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Abstract

Lizards, which are amniote vertebrates like humans, are able to lose and regenerate a functional tail. Understanding the
molecular basis of this process would advance regenerative approaches in amniotes, including humans. We have carried out
the first transcriptomic analysis of tail regeneration in a lizard, the green anole Anolis carolinensis, which revealed 326
differentially expressed genes activating multiple developmental and repair mechanisms. Specifically, genes involved in
wound response, hormonal regulation, musculoskeletal development, and the Wnt and MAPK/FGF pathways were
differentially expressed along the regenerating tail axis. Furthermore, we identified 2 microRNA precursor families, 22
unclassified non-coding RNAs, and 3 novel protein-coding genes significantly enriched in the regenerating tail. However,
high levels of progenitor/stem cell markers were not observed in any region of the regenerating tail. Furthermore, we
observed multiple tissue-type specific clusters of proliferating cells along the regenerating tail, not localized to the tail tip.
These findings predict a different mechanism of regeneration in the lizard than the blastema model described in the
salamander and the zebrafish, which are anamniote vertebrates. Thus, lizard tail regrowth involves the activation of
conserved developmental and wound response pathways, which are potential targets for regenerative medical therapies.
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Introduction

Regeneration of appendages in the adult is observed in a

number of vertebrates, including in the lizard tail, the salamander

limb and tail [1], and the zebrafish caudal fin [2]. Molecular and

cellular analyses in these model organisms are beginning to reveal

conserved versus divergent mechanisms for tissue regeneration [3–

7], which impacts the translation of these findings to human

therapies. Regeneration in newts is associated with proteins

specific to urodele amphibians, casting doubt on the conservation

of these regenerative pathways with other vertebrates [7]. In

addition, muscle formation during limb regeneration differs

between newts and the axolotl [8]. Mammals possess some

neonatal regenerative capabilities, including mouse and human

digit tip regeneration [9,10] and heart regeneration in the mouse

[11], but these processes are limited in the adult organism [12].

Lizards are capable of regrowing appendages, and as amniote

vertebrates, are evolutionarily more closely related to humans than

other models of regeneration, e.g., salamander and zebrafish. An

examination of the genetic regulation of regeneration in an

amniote model will advance our understanding of the conserved

processes of regeneration in vertebrates, which is relevant to

develop therapies in humans.

In response to threats, lizards have evolved the ability to

autotomize, or self-amputate, their tails and regenerate a

replacement (Figure 1A) [13,14]. The patterning and final

structure of the lizard tail is quite distinct between embryonic
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development and the process of regeneration [15,16]. Whereas the

original tail skeleton and muscular groups are segmentally

organized, reflecting embryonic patterning, the regenerated tail

consists of a single unsegmented cartilaginous tube surrounded by

unsegmented muscular bundles [15,16]. In addition, the segmental

organization of the spinal cord and dorsal root ganglia in the

original tail are absent in the replacement, with regenerated axons

extending along the length of the endoskeleton [17,18]. While the

regenerative process in lizards has been described previously [14–

16,19,20], both the source of regenerating tissue and the cellular

and molecular mechanisms that are activated during the

regenerative process remain unclear. Dedifferentiation has been

proposed to be a major source of proliferating cells in the

anamniote salamander blastema model [21]. However, no clear

evidence of dedifferentiation has been identified in tail regener-

ation in the lizard, an amniote vertebrate [14,15,19,20]. A

temporal-spatial gradient of tissue patterning and differentiation

along the regenerating tail axis has been described [14,19,20].

The green anole lizard, Anolis carolinensis, is an emerging

model organism, and has provided insights in the fields of

evolution and development [22,23], population genetics [24,25],

reproductive physiology [26], behavior [27], and functional

morphology [28]. Large-scale gene expression analyses of biolog-

ical processes such as tail regeneration in the green anole have

previously been limited by a lack of genomic resources. However,

the A. carolinensis genome was recently made available [29]. In

addition, our group has generated a robust genome annotation

based on 14 deep transcriptomes using both directional and non-

directional RNA-Seq data from a diverse number of tissues [30].

These genomic resources provide a platform for transcriptome-

wide analysis of the genes involved in regeneration in the green

anole. Here we describe, to our knowledge, the first transcriptomic

analysis of lizard tail regeneration.

Materials and Methods

Animals and collection of regenerating tail samples
Animals were collected and maintained in strict accordance

with Protocol Number 12-1247R approved by the Institutional

Animal Care and Use Committee at Arizona State University.

Adult A. carolinensis lizards were purchased from Marcus Cantos

Reptiles (Fort Myers, FL) or Charles D. Sullivan Co., Inc.

(Nashville, TN). Animals were housed as previously described

[15,16]. Autotomy was induced by applying pressure to the tail

until it was released. Animal health was monitored following

autotomy. We collected 5 biological replicates of regenerating tail

sections at 25 days post autotomy (dpa). Regenerating tails (n = 5)

at 25 dpa were divided into five sections (approximately 1 mm

each) for RNA-Seq analysis.

RNA-Seq
RNA-Seq of the lizard embryos has been described previously

[22]. Total RNA was isolated from tissue samples, including 25

dpa regenerating tail (n = 5) and satellite cells (n = 3; mirVana

miRNA Isolation Kit total RNA protocol only, Ambion). The

Ovation RNA-Seq kit (NuGEN) was used to synthesize double

stranded cDNA. Paired-end sequencing libraries were then

generated using manufacturer protocols and sequenced on an

Illumina HiSeq 2000. For our analysis, 4 of the 5 regenerating tail

replicates were multiplexed together and 2 of the 3 satellite cell

replicates were multiplexed together.

Bioinformatic analysis
RNA-Seq reads were trimmed to eliminate nucleotide bias

where necessary. Trimmed reads were then mapped to the A.
carolinensis genome [29] using Bowtie2.1.0 and TopHat2.0.8 with

the ASU_Acar_v2.2.1 annotation revised from Eckalbar et al.,

2013 [30] (Table S1). For Cuffdiff analysis, TopHat aligned reads

were assembled using Cufflinks2.1.1 and genes with differential

expression were identified using Cuffdiff2.1.1 with the following

options: —upper-quartile-norm —multi-read-correct.

Cuffdiff data were then imported into CummeRbund [31,32].

For DESeq2 analysis, raw counts were generated from TopHat

aligned reads using HTSeq and normalized for library size in

DESeq2 [33–35]. In order to identify variant genes using DESeq2,

normalized data were fitted to a negative binomial general linear

model and adjusted for multiple testing using the Benjamini-

Figure 1. Overview of the stages of lizard tail regeneration. (A)
Anolis carolinensis lizard with a regenerating tail (distal to arrow). (B-E)
Histology of the 10 dpa (B), 15 dpa (C), 20 dpa (D), and 25 dpa (E)
regenerating tail by Gomori’s trichrome stain, with which connective
tissues and collagen stain green-blue, muscle, keratin, and cytoplasm
stain red, and nuclei are black. (F) Immunohistochemistry of myosin
heavy chain in a 25 dpa regenerating tail using the MY-32 antibody. e,
wound epithelium; v, blood vessels; m, muscle; ct, cartilaginous tissue.
Composites: B-F. Scale bars in black: 200 mm.
doi:10.1371/journal.pone.0105004.g001
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Hochberg method, and a likelihood ratio test was performed.

CummeRbund and DESeq2 are part of the Bioconductor set of

software packages [36], which use the R statistical programming

environment (http://www.R-project.org). P-values for Gene On-

tology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analysis of differentially expressed genes were generated

using the Database for Annotation, Visualization, and Integrated

Discovery (DAVID) functional analysis tool [37,38]. Significant

GO terms (p,0.05) were mapped with the REViGO online tool

(http://revigo.irb.hr), which removes redundant GO terms and

visualizes the semantic similarity of remaining terms [39]. For all

heatmaps, genes were clustered by Jensen-Shannon divergence of

the log10(FPKM+1) value.

A. carolinensis genome annotation revision
An annotation of the A. carolinensis genome was reported using

fourteen deep transcriptomes (ASU Acar v2.1) [30]. We further

revised this annotation as follows: RNA-Seq data was assembled

using the ABySS and Trans-ABySS pipeline [40–42]. Each of the

25 dpa regenerating tail sections was assembled individually in

ABySS using every 5th kmer ranging from 26 bp to 96 bp. These

assemblies were then combined using trans-ABySS to create a

merged assembly with reduced redundancy. This merged assem-

bly was then mapped to the genome using BLAT inside trans-

ABySS. De novo assembled contigs were then filtered to require at

least 90% coverage of the contig to the genome and to require at

least one 25 bp gap. Seqclean was first used to remove Illumina

adapters and any contaminants from the UniVec databases from

the de novo assembled transcripts and the EST libraries. The

cleaned de novo assembled transcripts from ABySS/Trans-ABySS

were then assembled using the PASA reference genome guided

assembly, and PASA alignment and assembly was executed using

default parameters [43–46]. The PASA assemblies were then used

to update the ASU Acar v2.1 annotations inside PASA to v2.2.

The annotation was further updated to v2.2.1 with a subset of

manual annotations.

Isolation of satellite cells from A. carolinensis
Lizard satellite cell isolation was adapted from mammalian [47–

49] and avian [50,51] methods. Following euthanasia, large limb

muscle groups were dissected in PBS and minced. Cells were

separated by protease treatment and suspensions were initially

plated to remove adherent fibroblasts and other debris. Satellite

cells remaining in suspension were then collected and plated onto

Matrigel-coated tissue culture plates in growth medium (Ham’s F-

10, 20% FBS, 100 mg/mL penicillin, 100 mg/mL streptomycin,

40 mg/mL gentamicin, 20 ng/mL bFGF) at 30uC in a 5% CO2

humidified chamber. While a number of conditions were tested,

30uC was the optimal temperature identified.

Histological analysis
For paraffin sectioning, regenerated tails were fixed and

embedded as described previously [15]. Embedded tails were

sectioned into 20 mm sections using a CM1950UV Leica Cryostat

and placed on HistoBond slides. Paraffin-embedded tissue sections

were stained according to hematoxylin-eosin or Gomori’s

trichrome and mounted in Permount as described previously

[15]. Hematoxylin stains nuclei and nucleoli blue and eosin stains

cytoplasmic and extracellular matrix proteins pink/red, while

hydrophobic cells such as adipocytes and myelin will remain clear.

With Gomori’s trichrome stain, connective tissues and collagen

appear green-blue; muscle, keratin, and cytoplasm are red; and

nuclei are black.

Immunohistochemistry
Paraffin-embedded tissue sections were deparaffinized, rehy-

drated, and bathed in sodium citrate buffer (pH 6.0). Cells were

fixed in 100% methanol. Tissue sections and cells were stained

using the Histostain-SP Broad Spectrum kit (Invitrogen) as follows:

Tissue sections and cells were blocked in serum, incubated with

primary antibody (MY-32, Sigma Aldrich, MFCD00145920;

PCNA, Santa Cruz Biotechnology, sc-7907; MCM2, Abcam,

ab4461) incubated with secondary antibody, and incubated with

HRP-strepavidin complex, with blocking and antibody incuba-

tions at 37uC. Tissue sections and cells were counterstained with

hematoxylin and mounted in Permount (Fisher Scientific).

Immunofluorescence
Cells were fixed in 100% methanol, blocked in serum,

incubated with PAX7 antibody (Developmental Studies Hybrid-

oma Bank), and incubated with secondary antibody, with blocking

and antibody incubations at 37uC. Slides were then counterstained

with DAPI.

Data Access
RNA-Seq data for the lizard embryo samples, which have been

previously reported [22], are deposited in at the National Center

for Biotechnology Information (NCBI), under BioProject

PRJNA149661. RNA-Seq data for the lizard tail regeneration

and satellite cell samples are deposited under BioProject

PRJNA253971.

Results

Histology of early regenerative stages
Progressively increasing tissue patterning and differentiation are

evident in the early regenerative stages of the lizard tail. The first

10 days are characterized by wound healing (0–10 days post

autotomy (dpa); Figure 1B). By 10 dpa, a wound epithelium has

formed over the autotomized stump and blood vessels have formed

immediately below. There was no appreciable outgrowth at this

stage. Outgrowth begins after the wound epithelium forms and is

characterized by early growth of the ependyma from the spinal

cord into the surrounding mesenchymal tissue (10–15 dpa). By 15

dpa, there was noticeable outgrowth of highly vascularized tissue

and myofibers began to form (Figure 1C). With continued tail

outgrowth, the central cartilage tube and surrounding skeletal

muscle began to differentiate (15–20 dpa; Figure 1D). Note that

the tip of the tail remains vascular (10–20 dpa, Figure 1B-D). By

25 dpa, further lengthening of the regenerating tail was observed,

along with formation of muscle and cartilage surrounding the

ependymal core (Figure 1E). Further outgrowth with continued

tissue differentiation is evident post-25 dpa, and there is no

significant outgrowth after 60 dpa [15]. In fact, by 25 dpa, myosin

heavy chain (MHC) positive skeletal muscle was present along the

length of the developing tail, except at the very distal tip

(Figure 1F). Spatially, there is an increase in patterning and

differentiation along the regenerating tail was observed at early

outgrowth stages (e.g., 15–25 dpa, Figure 1C-E), with differences

in tissue organization particularly evident along the proximal-

distal axis.

Sequencing and differential expression testing of
regenerating tail transcripts

To identify differentially expressed genes along the proximal-

distal axis of regenerating tails, we carried out RNA-Seq analysis

on five tails at 25 dpa (Table S2). Tails were sectioned into five

Transcriptomic Analysis of Lizard Tail Regeneration
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segments of equal length (Figure 2A). RNA-Seq analysis identified

326 differentially expressed genes with p,0.05 after correcting for

multiple testing using Cuffdiff2 [31,52], 302 of which have

mammalian orthologs (Figure 2B; Table S3). Data were also

analyzed by DESeq2 [33,34], which yielded 264 differentially

expressed genes, 252 of which have mammalian orthologs

(Figure 2C; Table S4). These Cuffdiff2 differentially expressed

genes clustered into two major groups, representing genes elevated

towards the proximal base (Cluster I, Figure 2B) or the distal tip

(Cluster II, Figure 2B).

Differential expression of genes involved in
developmental and repair mechanisms in the
regenerating tail

Our RNA-Seq analysis identified Gene Ontology (GO) groups

associated with the differentiation of tissues present in the proximal

regenerating tail, predominantly those that are specific to skeletal

muscle (Figure 2D; Figure S1A; Table 1; Table S5). Sarcomeric

proteins, including myosin heavy chains and actinins, were

elevated in the proximal tail. This pattern of expression was

validated by the presence of myosin heavy chain positive muscle

fibers (Figure 1F). Myogenic regulatory factors associated with

muscle growth and repair were also elevated in the proximal tail.

These include the transcription factors pax7, mohawk (mkx), and

tcf15, which are expressed in myogenic stem/progenitor cells [53–

55], NFATc1, which regulates muscle hypertrophy [56], and the

TGFb family member myostatin (mstn), which modulates muscle

mass [57] (Anolis Gene Nomenclature Committee standards used

for gene symbols; [58]). Also, the MADS box factor mef2c, and the

myogenic regulatory factor myod1, which synergize to activate

muscle specific gene transcription, were elevated [59]. As growth

and repair of skeletal muscle in vertebrates normally relies on the

expansion and differentiation of muscle-specific progenitor cells,

the enrichment for genes associated with the regulation of this

population predicts a similar mechanism of muscle growth and

repair occurring in a zone of active regeneration. Furthermore, the

increase in mkx transcription raises the possibility of a coordinated

growth between tendons and muscle in the regenerating tail, given

that the orthologous gene is required for growth and repair in

mammals [60].

Our transcriptome analysis identified multiple genetic pathways

activated towards the tip of the regenerating tail. Genes

differentially elevated at the tip were enriched for GO categories

related to i.) wound response, ii.) hormonal regulation, and iii.)

embryonic morphogenesis (Figure 2E; Figure S1B; Table 1; Table

S6). Wound and inflammatory response genes elevated in the

distal regenerating tail include igfbp4, mdk, ptx3, and pdgfra.

Mouse Ptx3 is required for fungal resistance [61], and Mdk plays a

Figure 2. Transcriptomic analysis of gene expression in the 25 dpa regenerating lizard tail. (A) 25 dpa regenerated tail tissue was divided
into five equal sized segments (S1-S5) with S1 representing the most distal regenerating tip, and total RNA was extracted for RNA-Seq analysis. (B) A
heatmap showing 326 genes that were differentially expressed, i.e., displayed significant differences between any two segments in the regenerating
tail as determined by Cuffdiff (p,0.05). Genes were clustered by Jensen-Shannon divergence of the log10(FPKM+1) value into two major groups, as
shown in the dendrogram on the left. 129 genes displayed increased expression distally towards the tail tip (Cluster II) while 197 displayed increased
expression proximally (Cluster I). This clustering also demonstrated that the distal-most regenerating tail tip (S1) was the outlier among these
samples. (C) Venn diagram of differentially expressed genes identified by DESeq2 and Cuffdiff2. (D-E) A treemap overview of differentially expressed
genes in (D) Cluster I and (E) Cluster II based on representative Gene Ontology Biological Processes. The relative sizes of the treemap boxes are based
on the |log10(p-value)| of the respective GO term. Related terms are visualized with the same color, with the representative category for each color
group denoted in the legend.
doi:10.1371/journal.pone.0105004.g002
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Table 1. Selected Genes Ontology categories represented along the regenerating tail axis.

Category GO Term Description Count P-value Genes

Cluster I

myogenesis GO:0006936 muscle contraction 30 6.63E-29 mybpc2, tnnc2, tnnc1, myl3, mybpc1, mybpc3, myl1,
pgam2, myot, des, myom2, myl6b, myom1, chrna1,
scn5a, dtna, kcnma1, actc1, acta1, actn2, myh6, tnni2,
trdn, tnnt3, tnnt1, ryr1, stbd1, chrne, casq2, chrng

GO:0007517 muscle organ
development

28 3.44E-22 mef2c, myod1, myl2, tnnc1, myl3, mybpc3, myl1,
trim72, speg, myl6b, pax7, obsl1, mkx, mkl2, chrna1,
actc1, acta1, mstn, mylpf, myh6, csrp3, flnb, murc, neb,
xirp1, itga7, vgll2, tcf15

GO:0007519 skeletal muscle tissue
development

9 3.73E-07 myod1, acta1, myl3, myl6b, pax7, mylpf, vgll2, chrna1,
csrp3

GO:0042692 muscle cell differentiation 11 4.86E-07 myod1, actc1, acta1, xirp1, myl2, speg, lgals1, obsl1,
myh6, mkl2, chrna1

GO:0050881 musculoskeletal movement 6 1.14E-06 tnnt3, tnnt1, tnnc2, tnnc1, chrna1, tnni2

GO:0030029 actin filament-based
process

14 1.28E-06 actc1, tnxb, myl2, acta1, myl1, pdlim3, myh6, gas7,
flnb, xirp1, xirp2, myl6b, limch1, obsl1

GO:0007155 cell adhesion 21 3.41E-05 hapln1, tnxb, mybpc2, clstn2, egfl6, lpp, mybpc1,
col22a1, mybpc3, col28a1, mgp, actn2, col2a1, actn3,
ecm2, col9a1, itga7, acan, susd5, col11a2, thbs4

GO:0001501 skeletal system
development

12 4.79E-04 bmp3, col9a1, col9a2, tbx15, lect1, clec3a, pax7, acan,
mgp, col2a1, col11a2, tcf15

GO:0030198 extracellular matrix
organization

7 7.29E-04 csgalnact1, tnxb, adamts20, acan, col2a1, col11a2,
ecm2

GO:0030705 cytoskeleton-dependent
intracellular transport

4 0.0166 actc1, myl6b, myl1, myh6

GO:0006873 cellular ion homeostasis 11 0.0055 kcnma1, jph2, xirp1, pygm, atp2a1, ryr1, chrna1, chrne,
csrp3, sypl2, chrng

chondrogenesis GO:0051216 cartilage development 8 1.10E-05 bmp3, col9a1, lect1, pax7, acan, mgp, col2a1, col11a2

GO:0002062 chondrocyte differentiation 4 7.90E-04 col9a1, acan, col2a1, col11a2

GO:0001502 cartilage condensation 3 0.0162 acan, mgp, col2a1

musculoskeletal activity GO:0043462 regulation of ATPase
activity

5 1.82E-05 tnnt3, myl3, tnnc1, mybpc3, myh6

GO:0006029 proteoglycan metabolic
process

4 0.0099 csgalnact1, lect1, acan, col2a1

biological adhesion GO:0022610 biological adhesion 21 3.48E-05 hapln1, tnxb, mybpc2, clstn2, egfl6, lpp, mybpc1,
col22a1, mybpc3, col28a1, mgp, actn2, col2a1, actn3,
ecm2, col9a1, itga7, acan, susd5, col11a2, thbs4

Cluster II

wound response GO:0009611 response to wounding 10 0.0040 pcsk1, scube1, pdgfra, pla2g7, entpd1, ptx3, mdk,
igfbp4, f2r, spp1

GO:0009725 response to hormone
stimulus

8 0.0059 cga, pcsk1, krt19, tnfrsf11b, bsg, th, pdgfra, spp1

GO:0007223 Wnt receptor signaling
pathway, calcium
modulating pathway

3 0.0067 wnt5a, wnt16, ror2

GO:0016055 Wnt receptor signaling
pathway

5 0.0079 dkk2, wnt5a, wnt16, ror2, wif1

GO:0007166 cell surface receptor
signaling pathway

20 0.0106 wnt5a, cga, edn3, fgfr4, il1r1, wnt16, gpr158, bsg,
maml2, ptpn22, thy1, dkk2, ednra, or5v1, pdgfra, ror2,
wif1, pdgfc, entpd1, f2r

GO:0010033 response to organic
substance

11 0.0098 ednra, cga, pcsk1, krt19, il1r1, tnfrsf11b, bsg, th, pdgfra,
f2r, spp1

GO:0006954 inflammatory response 6 0.0433 scube1, pla2g7, ptx3, igfbp4, f2r, spp1

hormonal regulation GO:0051050 positive regulation of
transport

7 0.0020 ednra, edn3, pcsk1, rab8b, ptx3, f2r, thy1

GO:0032844 regulation of homeostatic
process

5 0.0046 ednra, tnfrsf11b, f2r, spp1, thy1

GO:0006590 thyroid hormone
generation

2 0.0350 cga, dio2

Transcriptomic Analysis of Lizard Tail Regeneration
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role in angiogenesis [62]. Hormonal and homeostatic regulation

genes included those involved in thyroid hormone generation,

such as cga and dio2. Thyroid hormone plays a critical role in

neuromuscular growth, both during normal development and in

repair after injury. Dio2 has been shown to co-regulate myogenesis

and muscle regeneration in the mouse [63]. In the rat model,

triiodothyronine (T3) treatment after sciatic nerve injury has been

shown to enhance reinnervation of muscles [64]. In the Xenopus
laevis tadpole, thyroid hormone is critical for limb development

during metamorphosis, where limb muscle growth, innervation of

the limb, cartilage growth, and skin development are all thyroid

hormone-dependent [65]. Genes involved in homeostatic regula-

tion and vascular development include ednra and edn3, which are

members of the endothelin family and regulate vasoconstriction

and cell proliferation [66], the thrombin receptor f2r, which

promotes vascular development by negatively regulating hemato-

poietic differentiation of mouse embryonic stem cells [67], and

thy1, which is a marker of angiogenesis [68]. The wnt5a ligand

and its receptor, ror2, were both significantly expressed at the tip,

indicating non-canonical Wnt signaling, which can promote

chondrogenesis [69,70]. Skeletal system development genes

elevated in the regenerating tail include the basic helix-loop-helix

transcription factor twist1, which regulates a number of pathways,

including FGF, by chromatin modification via histone acetyltrans-

ferases [71].

Differentially expressed genes analyzed for Kyoto Encyclope-

dia of Genes and Genomes (KEGG) categories (p,0.05)

identified axon guidance and neural development genes, includ-

ing slit homolog 2 (slit2), actin binding LIM protein family

member 2 (ablim2), and netrin receptor unc-5 homolog C (unc5c)

(Table 1; Table S7). KEGG groups enriched in the regenerating

tail also include the Wnt and MAPK/FGF signaling pathways.

FGF signaling plays a key role in developmental patterning,

proliferation, and differentiation [72]. Differentially expressed

MAPK/FGF pathway genes at the tail tip include pdgfra, il1r1,

and cdc42 while mef2c, cacnb1, cacna2d1, flnb, flnc, and fgfr13
are elevated at the proximal region of the regenerating tail

(Figure 3A). A number of recent reports from mouse digit tip and

salamander limb regeneration identified Wnt pathway involve-

ment [3,4,10]. Wnt signaling promotes the differentiation of

embryonic stem cells as well as cells from skeletal muscle,

osteogenic, and cardiogenic lineages [73]. The tip to the middle

regions of the regenerating tail are enriched with Wnt inhibitors,

including dkk2, igfbp4, wif1, and sgfrp2 (Figure 3B). The

expression of soluble Wnt inhibitors from this region could

create a proximal-distal gradient of Wnt signaling that is

necessary to maintain the actively growing zone of the

regenerating tail in a proliferative, undifferentiated state.

Novel and uncharacterized transcripts in the
regenerating tail

We sought to characterize the 22 differentially expressed genes,

representing 29 transcript isoforms, without clear orthology, i.e.,

BLAST alignment scores against the nonredundant protein

database were either E$1.0, identity was #50%, or no match

was identified. These transcripts could potentially be protein-

coding genes specific to squamate reptiles, either novel or highly

divergent within the squamate lineage, or could represent

noncoding RNA species. Transcripts were queried against the

protein family (Pfam) [74] and RNA family (Rfam) [75] databases,

and coding potential was evaluated using the Coding-Non-Coding

Index (CNCI; [76]), which evaluates coding potential by profiling

adjoining trinucleotide sequences (Table 2). Four transcripts were

identified as retrotransposons, including the gag-pol polyprotein

and RNA-directed DNA polymerase from mobile element jockey-

like, which are enriched in the proximal regenerating tail. Of the

remaining transcripts, 3 were predicted as protein-coding and 22

were characterized as non-coding by the CNCI. The protein-

coding gene ASU_Acar_G.15880, which is differentially expressed

in the proximal regenerating tail, has a DUF4585 (domain of

unknown function) domain, and orthologous genes found in the

king cobra (Ophiophagus hannah; GenBank: ETE69491.1)

genome, the green sea turtle (Chelonia mydas; GenBank:

EMP32806.1; NCBI: XP_007063098.1) genome, and the axolotl

(Ambyostoma mexicanum) transcriptome. The 2 remaining protein-

coding transcripts were not matched to any known domains in the

Pfam database. Of the 22 non-coding transcripts, we identified 2

differentially expressed genes in the proximal tail categorized

within the miRNA precursor families miR-133 and miR-324.

miR-133 acts in a negative feedback loop with serum response

factor (SRF) to promote myoblast differentiation in vitro, and

suppresses BMP2-induced osteogenesis by targeting Runx2
[77,78]. The remaining 20 non-coding transcripts represent

potential modulators of genes down-regulated in regeneration.

In summary, these unidentified transcripts represent novel protein-

coding genes, long non-coding RNAs, and microRNAs that may

regulate the regenerative process in concert with identified genes

and signaling pathways.

Comparison of regenerating tail with stem/progenitor
cells and developing embryo

Tissue regeneration in the lizard tail requires a source of cells;

these could be tissue-specific oligopotent or progenitor stem cells,

as in mammalian tissue repair, since there is no evidence of

dedifferentiation in the lizard as observed in the salamander

[14,15,19,20]. We analyzed the regenerated tail in comparison

with lizard embryos and satellite cells; both are highly enriched for

stem cell populations (Figure S2). We profiled the transcriptome of

lizard embryos at the 28–38 somite pair stages [79]. At this stage,

Table 1. Cont.

Category GO Term Description Count P-value Genes

embryonic
morphogenesis

GO:0001501 skeletal system
development

9 5.81E-04 wnt5a, tnfrsf11b, pdgfra, ror2, mepe, cbfb, igfbp4,
spp1, twist1

GO:0035295 tube development 7 0.0019 wnt5a, ednra, fgfr4, sall1, pdgfra, ptk7, twist1

GO:0048598 embryonic morphogenesis 7 0.0096 wnt5a, sall4, th, ptk7, ror2, twist1, ptprq

immune response GO:0006030 chitin metabolic process 2 0.0407 chi3l1, chit1

doi:10.1371/journal.pone.0105004.t001
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the embryo contains paraxial mesoderm, a multipotent cell source

for skeletal muscle, cartilage, bone, and tendon. Satellite cells

capable of differentiating into skeletal muscle in response to injury

serve as progenitor/stem cells for adult muscle repair in mammals

[80]. We isolated a PAX7 positive cell population from adult lizard

skeletal muscle that was morphologically comparable to mouse

satellite cells (Figure S3A). These cells differentiated into multinu-

cleated, MHC positive myotubes (Figure S3B), and express many of

the same lineage-specific genes (Figure 4A, Figure S3C-F). The

lizard embryos and satellite cells each possess distinct gene

expression signatures based on gene markers for mouse and human

embryonic, hematopoietic, and mesenchymal stem cells and satellite

cells. In contrast, these genes are expressed at low levels without a

distinct proximal-distal pattern in the regenerating tail (Figure 4A-

D). These data predict a role for stem cells distributed throughout

the regenerating tail, instead of being localized to the distal tip with a

distal-to-proximal gradient of differentiation within the tail. While

there are genes elevated in the regenerating tail relative to the

embryo and satellite cells, genes elevated in the regenerating tail tip

are primarily involved in the formation of tissues specific to the tail

such as keratin-associated beta protein, and genes elevated in the

proximal regenerating tail are primarily involved in tissue differen-

tiation (Figure S2, Tables S8-S9). The lack of intensity in the signal

compared to the embryo and satellite cells could be due to stem cells

comprising only a minority population in the regenerating tail.

Distributed pattern of cell proliferation in the
regenerating tail

Proliferation and specification of progenitor cells is required for

growth of the regenerating tail. While the regenerating tail did not

express high levels of stem cell factors, selected progenitor/stem

cell markers still displayed differential expression along the

proximal-distal axis (Figure 4A-D). These genes included plate-

let-derived growth factor receptor pdgfra, which is expressed in

subtypes of mesenchymal progenitor cells involved in muscle

repair [81]. In addition, genes elevated in the tail tip include the kit
ligand and sox11 transcription factor, and genes elevated towards

the proximal tail included the previously discussed transcription

factor mkx. To visualize the pattern of proliferating cells within the

regenerating tail, we analyzed the distribution of minichromosome

maintenance complex component 3 (MCM2) in the regenerating

tail (Figure 5A-E). MCM2 positive cells are observed in distrib-

uted, discrete regions in the regenerating tail, including the

condensing cartilage tube and ependymal core (Figure 5B-C) and

in developing muscle (Figure 5D-E). A second marker of

proliferation, proliferating cell nuclear antigen (PCNA), showed

a similar pattern of expression, confirming that proliferating cells

are distributed throughout the regenerating tail in comparison to

low levels of proliferating cells in the original tail (Figure S4; Figure

S5). This pattern of proliferation is corroborated by RNA-Seq

analysis of proliferation markers along the regenerating tail

(Figure 5F). No segment along the proximal-distal axis of the

regenerating tail demonstrated elevated expression of these

markers, indicating that there is no single growth zone.

Discussion

While transcriptomic analysis has been carried out in anamniote

regenerative models, including the zebrafish tail, the newt limb,

and the axolotl limb [3,4,6,7], the genetic profile of pathways

activated in regeneration of amniote appendages has not been

described. Through transcriptomic analysis of lizard tail regener-

ation, we have identified that genes in pathways involved in

developmental processes, including myogenesis, chondrogenesis,

and neurogenesis, as well as adult processes, such as wound and

immune responses, and are differentially expressed along the

regenerating tail axis. The Wnt pathway was significantly enriched

along the regenerating lizard tail axis, and activation of this

pathway has also been noted in salamander tail tip and mouse

digit tip regeneration [3,4,10]. Specifically, the Wnt pathway

members wnt5a and wif1 are differentially expressed in lizard as

well as the salamander [3,4]. The activation of Wnt signaling in

two amniote lineages, mammals and squamate reptiles, as well as

urodele amphibians supports a role for this pathway in regener-

ation that is conserved among tetrapod vertebrates. Transcrip-

tomic analysis also revealed that genes involved in thyroid

hormone generation (GO category GO:0006590; Table 1; Table

S6) were differentially expressed, suggesting a regulatory connec-

tion between regeneration of the lizard tail and musculoskeletal

transformations during amphibian metamorphosis. The lizard

dio2 gene is the ortholog of deiodinase, iodothyronine, type I,

which in mammals converts thyroxine prohormone (T4) to

bioactive 3,3’,5-triiodothyronine (T3) [82]. In Xenopus laevis, T3

is the key signal for the process of metamorphosis from tadpole to

adult frog [83]. Many of the changes associated with metamor-

phosis are also observed in the remodeling of the tail stump and

outgrowth of the lizard tail. The lizard cga gene is the ortholog of

chorionic gonadotropin, alpha chain, which encodes the alpha

chain of thyroid-stimulating hormone and other key hormones

[84]. During tadpole metamorphosis, both thyroid hormone (TH)

and thyroid-stimulating hormone (TSH) rise, despite the normal

expectation that TH would down-regulate TSH [85]. Changes in

TH regulation of TSH may also be altered in regeneration, which

has not been studied in the lizard. It is possible that among the

amniotes, the lizard retains genetic pathways associated with

thyroid hormone regulation of metamorphosis in amphibian

vertebrates. Similarly, we previously identified conserved features

in Notch pathway regulation of lizard and amphibian develop-

Figure 3. MAPK/FGF and Wnt pathway genes differentially
expressed in the 25 dpa regenerating lizard tail. (A, B) Based on
RNA-Seq analysis described in Figure 2, the heatmaps show the 10
MAPK/FGF pathway genes (A), or 9 Wnt pathway genes (B) defined by
KEGG, that were differentially expressed, i.e., displayed significant
differences between any two segments in the regenerating tail as
determined by Cuffdiff2 (p,0.05), along with previously identified Wnt
inhibitors. A diagram summarizing the tail segment(s) with highest
expression level for each MAPK/FGF (A) or Wnt (B) pathway gene is also
shown. Differentially expressed genes are denoted with an asterisk.
doi:10.1371/journal.pone.0105004.g003
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ment, specifically a gradient of hes6 expression in the presomitic

mesoderm that was not observed in other amniote vertebrates and

presumably lost [79]. Our transcriptomic analysis has highlighted

the activation of multiple genetic pathways, sharing genes that

have been identified as regulating development or wound response

processes in other vertebrate model systems.

Developmental systems display different patterns of tissue

outgrowth. For example, some tissues are formed from patterning

from a localized region of a single multipotent cell type, such as the

axial elongation of the trunk through production of somites from the

presomitic mesoderm [86]. Other tissues are formed from the

distributed growth of distinct cell types, such as the development of

the eye from neural crest, mesenchymal, and placodal ectodermal

tissue [87]. The regeneration of the amphibian limb involves a region

of highly proliferative cells adjacent to the wound epithelium, the

blastema, with tissues differentiating as they grow more distant from

the blastema. However, regeneration of the lizard tail appears to

follow a more distributed model. Stem cell markers and PCNA and

MCM2 positive cells are not highly elevated in any particular region

of the regenerating tail, suggesting multiple foci of regenerative

growth. This contrasts with PNCA and MCM2 immunostaining of

developmental and regenerative growth zone models such as skin

appendage formation [88], liver development [89], neuronal

regeneration in the newt [90], and the regenerative blastema [91],

which all contain localized regions of proliferative growth. Skeletal

muscle and cartilage differentiation occurs along the length of the

regenerating tail during outgrowth; it is not limited to the most

proximal regions. Furthermore, the distal tip region of the

regenerating tail is highly vascular, unlike a blastema, which is

avascular [92]. These data suggest that the blastema model of

anamniote limb regeneration does not accurately reflect the

regenerative process in tail regeneration of the lizard, an amniote

vertebrate.

Regeneration requires a cellular source for tissue growth.

Satellite cells, which reside along mature myofibers in adult

skeletal muscle, have been studied extensively for their involve-

ment in muscle growth and regeneration in mammals and other

vertebrates [53,55,60,80,93]. For example, regeneration of skeletal

muscle in the axolotl limb involves recruitment of satellite cells

from muscle [8]. Satellite cells could contribute to the regeneration

of skeletal muscle, and potentially other tissues, in the lizard tail.

Mammalian satellite cells in vivo are limited to muscle, but in vitro
with the addition of exogenous BMPs, they can be induced to

differentiate into cartilage as well [80,81]. High expression levels of

Figure 5. Histological and RNA-Seq analysis of proliferation in
the 25 dpa regenerating tail. (A-E) MCM2 immunohistochemistry of
the 25 dpa regenerating tail (brown nuclei), counterstained with
hematoxylin (blue nuclei). (A) MCM2 is expressed throughout the
regenerating tail, indicating a lack of a single proliferative zone. The
condensing cartilage tube (B), ependymal core (C), developing muscles
near the proximal base (D) and tip (E) of the regenerating tail are
shown. (F) A heatmap showing gene expression of proliferative markers
in the regenerating tail, the embryos, and satellite cells. DE genes along
the regenerating tail axis are denoted with an asterisk. Composites: A.
Scale bars in red: 200 mm (A) and 20 mm (B-E).
doi:10.1371/journal.pone.0105004.g005

Figure 4. The 25 dpa regenerating tail has limited relative
expression of stem cell markers. (A-D) Heatmap showing gene
expression of satellite cell (A) and embryonic (B), mesenchymal (C), and
hematopoietic stem cell markers in lizard embryos (n = 2), satellite cells
(n = 3), and 25 dpa regenerating tail sections (n = 5). Differentially
expressed genes along the regenerating tail axis are denoted with an
asterisk.
doi:10.1371/journal.pone.0105004.g004
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BMP genes in lizard satellite cells could be associated with greater

differentiation potential, and further studies will help to uncover

the plasticity of this progenitor cell type.

In summary, we have identified a coordinated program of

regeneration in the green anole lizard that involves both

recapitulation of multiple developmental processes and activation

of latent wound repair mechanisms conserved among vertebrates.

However, the process of tail regeneration in the lizard does not

match the dedifferentiation and blastema-based model as

described in the salamander and zebrafish, and instead matches

a model involving tissue-specific regeneration through stem/

progenitor populations. The pattern of cell proliferation and tissue

formation in the lizard identifies a uniquely amniote vertebrate

combination of multiple developmental and repair mechanisms.

We anticipate that the conserved genetic mechanisms observed in

regeneration of the lizard tail may have particular relevance for

development of regenerative medical approaches.

Supporting Information

Figure S1 Gene Ontology analysis of differentially
expressed genes identified by both Cuffdiff2 and
DESeq2. 130 genes were identified as differentially expressed

by both methods (Figure 1B-C; Table S3; Table S4). (A-B) A

treemap overview of differentially expressed genes in (A) Cluster I

and (B) Cluster II based on representative Gene Ontology

Biological Processes. The relative sizes of the treemap boxes are

based on the |log10(p-value)| of the respective GO term. Related

terms are visualized with the same color, with the representative

category for each color group denoted in the legend.

(EPS)

Figure S2 Genes with high expression (.10-fold change)
in the regenerating tail relative to the embryos and
satellite cells. 44 differentially expressed genes had .10-fold

change in S1 and S2 gene expression (FPKM) relative to the

embryos and satellite cells (orange cluster) and 86 genes had .10-

fold change in S4 and S5 (yellow cluster).

(EPS)

Figure S3 Satellite cells isolated from adult skeletal
muscle express PAX7 and can differentiate into myo-
tubes. (A-B) Detection of myosin heavy chain (MHC) in

proliferating (A) and differentiated (B) A. carolinensis satellite

cells. MHC was detected using MY-32 monoclonal antibody and

HRP-conjugated anti-mouse secondary antibody with DAB stain.

Immunofluorescence of lizard (C-F) and mouse (G-H) satellite

cells. (C-D, G-H) PAX7 was detected using a monoclonal antibody

and visualized by FITC-conjugated anti-mouse secondary anti-

body, and nuclei were stained with DAPI. (E-F) Cells with no

primary antibody and FITC-conjugated anti-mouse secondary

antibody only, and nuclei stained with DAPI.

(TIF)

Figure S4 Histological analysis of proliferation in the 25
dpa regenerating tail. (A-G) PCNA immunohistochemistry of

the 25 dpa regenerating tail (brown nuclei), counterstained with

hematoxylin (blue nuclei). (A) PCNA is expressed throughout the

regenerating tail, indicating a lack of a single proliferative zone.

The dermis near the proximal base (B) and tip (C) of the

regenerating tail, condensing cartilage tube (D), ependymal core

(E), and developing muscles near the proximal base (F) and tip (G)

of the regenerating tail all show PCNA positive cells.

(TIF)

Figure S5 Immunohistochemistry shows few prolifer-
ating cells in the original tail. (A-D) Proliferating cell nuclear

antigen (PCNA) immunohistochemistry of the original tail (brown

nuclei), counterstained with hematoxylin (blue nuclei). (A)

Transverse section of the original tail. (B-D) There are limited

PCNA-positive cells in the centrum (B), skeletal muscle (C) and

skin (D). There is some endogenous pigmentation due to

chromatophores in the skin (D). (F) Original tail no primary

antibody control, counterstained with hematoxylin. Composites: A
& F. Scale bars: 200 mm (A, F), 20 mm (B-D).

(TIF)

Table S1 A. carolinensis genome annotation version
2.2.1 in comparison with previous annotations.
(DOCX)

Table S2 Summary of RNA-Seq reads.
(DOCX)

Table S3 Differentially expressed genes in the lizard
regenerating tail at 25 dpa analyzed by Cuffdiff2.
(DOCX)

Table S4 Differentially expressed genes in the lizard
regenerating tail at 25 dpa analyzed by DESeq2.
(DOCX)

Table S5 GO Biological Process analysis (DAVID) on
differentially expressed genes in the proximal regener-
ating tail (Cluster I).
(DOCX)

Table S6 GO Biological Process analysis (DAVID) on
differentially expressed genes in the regenerating tail tip
(Cluster II).
(DOCX)

Table S7 KEGG pathway analysis (DAVID) on differen-
tially expressed genes in the 25 dpa regenerating tail.
(DOCX)

Table S8 Differentially expressed genes elevated (10-
fold) in the regenerating tip compared to embryo and
satellite cells.
(DOCX)

Table S9 Differentially genes elevated (10-fold) in the
proximal regenerating tail compared to embryo and
satellite cells.
(DOCX)
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