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Abstract

The evolutionary history of certain species such as polyploids are modeled by a generalization of phylogenetic trees called
multi-labeled phylogenetic trees, or MUL trees for short. One problem that relates to inferring a MUL tree is how to
construct the smallest possible MUL tree that is consistent with a given set of rooted triplets, or SMRT problem for short.
This problem is NP-hard. There is one algorithm for the SMRT problem which is exact and runs in O(7n) time, where n is the
number of taxa. In this paper, we show that the SMRT does not seem to be an appropriate solution from the biological point
of view. Indeed, we present a heuristic algorithm named MTRT for this problem and execute it on some real and simulated
datasets. The results of MTRT show that triplets alone cannot provide enough information to infer the true MUL tree. So, it is
inappropriate to infer a MUL tree using triplet information alone and considering the minimum number of duplications.
Finally, we introduce some new problems which are more suitable from the biological point of view.
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Introduction

MUL trees are rooted phylogenetic trees where some leaves are

labeled by the same taxa. They find applications in the study of the

evolution of polyploids. The other applications of MUL trees

include molecular systematics, biogeography, the study of host-

parasite cospeciation and computer science [8,11,15,18–20,22]. In

this paper we focus on rooted binary MUL trees. Several

algorithms for constructing MUL trees from various datasets are

introduced. Examples include building consensus MUL trees

[6,14,15], constructing a phylogenetic network from a MUL tree

[10] and transforming a collection of MUL trees into a collection

of evolutionary trees [23]. One of the problems in the field of

inferring MUL trees is to construct a smallest possible MUL tree

consistent with a given set of rooted triplets, or SMRT problem for

short. It is proved that SMRT is an NP-hard problem [9]. Up to

now, a number of algorithms for inferring a phylogenetic tree or

network from a set of triplets are presented [1,4,12,13,24–26].

However, there is only one algorithm for constructing a smallest

possible MUL tree from a set of triplets [9]. This algorithm is exact

and runs in O(7n) time where n is the number of taxa. Here, we

present the MTRT algorithm which is a heuristic method for the

SMRT problem. MTRT is based on Aho et al.’s algorithm

presented in [1]. Aho et al.’s algorithm is a top-down algorithm

that constructs a rooted tree consistent with a given set of triplets, if

such a tree exists. In the MTRT algorithm, we modify the Aho et

al.’s algorithm to construct a MUL tree with the minimum

number of duplications that is consistent with a given set of triplets.

The duplication in a MUL tree is defined in the next section. We

tested the performance of the MTRT algorithm on more than 400

biological and simulated datasets and showed that MTRT is

efficient and can often find the optimal answer in practice.

Furthermore, we showed that minimizing the number of

duplications may not be an appropriate criterion for inferring a

MUL tree.

Preliminaries
A rooted triplet, or triplet for short, is a binary rooted tree on

three distinct taxa. A triplet on three taxa i, j and k is denoted by

ijDk if the lowest common ancestor of i and j is a proper

descendant of that of i and k, or j and k. Let < be a set of triplets

on a taxa set L. For any subset L’ of L, the set of all triplets

ijDk [ < for which i, j, k [ L’ is called the set of triplets induced

by L’ and is denoted by <DL’. We also set < L, L’ð Þ :~
fabDc [ <DL : either a, b [ L’ or c [ L’g. A triplet ijDk and a

MUL tree M are said to be consistent if ijDk is an embedded

subtree of M. We say that a MUL tree M and a given set < of

rooted triplets are consistent if every triplet in < is consistent with

M. The set <(M) of all triplets consistent with M is called the

triplet encoding of M. The following definitions are taken from

[9]:

For any MUL tree M, denote the set of all leaf labels that occur

in M by L(M). For any leaf label x [ L(M), the number of

duplications of x is equal to the number of occurrences of x in M

minus 1. The number of leaf duplications in M, denoted by d(M),
is the total number of duplications of all leaf labels in L(M).
Define m(M) as the number of leaves in M. Then,

d(M)~m(M){DL(M)D. Now, we consider the following problem,

called the smallest MUL tree from rooted triplets problem, or

SMRT for short:
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SMRT problem. Given a set < of rooted triplets over a leaf

label set L, output a MUL tree M with L(M)~L which is

consistent with < and minimizes d(M).

Results

Simulation data
In this section, we report the results of our simulation study. For

all data, the MTRT algorithm was run on a laptop with a

1.8 GHz Dual Core processor and 1GB RAM. MTRT is

implemented in MATLAB. To test the performance of the

algorithm, we simulated 400 MUL trees by Mesquite program

[16]. This program can simulate and analyze gene trees from

multiple populations. Three components must be established in

Mesquite to do this:

1. A block of taxa representing the gene sequences.

2. A block of taxa representing the species (or populations).

3. A taxa association block, which is a special block of information

that indicates how the taxa representing genes are associated

with the taxa representing species.

Once these three components are established, Mesquite

simulates gene trees by a coalescent process. The simulation starts

at each extant population. Within each, the ancestry of the gene

copies contained (as specified by the Taxa Association) is simulated

by coalescence, going backward in time until the simulation arrives

at the previous population (species) divergence. Mesquite makes

this reconstruction under one assumption: that the only process

occurring is gene duplication or extinction. Thus, the reconstruc-

tion reconciles the gene tree into the population tree so as to

minimize the depths of gene tree divergences, which also

minimizes gene duplication or extinction events, see [16] for

more details.

Now we describe the procedure of simulating MUL trees.

Suppose the gene tree GT produced by Mesquite has n taxa. We

considered the number of taxa for the species tree ST associated

with GT between n=2 and n. Then, we randomly indicated how

the taxa representing genes are associated with the taxa

representing species to obtain a taxa association block. After the

simulation of the gene tree, to obtain a MUL tree, we replaced

each gene by the species that belong to it. In all simulations, we

considered n between 5 and 50. For each simulated MUL tree, we

extracted all its triplets and applied the MTRT algorithm on the

triplet set. The results show that in 42 percent of the datasets,

MTRT produces a MUL tree which has less number of

duplications than that of the original MUL tree. In only 10

percent of the datasets, the number of duplications for the output

MUL tree of MTRT is greater than that of the original MUL tree.

For the remaining 48 percent, the number of duplications for both

MUL trees are the same. Hence, in 90 percent of the datasets, the

algorithm MTRT constructs a MUL tree that has less or equal

number of duplications than that of the original MUL tree. The

minimum, maximum and average running times of the algorithm

on 400 simulation datasets are 0.017, 40.36 and 9.1 seconds

respectively. Figure 1 shows a simulated MUL tree. The output of

the MTRT for the triplet set extracted from this MUL tree is given

in Figure 2. The output MUL tree has one duplication while the

original MUL tree has two duplications. We also compare MTRT

with the exact algorithm presented in [9]. Since the exact

algorithm requires exponential time and space, we can only run

this algorithm on 100 small datasets which have 5–10 taxa. In 86

datasets, the MUL trees produced by both MTRT and exact

algorithm have the same duplications. This shows that MTRT in

many cases produces the smallest MUL trees for the triplet sets.

For further study, we analysed the results of the exact algorithm.

We found that, in 56 datasets, the exact algorithm produces a

MUL tree which has less number of duplications than that of the

original MUL tree.

Real data
To test the performance of the MTRT on real biological

datasets, we applied MTRT on three datasets. The first and

second datasets containing high-polyploid North American and

Hawaiian violets [17]. All major morphological groups occurring

Figure 1. An original MUL tree used to test the MTRT algorithm.
doi:10.1371/journal.pone.0103622.g001
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in North America were sampled. All sequence were aligned with

MUSCLE [7] and phylogenies were constructed using maximum

likelihood. The third dataset containing the flowering plant genus

Silene (Caryophyllaceae) was published in [21]. The gene trees in

[21] are reconstructed using standard techniques in phylogenetic

analysis from regions of the nuclear RNA polymerase gene family,

two concatenated chloroplast regions and one nuclear ribosomal

region, see [10] for more details. For each original MUL tree, we

extracted all triplets and then apply MTRT on these triplets. In all

cases, MTRT constructs a MUL tree which has less number of

duplications than that of the original MUL tree. The original

MUL trees for first and second datasets have 13 and 20

duplications, whereas the MUL trees produced by MTRT have

11 and 18 duplications respectively. Due to limitations of space,

the MUL trees associated with one of the data are shown. Figure 3

and Figure 4 show the original MUL tree and the MUL tree

constructed by MTRT for the triplet set extracted from the

original MUL tree respectively. The original MUL tree for third

dataset has 7 duplications, whereas the MUL tree produced by

MTRT has 5 duplications. Figure 5 and Figure 6 show the

original MUL tree and the MUL tree constructed by MTRT

respectively. The labels represent Silene species, namely, S.

ajanensis (A), S. uralensis (U), S. involucrata (I), S. sorensenis (S),

S. ostenfeldii (O), S. zawadskii (Z), S. linnaeana (L), S. uralensis

(Mongolia) (UM), S. samojedora (SAM), S. villosula (V), S.

sachalinensis (SAC) and S. tolmatchevii (T).

Reconstruction accuracy
For a phylogeny reconstruction algorithm, if a certain tree or

network is used to obtain the input data, the algorithm should

return exactly this tree or network. This is an important property

for reconstructing phylogenies and known as the consistency

principle. In the previous section, we observed that, for half of the

simulated datasets and two real datasets, the number of

duplications for input and output MUL trees are different.

Further investigation showed that although some output MUL

trees differ from input MUL trees, the outputs are consistent with

all triplets corresponding to input MUL trees. In addition, we

observed that some output MUL trees have more triplets than the

corresponding input MUL trees. These observations show that

inferring a MUL tree by minimizing the number of duplications

may not properly detect biological properties and evolutionary

relationships. So, there is a deficiency in the SMRT problem from

a biological point of view. For further analysis, we used a concept

which has already been defined for a tree called the rooted triplet

distance to compare the output MUL trees with the input MUL

trees [5].

Definition 1. The rooted triplet distance between two rooted

phylogenetic trees T1 and T2 on taxa set X is defined as

TD T1, T2ð Þ~ 1

2
D< T1ð ÞD< T2ð ÞD,

where D is the symmetric difference between two sets. For

example, for the two MUL trees M1 and M1
’ shown in Figure 7a

and Figure 7b respectively, M1
’ is consistent with all triplets in M1

and has less duplication than M1. Since M1
’ satisfies an extra

triplet 23D1 which is not contained in <(M1), so

TD(M1, M1
’ )~0:5. It shows that it is possible to present an

algorithm satisfying all conditions of SMRT problem but does not

return the correct MUL tree, that is, it does not satisfy the

consistency principle of phylogeny reconstruction algorithms.

Now, consider another two examples: MUL trees M2 and M2
’

shown in Figure 7c and Figure 7d respectively. These MUL trees

have the same number of duplications and <(M2)~<(M2
’ ), that

is, TD(M2, M2
’ )~0. But these are different MUL trees because

they have different duplication leaves and have different clusters.

This situation happened because in a MUL tree, a triplet may

occur several times. For example, the triplet 12D3 occurred three

times in the MUL tree shown in Figure 8. This phenomenon

exactly occurred in Figure 7c and Figure 7d. For instance, the

triplet 12D4 occurred in M2 once whereas it occurred twice in M2
’ .

Figure 2. The obtained MUL tree by applying MTRT on the triplets extracted from the MUL tree shown in Figure 1.
doi:10.1371/journal.pone.0103622.g002
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Figure 3. An original MUL tree on violet species with 20 duplications.
doi:10.1371/journal.pone.0103622.g003

Figure 4. The obtained MUL tree by applying MTRT on the triplets extracted from the MUL tree shown in Figure 3. This MUL tree has
18 duplications.
doi:10.1371/journal.pone.0103622.g004
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Hence, the rooted triplet distance introduced in Def. 1 does not

properly show the distance between two MUL trees.

A multiset is defined as a 2-tuple (Y , m) where Y is some set

and m is a function from Y to the positive natural numbers N.

The set Y is called the underlying set of elements. For each y [ Y ,

the multiplicity m(y) is denoted to be the number of occurrences of

y. The symmetric difference between two multisets (Y1, m1) and

(Y2, m2) is denoted by Y1, m1ð ÞDm Y2, m2ð Þ :~ x [ Y1|Y2 :f
m xð Þ=0g, where

m(x)~

Dm1(x){m2(x)D x [ Y1\Y2

m1(x) x [ Y1{Y2

m2(x) x [ Y2{Y1

8><
>:

We also define the size of a multiset (Y , m) as

Y , mð Þj j :~
P

y [Y

m yð Þ. For example, consider two multisets

f1, 1, 1, 2, 3, 3, 4g and f1, 1, 2, 2, 2, 3, 3, 5, 5g. The symmetric

Figure 5. An original MUL tree on flowering plants with 7 duplications.
doi:10.1371/journal.pone.0103622.g005

Figure 6. The obtained MUL tree by applying MTRT on the triplets extracted from the MUL tree shown in Figure 5. This MUL tree has 5
duplications.
doi:10.1371/journal.pone.0103622.g006
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difference between these sets and its size are f1, 2, 2, 4, 5, 5g and

6 respectively. For a MUL tree M, let <’(M)~(<(M), m) be the

triplet encoding multiset of M. It means that if a triplet is seen in

the MUL tree k times, then <’(M) contains this triplet k times.

We define the new triplet distance between two MUL trees as

follows:

Definition 2.

(a) The rooted triplet distance between two rooted phylogenetic

MUL trees M1 and M2 on taxa set X is defined as

TDM M1, M2ð Þ~D<’ M1ð ÞDm<’ M2ð ÞD:

(b) The rooted triplet distance between a rooted phylogenetic

MUL tree M ’ and a multiset of triplets < on taxa set X is

defined as

TDM M ’, <ð Þ~D<’ M ’ð ÞDm<D:

(c) The rooted triplet distance between two multisets of triplets

<1 and <2 on taxa set X is defined as

TDM <1, <2ð Þ~D<1Dm<2D:

Using the new rooted triplet distance TDM () defined in Def. 2,

the distance between MUL trees M2 and M2
’ shown in Figure 7

equals TDM (M2, M2
’ )~56. Note that a MUL tree is not uniquely

defined by its multiset of triplets. For example, two MUL trees

shown in Figure 9 have the same multiset of triplets. However, it

seems that for most of the MUL trees specially for large MUL

trees, it is true that two MUL trees are isomorphic if they have new

triplet distance TDM () equal to 0. To show this, we computed the

triplet distance TD() and new triplet distance TDM () for all

simulated and real datasets. The results of simulated datasets are

shown in Table 1. Suppose Min is a MUL tree and Mout is the

result of applying MTRT algorithm on <(Min). We define

RD(Min, Mout) :~d(Mout){d(Min). We classify the simulated

datasets into 5 classes:

. A :~fdatasets : TD(Min, Mout)~0g,

. B :~fdatasets : RD(Min, Mout)v0g,

Figure 7. Comparing MUL trees using triplet distance. (a) The MUL tree M1 , (b) The MUL tree M1
’ is consistent with <(M1). The MUL tree M1

’

has less duplication than M1 and is consistent with the triplet 23D1 which is not contained in <(M1). So, TD(M1, M1
’ )~0:5, (c) The MUL tree M2 , (d)

The MUL tree M2
’ is consistent with <(M2). The MUL trees M1 and M2

’ have the same number of duplications and TD(M2, M2
’ )~0.

doi:10.1371/journal.pone.0103622.g007

Figure 8. A MUL tree which has three different triplets 12D3.
doi:10.1371/journal.pone.0103622.g008
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. C :~fdatasets : RD(Min, Mout)~0g,

. D :~fdatasets : RD(Min, Mout)w0g,

. E :~fdatasets : TDM (Min, Mout)~0g:

Table 1 shows the intersection of above sets. For example, in

100 datasets, MTRT produces a MUL tree which has less

duplication than that of the input MUL tree and the correspond-

ing triplet distance is 0. In 74 datasets, the output and input MUL

trees have the same number of duplications and the new distance

between them is 0. We studied these 74 datasets and found that

their corresponding output and input MUL trees are exactly the

same. We also examined the exact algorithm on 100 datasets

mentioned in Results section. The results show that in 56 datasets,

the exact algorithm produces MUL trees which have less number

of duplications than that of the original MUL tree. For the

remaining datasets, the number of duplications for both MUL

trees are the same. This shows that for more than fifty percent of

the cases, the MUL tree produced by the exact algorithm is

different from the input MUL tree. We also obtained the TD() and

TDM () for real datasets. For the first real data, TD() is 98, that is,

the output MUL tree has 196 triplets which are not contained in

input triplet set. TDM () for this data is 2573. For second real data,

TD() is 76.5, that is, the output MUL tree has 153 triplets which

are not contained in input triplet set. TDM () for this data is 6151.

For third data, TD() and TDM () are 2 and 255 respectively. These

numbers and Table 1 show that in many cases the SMRT

problem and its conditions do not satisfy the consistency principle.

Hence in many cases, the algorithms based on SMRT fail to

produce the exact MUL tree.

Discussion and Future Works

In this paper, we presented a heuristic algorithm MTRT for the

SMRT problem. MTRT is implemented in MATLAB and is

available at http://bs.ipm.ir/softwares/MTRT/. The goal of the

algorithm is to construct a minimal MUL tree that is consistent

with the input set of triplets and minimizes the number of its

duplications. Note that a phylogenetic network can be associated

to a MUL tree [14]. Therefore, it seems that constructing the

smallest MUL tree from a set of triplets could be an alternative

method for the problem of constructing a phylogenetic network

with minimum reticulation from a set of triplets. To test the

performance of the MTRT, we applied it on 400 simulated MUL

trees and three real datasets. For each simulated and real MUL

tree, we extracted all its triplets and applied the MTRT algorithm

on the triplet set. We have shown that in most cases, the MTRT

works well and has an acceptable running time. In only 10 percent

of the datasets, the number of duplications for the output MUL

tree of MTRT is greater than that of the original MUL tree. We

also compared MTRT with exact algorithm. To do this, we

executed the exact algorithm on 100 datasets. We showed that, in

86 datasets, the MUL trees produced by both MTRT and exact

algorithm have the same duplications. We found that for more

than 50 percent of the cases, the exact algorithm produces an

output which is different from the input. It shows that the SMRT

problem does not satisfy the consistency principle. So, having the

set of triplets consistent to a MUL tree is not enough to infer that

MUL tree. Furthermore, considering the minimum number of

duplications to reconstruct a MUL tree that is consistent with a

given set of triplets is not appropriate to infer the correct MUL

tree. Therefore, from a biological point of view, there is a

deficiency in the SMRT problem. Equivalently, the problem of

constructing a phylogenetic network with minimum reticulation

from a set of triplets is not consistent with the consistency principle

of phylogeny reconstruction methods. It is necessary to consider

other conditions to obtain proper MUL trees or phylogenetic

networks. We extended the definition of triplet distance TD() and

introduced a new triplet distance TDM (). For all datasets, we

compared the output MUL tree with original MUL tree by

TDM (). For all datasets with TDM ()~0, we showed that the

output and original MUL trees are the same. According to these

observations, we propose the following problem, called MUL tree

from a multiset of rooted triplets with minimum triplet distance, or

mMTd for short:

mMTd problem. Given a multiset < of rooted triplets over a

leaf label set L, output a MUL tree M which minimizes

TDM (M, <).

Note that the maximum rooted triplets consistency problem, or

MRTC for short [4], is a special case of mMTd problem. A

natural question is how a multiset can be generated from

biological data? For example, in the study of area cladograms,

suppose a set of triplets is produced and we are interested to

replace organisms by area names. Or in the other field, suppose we

want to replace parasites by their host. Thus, a multiset of triplets

may be derived from a great variety of biological processes.

We can simply extend the definition of the new triplet distance

to a phylogenetic network. Hence, the other problem can be

defined as follows, called Network from a multiset of rooted triplets

with minimum triplet distance, or nMTd for short:

nMTd problem. Given a multiset < of rooted triplets over a

leaf label set L, output a network N which minimizes TDM (N,<).

Materials and Methods

This section describes a heuristic method MTRT that aims to

solve the SMRT problem. We first define the concept of a

separating set in a graph. Consider a graph G~(V , E). The

subgraph G½U � induced by U5V has a vertex set U and an

induced edge set EDU that consists of all edges in G whose both

endpoints lie in U . Suppose G is a connected graph. The set S5V

is called a separator, or a separating set, of G if G½V \S� is

disconnected. Now, let < denotes a given set of triplets over a leaf

label set L. MTRT tries to build a MUL tree M which is

consistent with < and its leaf duplications d(M) is as small as

possible. MTRT is based on Aho et al.’s algorithm [1]. The

Auxiliary graph, denoted by AG(<), is required, which is a graph

corresponding to < with vertex set L and edge set E such that:Figure 9. Two different MUL trees with tha same multiset of
triplets f12D3, 23D1g.
doi:10.1371/journal.pone.0103622.g009
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Va, b [ L : e~ a, bf g [ EuAc [ L s:t abDc [ <:

In general, the algorithm MTRT does the following steps.

AG(<) is computed first. If AG(<) is disconnected, then the set L
is partitioned into two non-empty sets A and B such that the set of

vertices in each connected component of AG(<) is a subset of

either A or B. Now, the triplet sets <A and <B are computed. We

set <A :~<DA and <B :~<DB. If AG(<) is connected, then MTRT

tries to find the minimum separating set S and classifies the

connected components of AG½L\S� into two non-empty sets A’
and B’. It is well known that finding the all minimum-size

separators is an NP-hard problem [3]. To find a minimum

separator, we use AllMinSep algorithm [2]. AllMinSep computes

the set of all minimal separators of a graph G in time O(n3DhD)
where DhD is the number of all minimal separators. AllMinSep first

produces an initial set of minimal separators h. Then for each

Q [ h, a family of other minimal separators is generated and added

to h. This procedure is done until all minimal separators are

obtained, see [2] for more details. Since the number of all minimal

separators can be exponential and we do not need all the minimal

separators, so we use the AllMinSep with a small change to make it

a greedy algorithm. Suppose the initial set of minimal separators h

has been obtained and m is the size of the smallest separator in h.

Then for each Q [ h, a family of other minimal separators h’ is

generated. Now, the separator Q’ [ h’ is added to h if DQ’Dƒm.

Let S be a separator computed by AllMinSep and the

connected components of AG½L\S� are classified in two non-

empty sets A’ and B’. We set A~A’|S and B~B’|S. The

triplet sets corresponding to A and B are considered as follows:

<A :~<DA{<(A, S) and <B :~<DB{<(B, S):

Now, the algorithm recursively handles sets A and B with triplet

sets <A and <B respectively. Let the MUL trees constructed by

MTRT for the sets A and B are MA and MB respectively. We

report the MUL tree MTfA,Bg formed by connect MA and MB

with the same root. For the case that AG(<) is connected, we

define <A and <B in such a way because the members of S are

repeated on both sides of the root. So, the set

fabDc [ < : either a, b [ S or c [ Sg is consistent with the

MTfA,Bg and it is unnecessary to consider this set. It is obvious

that the output MUL tree of the algorithm is consistent with <.

We now illustrate the steps of the algorithm MTRT by an

example.

Table 1. The results of MTRT algorithm on simulated datasets.

DAD~95 DA\BD~50 DA\CD~45 DA\DD~0 DA\ED~37

DBD~168 DB\AD~100 DB\CD~0 DB\DD~0 DB\ED~0

DCD~192 DC\AD~90 DC\BD~0 DC\DD~0 DC\ED~74

DDD~40 DD\AD~0 DD\BD~0 DD\CD~0 DD\ED~0

DED~74 DE\AD~74 DE\BD~0 DE\CD~74 DE\DD~0

In the table, A :~fdatasets : TD(Min, Mout)~0g, B :~fdatasets : RD(Min, Mout)v0g, C :~fdatasets : RD(Min, Mout)~0g, D :~fdatasets : RD(Min, Mout)w0g and
E :~fdatasets : TDM (Min, Mout)~0g where Min is a MUL tree and Mout is the result of applying MTRT algorithm on <(Min).
doi:10.1371/journal.pone.0103622.t001

Figure 10. Steps of MTRT. (a) The auxiliary graph corresponding to <~f12D3, 13D4, 23D1, 34D1, 35D2, 45D1, 45D3g, (b) MTfA,Bg , (c) The auxiliary graph
AG(<A), (d) The auxiliary graph AG(<B), (e) A smallest MUL tree produced by MTRT algorithm.
doi:10.1371/journal.pone.0103622.g010
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Let L~f1, 2, 3, 4, 5g and <~f12D3, 13D4, 23D1, 34D1, 35D2,
34D5, 45D1, 45D2g be the set of triplets over L. The auxiliary graph

corresponding to < is shown in Figure 10a. The set S~f3g is the

minimum separator of AG(<). Hence, A~f1, 2, 3g and

B~f3, 4, 5g. MTfA, Bg is shown in Figure 10b. The induced

triplet sets for A and B are <DA~f12D3, 23D1g and <DB~f34D5g
respectively. Now, R(A, S)~f12D3g is removed from <DA to

obtain <A. So, <A~f23D1g and <B~f34D5g. The auxiliary

graphs AG(<A) and AG(<B) are shown in Figure 10c and

Figure 10d respectively. Finally, the MUL tree produced by

MTRT algorithm is shown in Figure 10e.

We now describe two cases that may occur in some steps of the

algorithm:
Case 1. It is possible at some steps of the algorithm, for a leaf

label set U , <U~ 60. In this case, the triplets of an arbitrary tree on

U is considered as <U . For instance, let

<~f12D3, 13D5, 23D4, 34D1, 35D2, 34D5, 45D1, 45D2g. The separator

of AG(<) is S~f3g. So, A~f1, 2, 3g, B~f3, 4, 5g,
<DA~f12D3g and <DB~f34D5g and consequently, <A~ 60 and

<B~f34D5g. Now, an arbitrary triplet set consistent with a tree on

leaf label set A is considered as <A, for example <A :~f23D1g. If

the algorithm runs to the end, the MUL tree shown in Figure 10e

is produced.

Case 2. There are more than one minimum separating set. In

this case, MTRT chooses a separator S with minimum aS , where

aS~2 D<ADzD<BDð ÞzDD<AD{D<BDD:

If < has more triplets, then the probability of having more

duplications is high. The first part of aS help to reduce the number

of duplications and the second part of aS help to produce a MUL

tree which is relatively balanced. Since minimizing the number of

triplets is more important, we give bigger weight (2, by default) for

the first part. The pseudocode of the MTRT algorithm is detailed

in Figure 11.
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