigand [35]. Similar to the program preReceptor, the program

preLigand provides interfaces to integrate several external

programs for ligand preparation. All drug compounds were

parameterized using the AMBER GAFF force field as determined

by the Antechamber program in the Amber package [46]. Partial

charges of ligands were calculated using the AM1-BCC method.

The structures of ligands were energetically minimized by the

MM/GBSA [35] method implemented in Sander. The atomic

radii developed by Onufriev and coworkers [48] (AMBER input

parameter igb = 5) were chosen for all GB calculations [49]. Those

atoms with GB radii missing from the original program (i.e.
fluorine, using a GB radius of 1.47 Å) were added into the Sander

program. The PDB files of energy-minimized ligand structures

were converted to PDBQT files, which were used in the docking

procedure. As with the receptors, non-polar hydrogen atoms were

removed from the ligand structures. All these steps mentioned

above have been integrated into the preLigand program.

The VinaLC parallel docking program [33] was employed to

dock the 906 drug compounds into the 409 protein targets. In our

previous work [35], keeping 5–10 poses provided a good

compromise between accuracy and computational expense. For

each of the 9066409 = 370,554 individual drug-protein complex,

docking calculations, up to 20 poses were kept. The docking

calculations used the coordinates of centroids and dimensions of

active sites determined from the previous steps. The PDBQT files

for target proteins and compounds obtained from previous steps

were used as input files. The docking grid granularity was set to

0.333 Å. The exhaustiveness was set to 12, so that 12 Monte Carlo
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searches for docking poses were performed for each complex. The

whole calculation was finished within 1 hour on a high perfor-

mance computer at LLNL using ,15 K CPU cores. The top 20

docking poses were saved for each complex. The top docking score

of each complex was extracted from the docking results. A table of

docking scores for the 906 ligands6409 receptors, together with

the compound’s PubMed ID/name and protein PDB ID, was

saved in the CSV format for the statistical analysis described in the

following section. Finally, we constructed a virtual version of the

consensus toxicity-screening panel of 33 protein receptors. For this

smaller 560633 subset of scores, MM/GBSA [50–57] rescoring

calculations were performed on the VinaLC docking poses. To

achieve high throughput, molecular docking programs usually

employ less computationally intensive methods such as molecular

mechanics force-fields, empirical scoring functions, and/or

knowledge-based potentials [57]. The scoring functions often

simplify the calculation by neglecting important terms that are

known to influence the binding affinity, such as solvation, entropy,

receptor flexibility, etc [58,59]. A popular practice – that we

employ here – is to rescore top-ranking docking poses using the

more accurate, albeit computationally costly, MM/GBSA method

to overcome shortcomings in the docking scoring function [35].

The MM/GBSA method accounts for solvent and entropy effects

more accurately. Solvation effects, mainly contributed by water

molecules in biological systems, play a critical role in ligand

binding by providing bulk solvent stabilization and solute-

desolvation, increasing the entropic contribution with the release

of water molecules in the active site upon binding, and serving as

molecular bridges between the ligand and receptor [58].

The protein structures and docking co-complex structures are

downloadable at http://bbs.llnl.gov/data.html. The VinaLC

software package can be downloaded from http://bbs.llnl.gov/

tools.html.

Statistical analysis
The molecular docking calculations produced a 9066409 drug-

protein docking score matrix. A 5606409 subset was extracted,

where each of the 560 compounds has at least one side effect, as

reported in SIDER, for the 10 ADR groups we are considering.

Statistical analyses were performed on these data to train

predictive models of serious ADRs and characterize putative

ADR-protein associations. These analyses are outlined here.

For the analyses, four separate data matrices are considered: (A)

a 5606409 VinaLC drug-protein docking scores matrix (‘‘VinaLC

off-targets’’) and (B) a 5606555 DrugBank drug-target protein

association matrix (‘‘DrugBank on-targets’’). Matrix (A) is used to

train logistic regression models that allow off-target ADR-protein

correlations to be explored. Matrix (B) is used to train models on

‘‘on-target’’ drug-protein associations. The comparison of results

between matrices (A) and (B) enables comparisons to be made

between the relative predictive capabilities of intended target

proteins and off-targets across the different ADR groups. The 16

toxicity panel target proteins in isolation are considered; thus, we

also have (C) a 560616 docking score matrix which is a subset of

(A) and finally (D) a 560616 boolean matrix which is analogous to

(B), representing any drug-target associations reported in Drug-

Bank between the 560 compounds and the 16 proteins of the

toxicity panel. It is noted that the separate matrices (C) and (D) are

constructed for the same on-target/off-target comparison purpose

as matrices (A) and (B). Regarding the construction of the (C)

matrix, there were 33 structures for the 16 proteins. Thus, multiple

PDB structures that mapped to the same UniProt ID were

averaged over, so (C) and (D) matrices are conformable. We note

here that this was only done for the virtual toxicity panel. For the

main VinaLC docking score matrix (A), the scores for individual

PDB structures were mapped one-to-one to the relevant UniProt

ID for that protein. The elements in matrices (B) and (D) also

correspond to single UniProt IDs.

Next, we define thresholds so the docking scores in matrices (A)

and (C) can be used as a heuristic for drug-protein binding. Global

and protein-specific thresholds are defined. The raw docking score

itself is used as a continuous feature, and (given that more negative

scores correspond to stronger binding) additional thresholds are

defined such that a docking score below the threshold indicates

binding or, if above it, not binding. The docking score does not

correspond to an actual energy, and it is difficult to set a single

value for a threshold. Several thresholds are tried, letting the

quality of the models (as quantified by the AUC) determine the

best threshold for each ADR. For the VinaLC scores, ten feature

sets are used, based on different choices of threshold: (1) raw

docking scores, and then a series of global binding cutoffs: (2) -4.0,

(3) -6.0, (4) -8.0, (5) -10.0, and (6) -12.0. Four additional thresholds

based on protein-specific score percentiles were also defined: (7)

5th percentile, (8) 10th percentile, where the percentiles refer to

the docking scores across all 560 compounds for a given protein.

The last two thresholds were calculated by transforming the 560

docking scores for each protein into z-scores (i.e. transformed to

have zero mean and unit standard deviation). Thresholds of (9) 1

standard deviation (SD) below the mean score (as used in the

docking studies of Wallach and co-workers [29]) and (10) 2 SDs

below the mean are also used. For the 560616 virtual toxicology

panel, which used GBSA scores, the global thresholds were -15,

-20, -25, -30, and these can be interpreted as binding free energies.

Raw scores, protein-specific percentiles, and z-score thresholds are

used as features, analogous to the thresholds defined for the

VinaLC score matrix (A).

Logistic regression models were trained and selected through

10-fold cross-validation (CV) applied to the ten feature sets each

for the data matrices (A) and (C) and then for the Boolean matrices

(B) and (D). The training samples were labeled by the 560610

response matrix, consisting of the Boolean associations between

the 560 compounds and the ten ADR groups, leading to 22

separate CV runs in all.

The lasso penalty or L1 model regularization [60] is an effective

method for continuous variable selection in the regime where the

number of potential features is comparable to (or may actually

exceed) the number of training samples (i.e. p&n where p is the

number of potential predictor variables, and n is the number of

training samples). The L1 penalty term is proportional to the sum

of regression coefficients DbD that fall off faster than the b2 terms

used in L2 regularization for small values of beta, so the lasso

penalty is efficient at shrinking the betas to exactly zero, enabling

sparse solutions and thus greater interpretability. The sparseness

makes this method especially effective in the biological domain,

where frequently a much smaller subset of the features can explain

the phenotype or outcome. L1 logistic regression has been

successfully applied to single nucleotide polymorphism (SNP)

analysis [61], as well as previous ADR prediction studies [29].

The ADR prediction problem considered here can be

formalized as a case-control problem where a dichotomous

variable yki [ 0,1f g is defined for the i-th sample and k-th ADR

health outcome group with ‘1’ coding cases and ‘0’ indicating

controls. Given a feature vector for the i-th sample, ~xxi, the

probability for the k-th outcome is given by

p yki~1D~xxið Þ~ 1

1zexp { bk0z
~bbT

k
:~xxi

� �h i , ð1Þ
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where ~bbk~ bk1, . . . ,bkp

� �
is the parameter vector (and bk0 is the

intercept term) for the k-th outcome, and is typically estimated by

maximizing the log-likelihood function

L ~bbk

� �
~
Xn

i~1

yki ln pkiz 1{ykið Þ ln 1{pkið Þ½ �{l
Xp

j~1

Dbkj D, ð2Þ

where the second term in Eq. (2) is the lasso penalty.

The L1-regularized logistic regression was used as implemented

in the glmnet package of Friedman and co-workers [62] in the ‘R’

statistical programming environment. For each of the 10 ADR

outcome groups in turn, one-vs-all logistic regression was used

with 10-fold cross validation. During 10-fold cross validation, the

following was done simultaneously: the objective function (AUC)

was maximized, the model parameters in Eqs. (1) and (2) were

estimated, and the optimal L1 penalty parameter in Eq. (2) was

chosen as the one corresponding to the maximum median AUC.

Each 10-fold CV was repeated ten times to average over sampling

variability.

After 10-fold CV, for each of the four data matrices (A)–(D),

features with non-zero beta coefficients in the best median AUC

model were extracted. The statistical significance of putative

associations between the ADR groups and docking score matrix

protein features were calculated. Statistical significance of the

association for a putative ADR-protein pair was determined by the

following procedure: univariate p-values for each ADR-protein

pair were calculated using Fisher’s exact test if the protein feature

was dichotomous (i.e. associated with a binding threshold, or

DrugBank association). If the feature was continuous (i.e. the raw

docking scores), the Wilcoxon rank sum test was used. In addition

to p-values, we analyzed the false discovery rate (FDR) due to

multiple hypothesis testing. For the models associated with the

larger Vina off-targets matrix (A), we calculated q-values, using the

‘qvalue’ R-package of Storey [63], which gives us a way to manage

the high false discovery rate that can be associated with large

feature sets. For the smaller virtual toxicity MM/GBSA matrix

(C), the FDR was managed by applying a simple Bonferroni

correction [64] to the p-value.

The workflow just described, comprising data integration

between DrugBank, UniProt, PDB, and SIDER, as well as our

docking score calculations and subsequent statistical analyses, is

shown schematically in Figure 1. R scripts created and used for

these analyses can be downloaded from http://bbs.llnl.gov/data.

html.

PubMed text mining to find supportive evidence of
ADR-protein associations

PubMed database (http://www.ncbi.nlm.nih.gov/pubmed)

queries were used to search for evidence in the literature to

support putative ADR-protein relationships identified by the

statistical analyses of the VinaLC drug-protein docking matrix.

The protocol for searching the PubMed database was as follows: 1)

Queries for co-occurrences of the UniProt name of the protein and

the MedDRA lowest-level term (LLT) of each individual side effect

constituent of the ADR group were performed, 2) If the number of

hits returned was substantive (,10), or the quality of the hits was

high, then the association was triaged for manual review of the

PubMed results set. An example of a high-quality hit is the side

effect and the protein terms co-occurring in the title or abstract of

an article. ADR-protein associations that passed the manual

review process were deemed significant and included in Tables 1

and 2.

Results

The 560610 drug vs ADR group matrix (C) and the 5606409

drug vs protein docking score matrix (A) were used to train logistic

regression models using L1-regularization, which allows the model

to focus on high-information predictors and helps reduce over

fitting. Figure 2 presents the performance profile of our ADR

prediction models. For each ADR group, a ‘‘best model’’ was

chosen based on the median AUC score of a model obtained

during a single ten-fold cross-validation run. The quality of these

models was compared to models trained on the 560 drug6555

DrugBank on-target protein matrix (B), using the identical

statistical model training procedure that was applied to the

5606409 VinaLC off-target docking score matrix (A). Figure 2

also compares the performance profile of the docking score models

with that of the models trained on the DrugBank data. Across all

ADR groups, the range of the best model AUCs for the VinaLC

off-target models was 0.60–0.69. The corresponding AUC range

for the DrugBank on-target models was AUC = 0.61–0.74.

Focusing on single ADRs, the inter-quartile range of the VinaLC

off-target AUCs is above those of the DrugBank on-target models

for both ‘neoplasms’ and ‘vascularDisorders’ ADR groups. The

AUC distributions are not significantly different between the two

datasets for ‘immuneSystem’ and ‘bloodAndLymph’. The Drug-

Bank model AUCs were larger for these ADR groups: ‘psychDi-

sorders’, ‘endocrineDisorders’, ‘renalDisorders’, ‘hepatoDisor-

ders’, ‘gastroDisorders’, and ‘cardiacDisorders’. The difference in

AUCs implies the importance of the on-target binding contribu-

tions for the latter subset of ADRs.

The ability of docking score data to identify potential

associations between off-target drug-protein binding and individ-

ual side effects in the ADR groups was investigated. Additional

statistical analysis was performed on the VinaLC drug-protein

Figure 1. Data integration/analysis workflow scheme. The
UniProt IDs of 4,020 proteins identified in DrugBank as drug targets
were extracted. We obtained 409 experimental protein structures from
the Protein Data Bank (PDB) to be used as a virtual panel and docked
to 906 FDA-approved small molecule compounds using the VinaLC
docking code, run on a high-performance computing machine at LLNL.
560 compounds had side effect information in the SIDER database and
were used in subsequent statistical analysis to build logistic regression
models for ADR prediction.
doi:10.1371/journal.pone.0106298.g001
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docking score matrix and the logistic regression models to derive

associations between ADR groups and proteins. Only 21% (87 out

of 409) of the drug-protein binding features involve known protein

targets of the drug subset, providing a significant probe of off-

target effects. In Table 1, side-effect protein pair-wise associations

are shown rank-ordered in ascending order, according to that

feature’s p-value. For each entry we list the UniProt name and ID

of the drug-binding protein, the PDB ID for the protein target

used in docking, the p-value, the corresponding q-value to indicate

the FDR for that feature, and the beta coefficient in the ‘‘best’’

model. Furthermore, the variable selection capacity of L1-

regularization was employed, so that a protein feature must have

a non-zero beta coefficient in order to have been included in

Table 1. Finally, for inclusion in Table 1, the ADR-protein

association needed to pass the manual review of PubMed

evidence. In the last column of Table 1, the level of evidence

from PubMed that supports the ADR-protein correlations is

shown. For a specific putative ADR-protein entry in Table 1,

counts in parentheses show the number of papers found in

PubMed that contain the co-occurrence of (1) the MedDRA lowest

level term for a component individual side effect from the ADR

group and (2) the UniProt name for the protein.

The associations between the ten ADR groups and a subset of

the full VinaLC off-target docking score matrix (C) were

investigated. Models trained on a 560616 subset of the full

VinaLC docking score matrix (C) were compared to the models

trained on a 560616 DrugBank on-target subset matrix (D). The

docking calculations were refined using the more computationally

expensive and more chemically accurate MM/GBSA-correction

of the Vina score. The same logistic model training procedure

used on the larger predictor sets to train logistic regression models

was applied to these smaller matrices. The boxplots of the ‘‘best

model’’ AUCs for the screening panel models are shown in

Figure 3. Overall, the range of AUCs for the MM/GBSA ‘‘off-

target’’ version of the consensus panel (AUC = 0.55–0.65) and the

DrugBank ‘‘on-target’’ version (AUC = 0.58–0.69) of the panel

Table 1. Top-ranked ADR-protein associations derived from models built using the 5606409 docking score matrix.

UniProt Name UniProt ID PDB ID # p-value q-value beta UniProt protein-MedDRA side effect PubMed hits

Interstitial collagenase P03956 1hfc 0.004 0.531 2.348 breast neoplasm(158), adenocarcinoma(161), glioma(34),
basal cell carcinoma(22)

Tyrosine-protein kinase SYK P43405 1xbb 0.012 0.531 1.213 breast neoplasm(46), adenocarcinoma(11)

Peroxisome proliferator-activated
receptor alpha

Q07869 2znn 0.016 0.531 0.602 breast neoplasm(95), adenocarcinoma(146), glioma(25),
basal cell carcinoma(14)

Complement C3 P01024 2wy8 0.034 0.531 0.698 breast neoplasm(65), adenocarcinoma(136), glioma(21),
lung neoplasms malignant(12), basal cell carcinoma(7)

Cytotoxic T-lymphocyte protein 4 P16410 3osk 0.003 0.555 0.211 sarcoidosis(11), vasculitis(24)

Profilin-1 P07737 1fil 0.000 0.005 0.338 endocrine disorder(10)

Coagulation factor IX P00740 1edm 0.000 0.005 0.019 endocrine disorder(108), diabetes mellitus(48), thyroid
disorder(22), hyperthyroidism(11), hypothyroidism(10)

Interleukin-5 P05113 1hul 0.000 0.005 0.092 endocrine disorder(35), diabetes mellitus(19),
thyroid disorder(10)

Caspase-3 P42574 2dko 0.002 0.188 21.876 bipolar disorder(14), schizophrenia(31)

Integrin beta-2 P05107 2p26 0.020 1.000 20.886 cardiac arrest(11), cardiomyopathy(44),
myocardial infarction(46)

Interstitial collagenase P03956 1hfc 0.000 0.060 0.429 aneurysm(39), aortic aneurysm(31), arteriosclerosis(123)

Gelsolin P06396 2fh1 0.000 0.009 20.073 nephropathy(38), renal failure(12)

The docked protein responsible for the association with the ADR is identified in the first, second, and third columns, using the UniProt name and ID and the
corresponding PDB ID, respectively. Columns 4,5, and 6 give data on the statistical significance of the association with the p-value of the association, the associated false
discovery rate (q-value), and the corresponding beta coefficient in the median AUC logistic regression model. Column 7 is the PubMed results that confirm the drug-
protein or drug-side effect. The number of hits is shown in parentheses. Bold UniProt IDs are off-target proteins (i.e. not intended targets of the 732 drugs we consider).
doi:10.1371/journal.pone.0106298.t001

Table 2. ADR-protein association derived from models built using the 560616 GBSA-corrected virtual screening panel.

UniProt Name UniProt ID Corrected p-value ADR Group UniProt protein - MedDRA side effect PubMed hits

Amine oxidase [flavin-containing] A P21397 0.005 bloodAndLymph agranulocytosis(5)

Histamine H1 receptor P35367 0.007 bloodAndLymph agranulocytosis(10)

Beta-2 adrenergic receptor P07550 0.007 endocrineDisorders endocrine disorder(164), diabetes mellitus(98),
thyroid disorder(31), hyperthyroidism(19), hypothyroidism(16)

5-hydroxytryptamine receptor 1B P28222 0.007 endocrineDisorders endocrine disorder(15), diabetes mellitus(11)

Androgen receptor P10275 0.018 psychDisorders schizophrenia(18)

Prostaglandin G/H synthase 2 P35354 0.024 cardiacDisorders cardiac arrest(11), cardiomegaly(22), cardiomyopathy(91),
myocardial infarction(217), myocarditis(11)

doi:10.1371/journal.pone.0106298.t002
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indicate that the quality of the models are only marginally poorer

than those derived from the larger predictor set, but use a factor of

,26 fewer protein features, indicating they may have some value

in the drug development pipeline.

Across the ADR groups, the MM/GBSA and DrugBank virtual

panel model AUCs are similar for ‘immuneSystem’, ‘cardiacDi-

sorders’, ‘gastroDisorders’, ‘bloodAndLymph’, and ‘hepatoDisor-

ders’. The MM/GBSA-derived models for the ‘endocrineDisor-

ders’, ‘psychDisorders’, and ‘renalDisorders’ ADR groups are all

significantly worse than the corresponding DrugBank models.

Given the role of these 16 proteins in in vitro toxicity panels, it is

of interest to see what specific associations they may have with

specific side effects. Potential ADR-protein associations are shown

in Table 2, listed by UniProt name and ID. All potential ADR-

protein associations had to have a Bonferroni-corrected p-value

, 0.05 and a non-zero beta coefficient in the ‘‘best’’ logistic

regression model. Additionally, the associations had to pass the

same manual review process used for the associations listed in

Table 1.

Discussion

The major contribution of this work is a demonstration of the

feasibility to holistically treat the ADR prediction problem for

nascent drug compounds. Our methods treat the problem from

atomistic levels (i.e. drug-protein binding) all the way up to

prediction of clinical ADR phenotypes. We show, for our

particular set of 560 drugs, that using molecular docking scores

yields ADR prediction models comparable in quality (as evaluated

by AUCs) to models developed using publicly available, experi-

mentally-derived drug-protein associations. However, the AUCs,

for both docking scores and experimental data, are not of sufficient

quality for clinical prediction, and it is interesting to note the

quality is poorer for highly multi-factorial disorders (e.g. cardiac

disorders). As an example, for the virtual toxicity panel model

quality results shown in Figure 3, we can see that for psychological

disorders, the on-target relationships in the virtual panel yield a

model with AUCs close to 0.7, while the MM/GBSA-rescored

docking scores, emphasizing off-target effects, yield an AUC

slightly better than random (i.e. AUC = 0.5).

We first discuss some issues related to the molecular docking

score calculations. The accuracy of docking calculations [65] and

in particular, how to best account for explicit water placement

[58,59,66,67] and metal center interactions [68–70], remains an

open question outside the scope of this work. Our calculations

examine the binding of drug ligands to off-target proteins, where

typically little or no data exists to inform initial placement of water

molecules, metal ions, co-factors, or other hetero atoms. Protein

flexibility is yet another issue we neglect. Without a generally

accepted protocol to deal with all of these issues in an automated

fashion, we took the simplest approach and removed all water

molecules and co-crystallized ligands from the protein crystallo-

graphic structures in preparation for docking. The docking

calculations could be more accurate in the final poses and

estimated energies if explicit waters, metal ion chelation interac-

tions, and flexibility were explicitly addressed. However, despite

the shortcomings of the docking calculations, statistically distin-

guishable correlations between the docking results and ADRs are

still observed. We would expect that with improved binding

estimates, the statistical correlations should improve and that the

results from this work will motivate and justify similar efforts using

more sophisticated techniques for computing binding affinities.

As stated in the Methods section, several different binding

thresholds for the docking scores were tried. Both the VinaLC and

Figure 2. ADR prediction models using ‘Vina Off Targets’ and ‘DrugBank On-Targets’. Boxplots of median AUC results for one vs. all L1-
regularized logistic regression models trained using 10-fold cross-validation repeated ten times are shown. The individual models were trained on ten
different adverse drug reaction (ADR) groups: Vascular disorders ("Vascular disorders"), Neoplasms, benign, malignant, and unspecified ("Neoplasms"),
Immune system disorders ("Immune system disorders"), Blood and lymphatic systems disorders ("Blood and lymphatic disorders"), Psychiatric
disorders ("Psychiatric disorders"), Endocrine disorders ("Endocrine disorders"), Renal disorders ("Renal & urinary disorders"), Hepatobiliary disorders
("Liver disorders"), Gastrointestinal disorders ("Gastrointestinal disorders"), and Cardiac disorders ("Cardiac disorders"). Red boxes indicate models
trained on 5606409 VinaLC docking scores used as drug-protein binding features. Blue boxes indicate models trained on a 5606555 matrix
containing DrugBank drug-target protein associations. VinaLC off-target models had higher AUCs than DrugBank on-target models for the ‘‘Vascular
disorders’’ and ‘‘Neoplasms’’ ADR groups.
doi:10.1371/journal.pone.0106298.g002
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MMGBSA logistic regression model AUCs did not monotonically

vary with choice of thresholds, and there were no clear trends with

threshold choice. However, we did observe that in the ADR

groups with lower overall AUC values, the maximum AUC

among the different threshold values was, in some cases, only

greater than the second largest AUC by a few ,0.01. For ADR

groups with the best AUCs, the maximum AUC was often more

clearly differentiated from the AUCs of the other competing

threshold values.

Models trained to predict side effects in the ‘neoplasms’ and

‘vascularDisorders’ ADR groups on the full 5606409 VinaLC

docking score matrix (A) perform better than their DrugBank-

derived counterparts (B).

We identify several potential off-target ADR-protein associa-

tions that would be impossible to find using only binding data

between a drug and its intended protein targets (see Table 1).

Some of the more compelling associations found are described

below, along with supporting evidence from the literature. The

literature cited here may describe examples where biological

mechanisms are perturbed by drug binding to protein constituents

of pathways associated with the ADRs.

Interstitial collagenase (MMP1) with both neoplasms and
vascular disorders

Increased MMP-1 gene expression appears to be a biomarker

for cancer metastasis. Specifically, we find evidence for separate

constituents of the ‘neoplasms’ group: breast neoplasms [71],

adenocarcinoma [72], and glioma [73]. Interstitial collagenase also

seems to contribute to aneurysms. Specifically, cell distribution

differences of MMP-9 and the tissue inhibitor of MMP-1 in

patients with Kawasaki disease [74]. This work implicates

interaction of MMP-9 and MMP-1 with aneurysm formation in

Kawasaki disease.

Tyrosine kinase Syk with breast neoplasms and
adenocarcinomas

A possible mechanism of interaction may be a role in

suppression of breast cancer metastasis to lymph nodes [75], as

well as regulating cell-cell adhesion and motility [76]. Some data

suggest that Syk expression in the spleen may inversely correlate

with the proliferation and invasive capacity of breast cancer [77].

Syk acts as a pancreatic tumor suppressor in pancreatic

adenocarcinoma tumors, regulating cellular growth and invasion

[78].

Complement C3 with breast neoplasms
An analysis [79] of expression patterns for acute phase proteins

in breast, colorectal, and lung cancer indicate that the most

accurate candidate biomarker for breast cancer in their panel was

Complement 3 (C3) as used in a univariate logisitic regression

model (AUC = 0.89 and 73% correct classification performance in

leave one out cross-validation).

Cytotoxic T-lymphocyte protein 4 (CTLA-4) with
sarcoidosis

A case study [80] shows exacerbation of sarcoidosis in a

melanoma patient treated with anti-CTLA-4 monoclonal antibody

inhibitor ipilimumab. Another study [81] reports correlations of

specific CTLA-4 gene polymorphisms in sarcoidosis patients with

different disease phenotypes.

Profilin-1 with endocrine-related disorders
Profilin-1 expression is markedly elevated in the atherosclerotic

plaques of diabetics, showing a potential role in mediating

diabetic-related vascular endothelial cell dysfunction [82].

Figure 3. ADR prediction using a 16-protein virtual toxicity screening panel suggested by Bowes et al. [6]. Red boxes indicate models
trained on GBSA-corrected VinaLC docking scores while the blue boxes indicate models trained on DrugBank drug-target protein associations. The
boxplots comprise the distribution of median AUC scores after one vs. all L1-regularized logistic regression model training using 10-fold cross-
validation repeated ten times. The individual models were trained on ten different adverse drug reaction (ADR) groups: Neoplasms, benign,
malignant, and unspecified ("Neoplasms"), Immune system disorders ("Immune system disorders"), Cardiac disorders ("Cardiac disorders"),
Gastrointestinal disorders ("Gastrointestinal disorders"), Blood and lymphatic systems disorders ("Blood and lymphatic disorders"), Hepatobiliary
disorders ("Liver disorders"), Vascular disorders ("Vascular disorders"), Endocrine disorders ("Endocrine disorders"), Psychiatric disorders ("Psychiatric
disorders"), and Renal disorders ("Renal & urinary disorders").
doi:10.1371/journal.pone.0106298.g003
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Coagulation factor IX with thyroid disorders
A meta-analysis [83] looked at 29 trials and 11 studies and

concludes that subclinical hyperthyrodism induces a pro-throm-

botic state. More precisely, thyrotoxicosis shifts balance to a pro-

coagulant/hypofibrinolytic state.

Caspase-3 with bipolar disorder and schizophrenia
Some papers hypothesize that enhanced cellular apoptosis is a

disease mechanism in neurodegenerative diseases. A postmortem

study on bipolar disorder patients shows significant increases in

pro-apoptotic factors (inc. Bax, BAD, caspase-9 and caspase-3)

[84]. A population of anti-psychotic medicine-naive first-episode

schizophrenia patients show higher caspase-3 activity and lower

BCL2 expression [85].

Integrin beta-2 and myocardial infarction
Studies have shown integrin and monocyte migration are

associated with ischemic myocardium. A study [86] that

performed flow cytometry-based whole-blood assays in 87 patients

with unstable angina finds that beta-2 integrin mediated T-cell

recruitment in coronary plaques identifies high-risk patients with

severe coronary artery disease but no myocardial infarction and is

predictive of future cardiovascular events, even in the absence of

myocardium damage markers like troponin or high-sensitivity C-

reactive protein.

We also find ADR-protein associations for the 16-protein

consensus panel. The protein targets are included in panels used

by major pharmaceutical companies for in vitro screening of

ADRs for drugs in the development pipeline. Our results provide a

rationale, founded on independent calculations, for their inclusion

in the panel based on side effect phenotypes for which they probe.

Potential ADR-protein associations, supported by some level of

evidence in PubMed, are listed in Table 2. Among them, we

found a correlation between agranulocytosis and the histamine H1

receptor (an example is the drug clozapine an H4-receptor agonist

with some H1 activity) [87]. Also, a number of cardiac-related side

effects were associated with Prostaglandin G/H synthase 2

(Cyclooxygenase 2), in particular ‘myocardial infarction’ which

yielded 217 PubMed hits.

Using molecular docking scores for drug-protein matrices has

advantages over other approaches to predict association of off-

target effects. Molecular docking is an approach based on a

physics-derived force field, such that only the structure of the drug

and the protein are necessary. Not surprisingly, the docking

approach does not have as strong a dependence on the availability

of drug-protein correlations in manually curated biological or

chemical databases (which are biased toward intended, on-target

effects), though these data can be integrated into our type of

analyses as well. Experimental drug-protein association matrices

are extremely sparse, i.e. there are large areas of the drug 6
protein matrix that are unexplored by in vitro assays or clinical

trials. In contrast, the docking calculations enable an exhaustive

probing of binding associations through the entire drug 6protein

matrix, allowing the exploration of unintended (i.e. off-target)

interactions that may not have been previously experimentally

investigated during drug development. Thus, docking scores

provide a direct way to probe off-target effects.

Here we compare our work to previous efforts that have applied

molecular docking to study ADR-protein correlations. A recent

large-scale drug-protein docking exercise was described by Rear-

don [31], but this effort had a different goal than our study. While

the work outlined in [31] appears to focus on a highly automated

method where structures are prepared and docked in a bulk

fashion, we have chosen to initially focus on a smaller group of

drug-protein interactions, hand-curating the initial docking

structures, so the quality of the drug-protein binding is sufficiently

high that we can link to ADR outcomes downstream of docking.

In [31], it appears that no attempt, beyond identifying the tissue

tropism of the receptors used in docking, is made to correlate the

results of docking to ADR phenotypes. The work of Wallach et al.
[29] bears some similarities to our work, and here we list some of

the major differences between the two efforts. Specifically, we: 1)

use q-values to correct for multiple hypothesis testing, which has

been previously shown to indicate ‘‘interesting’’ protein-side effect

correlations [21], 2) focus on proteins rather than pathways and on

only on a small set of serious ADRs, 3) consider multiple binding

thresholds for binding, in addition to one standard deviation above

the mean of the z-scored docking scores used by Wallach et al., 4)

compare model performance across ADRs (thru AUC), where the

work in [29] is focused on ADR-pathway associations, and 5) are

interested in ADR prediction using the docking scores. Although,

Wallach et al. also use L1-regularization to mitigate over-fitting,

our lambda parameter is chosen through 10-fold cross-validation,

while their lambda parameter seems to have been arbitrarily

chosen to be one-half the value needed to suppress all beta

coefficients to zero. They do not appear to discuss the associations

they produce in quantitative terms (e.g. AUCs of the models, p-

values of the associations). Also, their study treats each side effect

individually, which may lead to bad class imbalances with more

rare ADRs, a common problem in QSAR studies. We mitigate

this issue by classifying ADR phenotypes into groups.

Another study similar to ours is the work of Xie and co-workers

[30]. As in our study, they utilized an algorithmic approach to find

previously unidentified binding sites on putative target proteins.

They then applied a serial version of AutoDock to characterize

interactions between drugs and off-target proteins and evaluate the

viability of the proteins as off-targets. These data were then

combined with pre-existing data in the biological/medical

literature to place their findings into a larger context. That is

where the similarities end. The main focus of [30] was to deduce

ADR mechanisms for a single class of drugs (i.e. CETP inhibitors).

Candidates for off-targets were limited to those proteins that had

binding sites with a high-degree of similarity to the CETP binding

site. The focus for our study was not a careful, detailed study of a

particular system, but rather the development of a general tool

that can look across multiple drug classes and a heterogeneous

mixture of off-target proteins. Our methods provide a way to

obtain correlations between the molecular details of docking and

several clinical phenotype groups of ADRs going across several

organ systems. The work of Xie et al. also provides linkages to

ADR phenotypes, but spends much more effort at understanding

the mechanistic details of ‘‘meso-scale’’ biological pathways, and

how they bridge the binding event to downstream signaling and

gene regulation events that may be the actual causative factors that

give rise to CETP inhibitor-relevant ADRs. This detailed work

must be done to achieve true understanding of how a drug causes

an ADR. Their approach may offer a possible template for how to

integrate docking studies with systems biology approaches, but it is

difficult to see how one could scale-up their approach to a more

general-purpose ADR-protein correlation tool such as ours.

Combining multiple off-target effects at the pathway level would

be a worthwhile improvement to our methodology.

The limitations of our method can be categorized into two

areas: 1) molecular docking and 2) ADR phenotypes. For

molecular docking to be a feasible method for predicting ‘‘off-

target’’ associations, the execution of the docking needs to be fast

and reliable. Our implementation of the well-vetted Vina docking

program, VinaLC, has been optimized for HPC and has been
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benchmarked with known limitations (e.g. metalloproteins) [33].

We noted the inherent biases in the QSAR-like studies given their

reliance on experimental data derived from approved drugs. While

the molecular docking study advocated here does not suffer the

same bias towards approved drugs, the docking methods are

heavily biased toward proteins that have available 3D structures,

which restricts these molecular docking to ,50% of the human

proteome, as estimated by Xie et al. [30]. In addition, of the 3D

structures that are available, we are still limited by the number of

target proteins associated with relevant side effects. Unfortunately,

the missing cohort of proteins will be highly enriched with some of

the more important classes for ADRs, namely membrane-bound

receptor proteins. With the growing number of protein crystal

structures and the higher quality homology models, the availability

of quality 3D protein structures is growing each year. In principle

the docking score technology and statistical analyses methodology

can scale to large numbers, but the actual scaling behavior has yet

to be characterized. As new proteins and new drugs are added to

our calculations, we would expect quadratic scaling in the drug 6
protein matrix. The machine learning algorithms used to learn

statistical correlations from this data should scale as a higher-

degree polynomial of the number of training samples, i.e. docking

profile of a drug. The benefit of using an HPC platform is that the

effects of non-linear scaling can be addressed by the allocation of

additional compute nodes and processors. Investigation of the

actual scaling behavior with increasing data set size and increasing

number of CPUs remains to be done as future work.

For ADR phenotypes, we are currently limited by the

availability of clinical data on ADR phenotypes linked to drugs.

In addition, publicly available ADR outcomes data will always be

biased toward approved drugs. Our results point to the

importance of the target proteins, which might not be known for

nascent compounds. The known or intended targets appear to be

important for ADRs associated with major organ systems (e.g.
renal, hepatic, and cardiac). Results of the toxicity panel analysis

indicate that even at the MM/GBSA level, we need to improve

the drug-target interaction estimates, as shown by the poor

performing median AUCs for the ADR groups endocrine,

psychiatric, and renal. Also, the minimal "comprehensive" set of

proteins needed to obtain high-quality ADR prediction models is

unknown. As more proteins and pathways are associated with

ADR phenotypes, the minimal comprehensive set will be soon be

obtained.

Limitations associated with the way putative ADR-protein

associations are corroborated with literature studies may also exist.

Biological terms are used ambiguously in the literature. Our intent

was to find a well-defined (i.e. UniProt names for proteins and

MedDRA lowest-level terms for side effects), standardized way to

see a preponderance of papers (e.g. more than 10) in the literature,

where a sample could be obtained and examined manually for the

quality of the correlation. In no way are we reporting exhaustive

numbers of papers that contain a particular putative ADR-protein

correlation in PubMed. Any other approach (e.g. stemming the

terms) would also have some ambiguity associated with it.

Conclusions

We have shown in this study that molecular docking may enable

reliable, cost-effective, comprehensive, high-throughput screening

of a drug candidate for binding across many known targets to

provide predictions of clinically important ADRs. We introduce a

first principles approach to in silico ADR prediction for drug

compounds that leverages physics-based models and HPC by

docking 560 small molecule drugs to 409 structures of identified

DrugBank protein targets. Only 21% (87 out of 409) of the drug-

protein binding features involve known targets of the drug subset,

providing a significant probe of off-target effects. The median

AUCs obtained during 10-fold cross-validation were comparable

between the VinaLC off-target models (AUC = 0.60–0.69) and the

DrugBank on-target models (AUC = 0.61–0.74) across the ten

ADR groups. Most importantly, the VinaLC off-target model out

performed the DrugBank on-target model for predicting two ADR

groups, neoplasms and vascularDisorders. We further investigated

the associations between the ten ADR groups and a consensus

subset of 16 proteins used in early-stage in vitro toxicity screening

panels. The analysis identified several putative ADR-protein

associations. Successful PubMed queries found published results

in support of these putative ADR-protein associations. For

example, several associations between neoplasm-related ADRs

and known tumor suppressor (Syk) and tumor invasiveness marker

(MMP-1 and C3) proteins are found. Many of these associations

involve off-target proteins and would not have been found using

only the available drug-target data. Thus, increasing the reliability

of the drug-protein binding calculations and increasing the protein

target set to include more proteins outside the known protein

targets in DrugBank should identify additional off-target proteins

that are associated with possible ADRs. This predictive compu-

tational platform would be advantageous during drug develop-

ment to predict ADRs of drug candidates such that candidates

could be dropped or redesigned at an earlier stage.
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