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Abstract

Xenon (Xe) is a noble gas that has been developed for use in people as an inhalational anesthestic and a diagnostic imaging
agent. Xe inhibits glutamatergic N-methyl-D-aspartate (NMDA) receptors involved in learning and memory and can affect
synaptic plasticity in the amygdala and hippocampus, two brain areas known to play a role in fear conditioning models of
post-traumatic stress disorder (PTSD). Because glutamate receptors also have been shown to play a role in fear memory
reconsolidation – a state in which recalled memories become susceptible to modification – we examined whether Xe
administered after fear memory reactivation could affect subsequent expression of fear-like behavior (freezing) in rats. Male
Sprague-Dawley rats were trained for contextual and cued fear conditioning and the effects of inhaled Xe (25%, 1 hr) on
fear memory reconsolidation were tested using conditioned freezing measured days or weeks after reactivation/Xe
administration. Xe administration immediately after fear memory reactivation significantly reduced conditioned freezing
when tested 48 h, 96 h or 18 d after reactivation/Xe administration. Xe did not affect freezing when treatment was delayed
until 2 h after reactivation or when administered in the absence of fear memory reactivation. These data suggest that Xe
substantially and persistently inhibits memory reconsolidation in a reactivation and time-dependent manner, that it could
be used as a new research tool to characterize reconsolidation and other memory processes, and that it could be developed
to treat people with PTSD and other disorders related to emotional memory.
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Introduction

Mitigation of persistent, intrusive, traumatic memories experi-

enced by people with post-traumatic stress disorder (PTSD)

remains a key therapeutic challenge [1]. Behavioral treatments

such as extinction training – administered alone or in combination

with cognitive-enhancing drugs (e.g. d-cycloserine) – attempt to

inhibit underlying traumatic memories by facilitating a new set of

learning contingencies, but often achieve limited success [2].

Another learning and memory phenomenon known as reconso-

lidation, a process by which reactivated (retrieved) memories

temporarily enter a labile state (the reconsolidation window), has

been studied to determine whether drug or behavioral interven-

tions can prevent a traumatic memory trace from being re-

incorporated back into the neural engram, inhibiting the memory

[3–6]. Several chemical agents have been found to inhibit fear

memory reconsolidation in animals [7] but unfortunately do not

translate well to humans, limiting their clinical use. They either are

toxic (e.g. protein synthesis inhibitors), induce unwanted side

effects, are slow acting such that brain drug concentrations peak

outside of the reconsolidation window, or are slowly eliminated

such that they interfere with later onset memory processes

including extinction [8]. A recent human study documented that

a single electroconvulsive therapy (ECT) treatment administered

to unipolar depressed subjects immediately after emotional

memory reactivation disrupted reconsolidation, confirming that

reconsolidation occurs in humans and that it can be inhibited by a

brief treatment [9]. While ECT is indicated for therapeutic use in

people with treatment-resistant major depression, it may not be a

viable treatment for other clinical populations. Thus, there is a

significant unmet need for a minimally invasive, safe and well-

tolerated treatment that can be used clinically to inhibit fear

memory reconsolidation in people with PTSD.

The noble gas xenon (Xe) inhibits glutamatergic N-methyl-D-

aspartate (NMDA) receptors [10] known to play a role in memory

reconsolidation [11]. Xe reduces NMDA-mediated synaptic

currents and neuronal plasticity in the basolateral amygdala and

CA1 region of the hippocampus [12,13]; these brain areas are

involved in Pavlovian fear conditioning, an animal model of PTSD

used to elucidate learning and memory processes, including

reconsolidation [14–16]. Xe already is used in humans at high

concentration (.50%) as an anesthetic and at subsedative
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concentration (28%) as a diagnostic imaging agent; in both

applications, Xe has excellent safety/side effect profiles and is well

tolerated [17–19]. Further, NMDA receptor glycine antagonists

like Xe [10] do not appear to have significant abuse liability and

do not induce psychosis [20,21], consistent with clinical experience

[18,19]. Thus, Xe has a number of favorable properties that might

be beneficial for treating fear memory disorders. As fear memory

reconsolidation is an ‘‘evolutionarily conserved memory-update

mechanism’’ [5], we evaluated in rats whether administering a

subsedative concentration of Xe (maximum concentration 25%,

1 h) via inhalation following conditioned fear memory reactivation

could reduce subsequent expression of fear-like behavior. Here, we

report that Xe impaired reconsolidation of fear memory demon-

strated as a reduction in conditioned freezing, a behavioral

readout used to measure fear in animals.

Methods and Materials

Experimental subjects
Male Sprague-Dawley rats (Charles River; Raleigh, NC)

weighing 350–375 g were pair-housed in plastic Nalgene rat cages

and acclimated to the main animal vivarium for two weeks before

being randomly assigned to different treatment groups (below).

Rats were maintained on 12/12 h light dark cycles and food and

water were provided ad libitum. Experiments were performed

from 10 a.m. to 3 p.m. All animal handling was limited to the time

required to transport and place animals in the fear-conditioning

chambers and air/xenon exposure chambers (i.e., no pre-study

handling acclimation was used). The sample size was determined

in concordance with our previous work examining reconsolidation

mechanisms using the conditioned- freezing behavioral assay [22].

All animal procedures were approved by McLean Hospital’s

Institutional Animal Care and Use Committee (Office of

Laboratory Animal Welfare Assurance number A3685–01) in

accordance with the National Institute of Health Guide for the
Care and Use of Laboratory Animals (8th Edition).

Fear-conditioning apparatus
Conditioning and testing were conducted in four identical

1969614 cm Plexiglas behavioral chambers contained in a

sound-attenuating cubicle (Med-Associates, Georgia VT). On the

training day, rats were placed in chambers and after 2 min

received two pairings of a 30 s, 5 kHz, 75 dB tone (conditioned

stimulus; CS) co-terminating with a 0.6 mA, 0.5 s footshock

(unconditioned stimulus; US) delivered through the floorbars of

the chamber. Shock reactivity (cage movement in response to

shock delivery) was measured after each training trial by an

accelerometer at the base of the cage. Accelerometer analog

output was amplified and digitized on a scale of 0–20 units by an

analog-to-digital card interfaced with a PC computer (Med-

Associates). Animals with shock reactivity levels ,3 units (aver-

aged across two training trials) were excluded as this can be used as

an indicator of the strength of conditioning (i.e. weak shock

reactivity) [23]; a total of 5 out of 99 animals were excluded based

on this criteria. The intertrial interval of CS-US pairings was 30 s.

After an additional 30 s in the chamber, animals were returned to

their home cages. Memory was reactivated (Reactivation) 24 h

after training by returning animals to testing chambers and after

2 min animals were exposed to the tone CS (5 kHz, 75 dB) for

60 s. Post-reactivation long-term memory (PR-LTM) was subse-

quently probed at 48 h (PR-LTM1), 96 h (PR-LTM2) or 18 d

(PR-LTM3) using Reactivation day procedures. Freezing behavior

was video-recorded on each day and scored by an experimenter

blind to treatment conditions. Percent freezing was calculated as

Figure 1. Xenon- (Xe) and oxygen (O2) gas concentration time course averaged across all exposures in this study. Percent Xe reflects
exposure chamber atmospheric Xe concentration along with oxygen (maintained at 20.9%) and balanced with nitrogen. The rate of Xe delivery was
approximately 2.5 liters per minute (supplied as 100% Xe from an external tank) and continuously mixed with chamber atmosphere by circulating
fans to reach a maximum preset concentration of 25%. Data included in the figure are from 14 total Xe exposures (Fig. 2B &C, n = 3 runs; Fig. 2D & E,
n = 3 runs; Fig. 2F & G, n = 2 runs; Fig. 3 B & C, n = 3 runs after Reactivation test and 3 runs after PR-LTM1). Data are shown as mean 6 s.e.m.
doi:10.1371/journal.pone.0106189.g001
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Figure 2. Xenon exposure impairs reconsolidation and reduces conditioned freezing in a reactivation- and time-dependent
manner. (A) Schematic of the experimental design. Twenty-four h after fear conditioning, fear memories either were or were not reactivated and rats
were exposed either to Xe (25%) or Air for 1 h beginning either immediately or after a 2 h delay. An additional control group housed in the regular
main rat vivarium (Normal exposure) also was included in some studies to control for any potential effects of housing in the exposure chambers. Post-
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the % total time that animals remained immobile (frozen), other

than breathing, during the first 2 min of re-exposure to the

chamber (Context) and during 60 s CS presentation (Tone).

Xenon exposure apparatus
A custom-built system (Air Products and Chemicals, Inc.;

Bethlehem, PA – APCI) was used to expose animals to 25% xenon

(Xe) gas (Praxair, Inc.; Danbury, CT). The apparatus consisted of

a 30624616 in. sealable Plexiglas chamber capable of housing

two modified Nalgene rat cages (perforated along all sides to

facilitate gas exchange) for exposure of up to four rats at a time (2

rats/cage). The delivery (rate and concentration) both of Xe and

supplemental oxygen (as needed to maintain 20.9% concentration;

Figure 1) was regulated by PC-interfaced mass-flow controllers

using custom-designed software (APCI). Xenon, oxygen, carbon

dioxide, pressure, temperature and humidity were all monitored

by sensors in the system and compensated as needed by the

internal control system and supporting equipment to maintain set

levels. An identical system was used for air exposures except that

only normal room air was supplied. Both the Xe and air-exposure

apparatuses were located in a dedicated animal quarantine bay

apart from the main vivarium but maintained under the same

environmental conditions.

Experimental procedures
After two-weeks acclimation in the main vivarium, pairs of rats

either were left in the rat housing room (Normal exposure group)

or re-located to the Xe (Xenon group) or Air (Air group) chambers

for further acclimation (1 week) to experimental-housing settings.

Rats then were trained for contextual and cued fear conditioning

using procedures adapted from Phillips and LeDoux [24].

Accordingly, this allowed us to evaluate the expression of

conditioned freezing in the presence of a conditioned stimulus

(CS, a tone) and the context (the conditioning/test chamber)

present during the training (CS pairing with shock, the uncondi-

tioned stimulus; US), and to examine effects of Xe administered

after memory reactivation on both components (freezing to

context and tone).

The timeline of procedures used for fear conditioning, testing

and Xe exposure is illustrated in Figures 2A & 3A. On Day 1,

rats were fear conditioned as described above. Twenty-four hours

later, immediately following reactivation testing, animals either

were placed in Xe or Air-exposure chambers, lids were sealed, and

animals were exposed to Xe (25%) or room air for 1 h. After 1 h,

Xe was completely scavenged by the Xe-exposure system and

chamber lids were opened to normal room air exposure for the

duration of the study.

A second set of animals was trained as described above but did

not receive a reactivation test 24 h later. Instead, at this time-

point, animals were exposed either to 25% Xe or Air for 1 h to

determine whether Xe must be paired with memory reactivation

for it to affect memory reconsolidation.

A third set of animals was trained as described above,

underwent reactivation 24 hours later, and were exposed either

to 25% Xe or Air (1 h, both types of exposure) beginning 2 h after

the reactivation test, to determine whether delayed Xe exposure

affected freezing at PR-LTM1 and PR-LTM2.

A fourth set of animals was trained as described above and

exposed either to 25% Xe or Air for 1 h twice; immediately after

reactivation and again after reactivation during PR-LTM1 testing,

to determine whether multiple Xe exposures enhance reconsolida-

tion blockade.

Statistics
Two-way ANOVAs for treatment group (between-subjects)6test

day (within-subjects) comparisons were performed. Comparisons

between treatment groups for the PR-LTM3 test day (long term test

for spontaneous recovery), in a subset of animals, were performed

using one-way ANOVA. For measurements yielding significant

main effect, subsequent multiple pairwise comparisons were made

using Dunn’s test. All reported t tests are two-sided measures.

Results

Rats exposed to Xe (25%, 1 h) immediately after fear memory

reactivation exhibited a significant reduction of freezing when

tested 48 and 96 h after reactivation (PR-LTM1 and PR-LTM2,

respectively) compared to air-exposed controls (Fig. 2B & 2C).

Main effects: context alone (treatment group: F2,27 = 6.31,

P = 0.006; test day: F2,54 = 10.41, P = 0.0001; interaction:

F4,54 = 4.99, P = 0.002); context + tone (treatment group:

F2,27 = 3.27, P = 0.05; test day: F2,54 = 4.41, P = 0.02; interaction:

F4,54 = 2.63, P = 0.04). Xe-exposed rats exhibited a trend for

reduced freezing in the context + tone condition 48 h after

reactivation (P = 0.06 compared to Air-exposure; P = 0.02 com-

pared to main vivarium (Normal)- exposure); the reduction

attained statistical significance versus Air-exposed controls when

reassessed 96 h after reactivation (i.e. at PR-LTM2; Fig. 2C). In a

separate cohort treated identically to the first cohort up through

the PR-LTM1 test, the Xe effect on freezing to the context alone

finding was replicated while Xe significantly reduced freezing to

the context + tone at the first post-reactivation test (PR-LTM1;

Fig. 3B & 3C). When all observations of Xe effects on freezing at

PR-LTM1 were pooled from these two independent experiments

(Air-exposure, n = 20; Xe-exposure, n = 21) there was a highly

significant reduction in freezing both to context alone (t39 = 4.63,

P,0.0001) and context + tone (t39 = 2.16, P,0.01) compared to

air-exposed controls. Freezing at PR-LTM1 and PR-LTM2 did

not significantly differ.

In order to examine whether the amnestic effects of xenon were

long-lasting, a subset of animals from each treatment group was

further tested 18 days after the Reactivation test. On this test day

(PR-LTM3), freezing both to the context alone and to context +
tone was significantly reduced in Xe-exposed rats compared to

control groups, indicating a lack of spontaneous recovery of the

fear memory over time. Main effects: context alone (treatment

group: F2,16 = 3.76, P = 0.04); context + tone (treatment group:

F2,16 = 10.93, P = 0.001).

Figure 2D & E show that post-reactivation freezing to

context alone and context + tone (respectively) in rats that were

exposed to Xe but that did not receive a Reactivation test was

not significantly different from controls (no significant main

reactivation long-term memory (PR-LTM) was subsequently probed 48 h (PR-LTM1) and 96 h (PR-LTM2) later. A subset of rats (n = 6–7/group) were
further tested for spontaneous recovery of freezing by testing 18 d after Reactivation (PR-LTM3). (B & C) Percent freezing to context alone and
context + tone (respectively) in animals exposed to Xe (25%) or Air immediately after Reactivation. **P,0.005; *P,0.05 compared to Air exposure.
Normal exposure, n = 8; Air exposure, n = 11; Xe exposure, n = 11. (D & E) Percent freezing to context alone and context + tone in rats not receiving a
Reactivation test. Normal exposure, n = 8; Air exposure, n = 11; Xe exposure, n = 11. (F & G) Percent freezing to context alone and context + tone in
rats exposed either to Xe (25%) or Air beginning 2 h after Reactivation. Air exposure, n = 7; Xe exposure, n = 8. Data are shown as mean 6 s.e.m.
doi:10.1371/journal.pone.0106189.g002
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effects). Figure 2F & G show that post-reactivation freezing to

context alone and context + tone (respectively) in rats exposed to

Xe 2 h after Reactivation was not significantly different from

controls (no significant treatment effects). Together, these data

indicate that Xe was only effective at reducing long-term

expression of freezing when administered in conjunction with

memory reactivation and within the putative reconsolidation

window.

Figure 3B & C show that multiple Xe exposures after fear

memory reactivations do not further enhance the amnestic effects

of Xe on conditioned freezing. Main effects: Percent freezing to

context alone (treatment group: F1,17 = 14.9, P = 0.001; test day:

F2,34 = 25.1, P,0.0001; interaction: F2,34 = 20.1, P,0.0001);

Figure 3. Multiple Xe exposures after fear memory reactivations do not enhance amnestic effects on conditioned freezing. (A)
Schematic of the experimental design for multiple Xe-exposure treatment. In addition to administering Xe (25%) or Air for 1 h after Reactivation,
animals were exposed a second time to Xe (25%) or Air for 1 h immediately after PR-LTM1 and freezing was again probed 48 h later, (PR-LTM2). (B &
C) Percent freezing to context alone and context + tone (respectively) in animals exposed to Xe (25%) or Air for 1 hr immediately after Reactivation
and PR-LTM1. (D & E) Normalized freezing data to context and tone. Data are expressed as % differences from the first Reactivation test day in order
to compare the effects of multiple Xe exposures. A second Xe exposure did not alter freezing either to context alone or context + tone at PR-LTM2
compared to PR-LTM1. ***P,0.0005; **P,0.005; *P,0.05; Air–1 exposure, n = 11; Air–2 exposures, n = 9; Xe–1 exposure, n = 11; Xe–2 exposures,
n = 10. Data are shown as mean 6 s.e.m.
doi:10.1371/journal.pone.0106189.g003
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percent freezing to context + tone (treatment group: F1,17 = 3.6,

P = 0.07; test day: F2,34 = 6.9, P = 0.003; interaction: F2,34 = 4.2,

P = 0.02). Figure 3D & E show normalized freezing data to

context alone and context + tone. Data are expressed as %

differences from the first Reactivation test day in order to compare

the effects of multiple Xe exposures. As shown, a second Xe

exposure did not alter freezing either to context alone or context +
tone at PR-LTM2 compared to PR-LTM1 (no significant

differences between PR-LTM1 and PR-LTM2).

Discussion

Here, we report for the first time, that inhaled administration of

a subsedative concentration of Xe gas substantially and persistently

inhibits a long-term fear memory, but only after memory

reactivation and when administered within the putative reconso-

lidation window [25]. NMDA receptor dynamics appear to play

key roles in both the destabilization and reconsolidation of

memory [11,26,27] and Xe’s rapid inhibition of these receptors

post-reactivation could mediate the effects we observed. Xe

directly reduces NMDA-mediated synaptic currents and affects

neuronal plasticity in the basolateral amygdala and CA1 region of

the hippocampus [12,13], brain areas known to play a role in fear

conditioning and which have been implicated in the pathophys-

iology of PTSD [28,29]. Xe also may indirectly reduce NMDA

receptor function by inhibiting the enzyme tissue plasminogen

activator (tPA) [30]. tPA increases NMDA receptor activity by

proteolytically cleaving the NR1 subunit amino terminal domain

[31]. Although tPA is best known as a clot-busting drug used in

acute stroke patients, tPA is released from dendrites during

synaptic activity [32], especially during high frequency stimulation

[33], tPA acts as a gliotransmitter [34], and tPA participates in

synaptic plasticity and learning and memory processes including

fear conditioning [35,36]. Xe also had been reported to affect

AMPA receptors [12] shown to play a role in memory

reconsolidation [37,38]. Collectively, Xe’s direct and indirect

inhibition of NMDA and AMPA receptor function may underlie

its ability to impair fear memory reconsolidation.

Other targets of Xe also could mediate the effects we observed.

For example, Xe has also been shown to have differential effects

on excitatory and inhibitory ligand-gated ion channels; Xe reduces

current through alpha4 beta2 (a4b2) nicotinic acetylcholine

receptor-gated channels and increases current through glycine

and GABAA receptor-gated channels [39]. Xe also targets other

proteins known to play a role in contextual fear memory including

alpha7 (a7) nicotinic acetylcholine receptors [40,41] and ATP-

dependent potassium (Kir6.2) channels [42,43], and targets

TREK-1 channels [44]. At this time, we cannot conclude which

targets of Xe mediate its inhibition of fear memory reconsolida-

tion, which is a limiting factor of this study. Future studies are

planned, however, using selective agonists and antagonists of these

and other receptors and proteins, to characterize the pharmacol-

ogy and mechanism of action of Xe’s effects on reconsolidation.

In our analysis of the pooled sample from all Xe-treated rats

(n = 21) we found a within-subjects difference in Xe’s effects at PR-

LTM1 on freezing to context alone and context + tone whereby

freezing in the presence of the tone was less sensitive to Xe

(t20 = 3.72, P,0.005). These data suggest that Xe’s amnestic

effects may be stronger for context- versus cue-induced freezing.

This may reflect a stronger effect of Xe on the hippocampus than

the amygdala, which play different roles in context and cued-fear

conditioning [15,24]. This differential effect could be related to

Xe’s apparently greater inhibition of hippocampal versus amyg-

dala excitatory postsynaptic currents [12,13]. Interestingly, other

inhaled anesthetic agents, such as halothane, isoflurane, and

nitrous oxide, which can also affect learning and memory and

have amnestic effects, can alter hippocampal theta rhythms [45]

which have been shown to contribute to reconsolidation of

contextual fear memory by virtue of its synchronization with the

amygdala [46]. Hence, a preferential action of Xe on hippocampal

ensemble activities could account for the strong amnestic effect

upon re-exposure to the conditioning context (hippocampal

dependent), but which was reduced when the animal was then

presented with a discrete cue (amygdala dependent) within the

conditioning context. Clearly, a limitation of the current study is

that animals were not tested for cue-induced freezing in a different

context than that used for fear-conditioning, and that Xe was

tested in only one fear-conditioning paradigm. Our intention in

these initial studies was to elucidate the basic phenomenon using a

paradigm similar to that used in the seminal studies of Phillips and

LeDoux [24], which established a differential role for the

hippocampus and amygdala in context versus cued fear-condi-

tioning. Future studies investigating Xe’s effects on reconsolidation

for context- and cue-induced freezing, including freezing elicited

in a different context are planned, as well as studies involving

different fear conditioning paradigms.

As described in Tronson and Taylor [3], a number of control

protocols can be employed to demonstrate that a specific

treatment affects reconsolidation. The data presented in this

report include several of these important comparison groups.

First, we demonstrate that rats exposed to 25% Xe for 1 hour

in the absence of fear memory reactivation exhibited no

differences in freezing to context or tone versus air-exposed

controls (Fig. 2D & E). These data suggest that the effects of

Xe on reconsolidation and impairment of long-term fear

memory are not due to non-specific effects of Xe gas inhalation,

but that Xe’s effects likely are having a direct effect on brain

mechanisms engaged only after the fear memory is recalled.

Second, when Xe administration was delayed until 2 hours after

fear memory reactivation, a time point expected to be outside of

the reconsolidation window for NMDA antagonists [25], Xe

was ineffective at reducing freezing (Fig. 2F & G). Together,

these results suggest that 25% Xe inhibits fear memory

reconsolidation only after fear memory reactivation and only

when administered within the reconsolidation window. These

findings along with our data showing a lack of spontaneous

recovery – a traditional test used to examine the enduring

amnestic effect of a treatment [47] – document that Xe satisfies

several requirements of a demonstrable reconsolidation-blocking

agent.

Lastly, we examined whether a second 25% Xe exposure for 1

hour immediately after the PR-LTM1 test (which is, itself, another

memory reactivation), could further impair reconsolidation. The

second Xe exposure did not further affect freezing to context alone

or context + tone (Fig. 3B & 3C) when compared with Xe

administered only after first reactivation (Fig. 3D & 3E). Possible

interpretations of this finding include that the Xe-sensitive

component of reconsolidation may have a threshold for its

amnestic capacity after blockade and/or that residual fear

maintenance may occur by Xe-insensitive mechanisms. A recent

study reported that a transition state may develop after multiple

unreinforced CS exposures reflecting a dynamic shift from

reconsolidation to extinction processes, during which NMDA

receptor antagonists lose their ability to affect reconsolidation or

extinction [48]. As both processes are NMDA-receptor dependent

[11], it is possible that a first treatment with Xe and the ensuing

amnestic effect may shift the reconsolidation-extinction boundaries

to limit the effectiveness of a second treatment. Xe’s rapid on-off
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kinetics [49] may facilitate its use both in animals and humans as a

temporally precise tool to help characterize such transition states

and other dynamic memory processes. Given that the timing of

interventions aimed at blocking reconsolidation or enhancing

extinction may significantly affect treatment outcomes [11,48],

Xe’s rapid kinetics also may enable temporally optimized

treatment regimens.

In summary, we report in an animal model of PTSD that 25%

Xe administered within the reconsolidation window after fear

memory reactivation substantially reduced subsequent fear

memory expression. This anxiolytic-like effect in rats has

translational application to current clinical research aimed at

modulating memory processes as a therapy for fear and anxiety

disorders [50–53]. People with PTSD experience intrusive,

persistent traumatic memories [54], impaired fear memory

extinction [55], and may be locked in reconsolidation mode

[56]. Given that fear memory reconsolidation is ‘‘evolutionarily

conserved’’ [5] and that subsedative Xe inhalation is associated

with well-established excellent safety and side-effect profiles in

humans [18,19] Xe appears to have potential for rapid

development as a pharmacotherapy to inhibit traumatic memory

reconsolidation in PTSD patients, and possibly treat other

conditions involving reconsolidation, including addiction disor-

ders [56,57].
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