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Abstract

The ever-growing volume of data routinely collected and stored in everyday life presents researchers with a number of
opportunities to gain insight and make predictions. This study aimed to demonstrate the usefulness in a specific clinical
context of a simulation-based technique called probabilistic sensitivity analysis (PSA) in interpreting the results of a discrete
time survival model based on a large dataset of routinely collected dairy herd management data. Data from 12,515 dairy
cows (from 39 herds) were used to construct a multilevel discrete time survival model in which the outcome was the
probability of a cow becoming pregnant during a given two day period of risk, and presence or absence of a recorded
lameness event during various time frames relative to the risk period amongst the potential explanatory variables. A
separate simulation model was then constructed to evaluate the wider clinical implications of the model results (i.e. the
potential for a herd’s incidence rate of lameness to influence its overall reproductive performance) using PSA. Although the
discrete time survival analysis revealed some relatively large associations between lameness events and risk of pregnancy
(for example, occurrence of a lameness case within 14 days of a risk period was associated with a 25% reduction in the risk
of the cow becoming pregnant during that risk period), PSA revealed that, when viewed in the context of a realistic clinical
situation, a herd’s lameness incidence rate is highly unlikely to influence its overall reproductive performance to a
meaningful extent in the vast majority of situations. Construction of a simulation model within a PSA framework proved to
be a very useful additional step to aid contextualisation of the results from a discrete time survival model, especially where
the research is designed to guide on-farm management decisions at population (i.e. herd) rather than individual level.
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Introduction

The ever-growing volume of data routinely collected and stored

in everyday life presents researchers with a number of opportu-

nities to gain insight and make predictions. Routine collection of

data with potential research application is now very widespread,

and is facilitating research using much larger sample sizes than in

the past. One example of this is in agriculture, where widespread

adoption of computerised recording systems has largely been

driven by the need to manage larger enterprises and maximise

efficiency, but is also creating an invaluable resource for

researchers. A wide variety of traditional and new techniques

have been applied to analysis of the large, retrospective datasets

generated in this way, but in some cases more sophisticated and

robust analytical techniques can yield results which are harder for

the end user of the research to interpret and understand.

This study focuses on the relationship between a time-to-event

outcome (in this case, the time between parturition and subsequent

conception in a dairy cow) and a disease event (in this case

lameness). Techniques for analysis of such data have evolved over

the years, and this specific field has seen publications evaluating

this relationship in a univariate way [1] using Kaplan-Meier

survival analysis, and in a multivariate framework, using various

modifications of the Cox proportional hazards model [2–4].

However, accounting appropriately for time-dependent variables

(for example, accounting for the possibility that a case of lameness

may affect probability of conception within a specific frame of time

around the case) using such approaches can be challenging, and

model assumptions can be difficult to satisfy and are not always

tested [5].

Another approach is discrete time survival analysis [6,7], where

the dataset is amplified into smaller units of time for each

individual animal and logistic regression is used to predict the

probability of the outcome of interest at each time-point. This

method is substantially more flexible, and more easily incorporates

statistical advances such as multilevel regression using random

effects to account for hierarchical clustering within data [7,8] (for

example, of cows within herds), and Markov chain Monte Carlo

sampling for parameter estimation within a Bayesian framework

[9]. However, results from this type of analysis can be difficult to

interpret, especially at the population level. For example, such

analysis may yield an estimated odds ratio for the association

between a lameness event and the probability of conception

occurring during a given period of time, but there is no intuitive

way to interpret the likely importance of this at the population
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level. In this context, on-farm interpretation is very important,

because decision makers (e.g. a dairy herd’s manager or veterinary

clinician) need to be able to estimate the potential improvement in

a herd’s reproductive performance that could result from a

reduction in lameness in order to conduct a cost benefit analysis

for intervention. Simulation based approaches can be used to help

address this issue, allowing the researcher to evaluate relationships

between inputs and outputs of a given system across plausible

scenarios. One such technique is known as probabilistic sensitivity

analysis (PSA), and is commonly employed in health economic

evaluations [10,11] to explore which inputs to a complex model

have the most capacity to perturb the output. Such simulation

models can also be used as the basis for decision support tools, an

application common in the financial sector [12].

Good reproductive performance is essential for efficiency in

dairy production [13], which in turn is increasingly important in

the context of a global increase in demand and downward pressure

on resource use [14]. A wide range of factors are known to affect

dairy cow fertility, including incidence of clinical disease.

Lameness is one of the most common endemic diseases in the

modern dairy herd, with reported prevalence in the UK at over

35% [15], and has previously been associated with depressed

reproductive performance in affected cows compared to unaffect-

ed controls [2,4,16,17]. However, a very high proportion of

previous studies have been carried out using either a single herd or

a small number of herds, and those deriving data from wider

populations have often failed to detect an association [18,19], as

did the most recent study in UK dairy cows [1]. Alongside this, a

very wide variety of other factors are known to affect cow fertility.

Therefore the clinician wishing to improve a herd’s reproductive

performance needs to interpret this research evidence in the

context of the other influences on fertility when deciding how

much weight should be given to control of lameness to improve

reproduction.

In this study, the association between clinical lameness events

and reproductive performance was evaluated using routinely

collected management data from a group of dairy herds. The aim

of the study was to explore the usefulness of simulation-based

techniques as an aid to interpret the clinical significance of a

discrete time survival model evaluating association between

disease events and reproductive performance at herd level.

Materials and Methods

Data Collection and Restructuring
Routinely recorded farm management data were collected from

39 dairy herds across England and Wales. These were the subset of

herds described in an earlier study [20] which demonstrated

consistent recording of clinical lameness events (i.e. treatment of

lame cows). Data collection, quality auditing and study inclusion

criteria are described in detail by Hudson et al. [20]. Herds were

not excluded on the basis of breed: 38 were mainly Holstein or

Holstein–Friesian and one predominantly Guernsey. Detail

regarding each event (for example, which limb was affected and

the diagnosis made) was not evaluated in this study: all clinical

lameness events were treated as equal. Where two lameness events

were recorded for the same cow within 7 days, the second was

removed (since both treatment records would have been likely to

reflect the same disease event). Table 1 shows descriptive

information for these herds.

Data were restructured into a format where each unit (line) of

data was a two-day period during each lactation between 20 and

220 days after parturition (days in milk, DIM) where the cow was

‘‘at risk’’ of becoming pregnant (lactations were censored after

culling, death, sale or conception occurred). For each of these two-

day risk periods, a binary variable was used to represent whether

the cow became pregnant during the risk period. Clinical lameness

records were used to determine whether a case of lameness was

recorded at a variety of different time-frames relative to each risk

period (see Table 2). Additional variables at both lactation level

(e.g. parity of cow, lactation 305-day adjusted milk yield) and risk

period level (e.g. DIM at beginning of risk period, month and year

of risk period) were calculated for each risk period (Table 2).

Where necessary, categorical variables were recoded to avoid

categories containing small numbers of risk periods/lactations (e.g.

animals of parity 5 or above were grouped as a single category).

This generated a dataset consisting of 1,247,677 risk periods from

21,913 lactations in 12,515 cows from 39 herds. Initial data

collation and restructuring was carried out using Microsoft Access

2010 (Microsoft Corp.), with further restructuring and variable

calculation carried out using R v2.14 [21].

Discrete-time survival analysis
A multilevel discrete-time survival model [22] was constructed

to evaluate the association between the probability of a cow

becoming pregnant during a two-day risk period (the outcome)

and the potential explanatory variables described in Table 2. A

three-level hierarchical structure (with risk periods nested within

cows nested within herds) was used to account for correlations

between risk periods from the same cow and cows from the same

herd.

The model took the standard form:

Pregtij*Bernoulli mean~mtij

� �

ln
mtij

1{mtij

 !
~azb1lnDIMtijzb2 lnDIMtij

� �2

zb3Xtijzb4Xijzuijzvj

ð1Þ

vi *N(0,s2
v) ð2Þ

uij *N(0,s2
u) ð3Þ

where t represents a two-day risk period and i and j the ith cow in

the jth herd; mtij the fitted probability of Pregtij (the outcome of the

ith cow in the jth herd becoming pregnant during risk period t);

lnDIMtij the natural logarithm of DIM at the beginning of risk

period t; a the regression intercept; b1 and b2 the coefficients for

the terms representing days in milk; Xtij the vector of risk period

level covariates and b3 the corresponding vector of coefficients; Xij

the vector of cow-level covariates and b4 the corresponding vector

of coefficients; uij the random effect to reflect variation between

individual cows (e.g. due to genetic variation) and vj the random

effect representing variation between herds (e.g. due to nutritional

management or environmental conditions of the herd), with s 2
u
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and s 2
v the variances of the normal distributions of the respective

random effects terms.

Model building and final parameter estimation was carried out

using MLwiN v2.20 [23]. Model building and selection used the

approach described in Hudson et al. [20], with Markov chain

Monte Carlo (MCMC) sampling used for final parameter

estimation [9] and retention in the model of variables where the

95% area of highest posterior density (HPD) for the variable’s

coefficient did not cover zero. Biologically plausible first order

interaction terms were tested, and retained in the model only if

their inclusion made a substantial difference to parameter

estimates for coefficients of the main effects. Inclusion of herd-

level random effects (slope variation) for the lameness-related

model terms was also tested, to account for the possibility that the

association between lameness and reproductive performance could

vary between herds. These were again retained in the model only

if they altered parameter estimates for main effects by more than

1%, or if between-herd variation was large relative to mean effect

size (such that the variance of the herd-level random effect for the

variable was more than 20% of the mean/overall effect).

Model sensitivity analysis revealed that the parameters of

interest were not sensitive to choices made during data restruc-

turing and model building (e.g. choice of risk period duration,

choice of function to represent DIM or selection of timeframes for

lameness events). Simulation-based posterior predictions were used

to evaluate model fit as described in Hudson et al. [20], by

subsetting the data in a variety of ways, using the model to predict

probability of pregnancy for each risk period in the subset and

checking that the observed proportion of risk periods where

pregnancy occurred lay within the 95% coverage interval of the

predicted risk. Model results were illustrated as relative risks using

a similar prediction-based approach [20]. Posterior predictions

were carried out in R v2.14, using MCMC chains exported from

MLwiN.

Probabilistic sensitivity analysis
In order to explore the relationship between herd reproductive

performance and the incidence rate of lameness at herd level, a

simulation model was developed. The aim of this part of the study

was to evaluate the results of the discrete time survival analysis in a

wider context to assess its potential usefulness to inform clinical on-

farm management decisions.

Simulation model structure and process. The outline

structure of the simulation model is shown in Figure 1. The model

was constructed in Microsoft Excel 2010 (Microsoft Corp.), using

Visual Basic for Applications (Microsoft Corp.) for process control.

The explanatory variables in the final discrete-time survival model

became input parameters for the herd-level simulation model,

which was used to simulate 50,000 herds of 200 lactations each.

Simulating a herd first involved drawing the herd-level input

parameters (e.g. the herd’s mean 305-day adjusted milk yield and

incidence rate of clinical lameness) from the distributions shown in

Table 3.

Simulation of the first cow-lactation in the herd was then

commenced by drawing the lactation-level inputs (e.g. the parity of

the cow) from the relevant distributions and simulating a clinical

Table 1. Summary statistics of basic herd information for 39 dairy herds with good fertility and lameness records.

Percentiles

Mean Minimum 25% 50% 75% Maximum

Herd size 243 88 153 202 292 669

Cull rate (%/year) 22 13 20 22 25 31

305 day adjusted milk yield (litres) 8329 4776 7366 8266 9566 11008

Incidence rate of clinical lameness (cases/cow-year) 0.40 0.10 0.22 0.30 0.41 1.88

doi:10.1371/journal.pone.0103426.t001

Table 2. Potential explanatory variables calculated for each risk period in a study investigating the association between lameness
and fertility in 39 dairy herds.

Variable Level Variable type

Parity (lactation number) Lactation Categorical (.4 recoded as single group)

305-day lactation milk yield Lactation Continuous

Year in which lactation began Lactation Categorical (,2003 recoded as single group)

DIM at start of risk period Risk period Continuous

Season of risk period Risk period Categorical (Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec)

Lame 71–100 d before risk period Risk period Binary (lameness case recorded or not)

Lame 43–70 d before risk period Risk period Binary (lameness case recorded or not)

Lame 15–42 d before risk period Risk period Binary (lameness case recorded or not)

Lame within 14 d of risk period Risk period Binary (lameness case recorded or not)

Lame 15–42 d after risk period Risk period Binary (lameness case recorded or not)

Lame 43–70 d after risk period Risk period Binary (lameness case recorded or not)

Lame 71–100 d after risk period Risk period Binary (lameness case recorded or not)

doi:10.1371/journal.pone.0103426.t002
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Figure 1. Structure of the simulation model used for probabilistic sensitivity analysis. Solid black lines indicate process flow, dotted lines
indicate that information from the source of the line is used in the step of the process to which the line leads (denoted by a diamond).
doi:10.1371/journal.pone.0103426.g001
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lameness history for the lactation. The latter was accomplished by

using the distribution of DIM of all clinical lameness events from

the original dataset (Figure 2) to assign a probability that a

lameness event would occur at each two-day risk period through

the lactation in a herd with a given overall lameness incidence

rate. The discrete-time survival model described in the previous

section was used to calculate the predicted probability of

pregnancy occurring during each two-day risk period given the

input parameters for that herd, lactation and risk period. This

probability was adjusted to account for the herd’s overall

(‘‘background’’) level of submission rate and pregnancy rate (i.e.

the variation in these parameters not explained by lameness, milk

yield or other model inputs). These are measures of specific aspects

of a dairy herd’s reproductive performance, submission rate being

the proportion of eligible cows inseminated every 21 days (the

normal length of the oestrous cycle) and pregnancy rate being the

proportion of inseminations leading to a pregnancy. Both of these

‘‘background’’ herd fertility characteristics were represented as

herd-level input parameters with a separate value for each

simulated herd drawn from the relevant distribution.

A binary outcome to represent whether or not the cow became

pregnant during the risk period was drawn from a binomial

distribution based on this calculated probability. Repeated risk

periods were simulated for each cow, until she either became

pregnant or reached 300 DIM (a point at which farmers would

commonly elect to remove cows from the herd if not pregnant), at

which time simulation of the next lactation was begun. When 200

lactations had been simulated, the herd was considered complete.

The mean number of DIM at pregnancy and the proportion of

lactations ending without a pregnancy in each herd were stored

along with the herd-level input parameters before beginning

simulation of the next herd.

Simulation model inputs. Uniform input distributions were

specified for all herd-level inputs, so that every potential

combination of herd-level inputs was equally likely to be selected

at each iteration of the simulation. The ranges for these

distributions were selected based on the authors’ clinical experi-

ence, such that they would be expected to cover the vast majority

of realistic possibilities in UK dairy herds (Table 3). This was not

considered to represent the true joint distributions of these

parameters across herds: the objective was not to speculate on

which situations might occur most commonly, but to evaluate the

potential impact of all different lameness incidence rates across as

wide a variety of herd scenarios as possible. Some of the lactation-

level inputs were drawn from non-uniform distributions so that the

architecture of each simulated herd was realistic (so, for example,

the milk yield for a lactation was drawn from a beta distribution

parameterised such that a cow was likely to draw a lactation yield

close to the herd average, and there was a smaller chance of

drawing a yield much further from the average), as described in

Table 3.

Simulation model outputs and analysis. A single herd-

level outcome was devised to represent reproductive performance

for each simulated herd (to allow evaluation of associations

between this and the various input parameters). The mean

number of DIM at pregnancy and the proportion of cows reaching

300 DIM without conceiving were combined using a modification

of the method of Esslemont et al. [24] to produce a ‘‘modified

FERTEX’’ (mFX) score. This involved comparing each value to a

pre-set target (set at 60 days for the herd’s mean DIM at

pregnancy and zero for proportion of cows in the herd reaching

300 DIM without conceiving), and applying a unit cost to the

difference from target for each. The sum of these two costs on a

per-cow basis for each simulated herd gave that herd’s mFX score.

Since the cost of a culled cow and an additional empty day are

widely acknowledged to vary from herd to herd, these were

considered as herd-level inputs, and each drawn randomly for

each herd from the distributions described in Table 3. The mFX

score for each simulated herd was therefore a cost-based single

measure of overall fertility performance (so that higher performing

herds had lower mFX scores and vice versa).

Results from the simulations were analysed initially by

illustrating associations between herd-level input parameters and

mFX scores graphically using high-density scatterplots. Spearman

rank correlation coefficients were calculated for the association

between each herd-level input and mFX score (a non-parametric

measure of correlation was selected as the mFX scores were

positively skewed). Multiple regression (with the natural logarithm

of mFX score as the outcome) was used to partition variance in

mFX score between the various herd-level inputs. The resulting

Table 3. Input parameters used for each level of simulation in a study investigating the association between lameness and fertility.

Input variable Level Input distribution

Submission rate Herd Uniform, range 10–80%

Pregnancy rate Herd Uniform, range 10–60%

Herd average 305 d milk yield Herd Uniform, range 3000–12,500 litres

Proportion of herd in first lactation Herd Uniform, range 10–40%

Incidence rate of lameness Herd Uniform, range 0.1–1.5 cases/cow-year

Cost per extra empty day Herd Uniform, range £1.20–£4.20

Cost per failure to conceive cull Herd Uniform, range £550–£1750

Parity/lactation number Lactation Discrete, based on proportion of herd in first lactation

305 d lactation milk yield Lactation Beta, centred on herd average with standard deviation of 1,500 litres; adjusted for parity

Days in milk Risk period As described in text

Lame 43–70 d before risk period Risk period Binary, as described in text

Lame within 14 d of risk period Risk period Binary, as described in text

Lame 43–70 d after risk period Risk period Binary, as described in text

Lame 71–100 d after risk period Risk period Binary, as described in text

doi:10.1371/journal.pone.0103426.t003
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regression model was also used to predict the effect on mFX score

of increasing each individual input in turn from the middle of its

input distribution to the upper quartile so that results could be

displayed graphically as a tornado plot (a standard approach for

presentation of PSA results).

Results

There were a total of 16,706 pregnancies from the 1,247,677

risk periods in the dataset, so that 1.34% of risk periods resulted in

a pregnancy (corresponding to around 14% of cows becoming

pregnant during each 21 day oestrous cycle). Of the 22,319

lactations in the dataset, 4,360 involved at least one case of

lameness (corresponding to a lactational first case incidence rate of

19.5%).

Discrete-time survival analysis
Table 4 shows the parameter estimates for the regression model

derived to predict the probability of pregnancy resulting during a

two-day risk period. The predictor variables not directly associated

with lameness showed very similar associations to those seen by

Hudson et al. [20], with probability of pregnancy peaking at

around 110 DIM, decreasing with increasing 305-day adjusted

milk yield and lower predicted probabilities of pregnancy for cows

in higher parities and during the months April to September.

Clinical lameness events during four different time frames relative

to the two-day risk period showed associations with the probability

of pregnancy during the risk period. The largest association was

seen when a lameness event was recorded within 14 days of the

risk period, when the odds of pregnancy were reduced by almost

25% (odds ratio [OR] 0.76, area of 95% highest posterior density

[HPD] 0.69–0.84). Lameness events recorded 43 to 70 days

before, 43 to 70 days after and 71 to 100 days after a risk period

were all associated with a reduction in the odds of pregnancy

during the risk period of around 15% (ORs 0.85, 0.88 and 0.86

respectively; areas of 95% HPD 0.76–0.95, 0.80–0.98 and 0.79–

0.95 respectively). These associations are represented as posterior

predicted relative risks in Figure 3. Predicted risks were also used

to demonstrate that model fit was good. For each subset of data

tested, the observed proportion of risk periods where pregnancy

occurred fell within the 95% area of HPD of predicted risk for that

subset (Figure 4).

Probabilistic sensitivity analysis
Univariate analysis. Univariate analysis of PSA results is

presented using high-density scatterplots in Figure 5. These show

that a herd’s ‘‘background’’ level of submission and pregnancy rate

were the individual inputs with the strongest influence on overall

herd fertility performance, with both being moderately strongly

correlated with herd mFX score (Spearman rank correlation

coefficient 20.65 for submission rate and 20.59 for pregnancy

rate). The herd incidence rate of clinical lameness had no clear

relationship with mFX score, with a Spearman rank correlation

coefficient of 0.028 and the scatterplot showing a square

appearance with no clear trend in the area of highest point density.

Multivariate analysis. Analysis of the simulation results in a

multivariate framework allows visualisation of results from the

discrete time survival model in a clinical context. Table 5 shows

that the herd’s ‘‘background’’ level of submission and pregnancy

rate explained the vast majority of the variation in herd mFX

score, with 75% of overall variance explained by these two input

parameters. It is important to remember that these inputs

represent the marginal effect of between-herd variation in these

aspects of fertility performance after the other model inputs have

been accounted for (so, for example, a herd’s ‘‘background’’

pregnancy rate would reflect its insemination success rate after

Figure 2. Distribution of lameness cases observed by days in milk.
doi:10.1371/journal.pone.0103426.g002
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accounting for any effects of milk yield, age structure and level of

lameness).

Figure 6 shows the predicted change in herd mFX score which

would result from a herd increasing each input parameter in turn

from the middle of the range of the input distribution by 25% of

the total range while the other inputs remain at the population

median. For example, the top line on the plot shows that an

increase in submission rate from the median value of the range of

distribution for this input (45%) to the value representing the lower

boundary of the upper quartile of the range (62.5%) would be

expected to result in a decrease in mFX score (i.e. an improvement

in overall reproductive performance) of around £100/cow/year.

Increasing the herd’s incidence rate of lameness cases from 80 to

115 cases/100 cow-years would be expected to increase herd mFX

score by just over £5/cow/year. Therefore, a reduction in

lameness incidence of 35 cases/100 cow-years (which would

represent a large improvement, and may require substantial

financial and time investment from the farmer) would be expected

to lead to the same degree of improvement in fertility as an

increase in submission rate of less than 1% (a small change, which

would be expected to require substantially less investment).

Discussion

This study showed that relatively large associations between

clinical lameness events and reproductive performance could be

demonstrated at the level of a risk period within lactation (e.g.

occurrence of a lameness case within 14 days of a risk period was

associated with a 25% reduction in the risk of the cow becoming

pregnant during the risk period, Figure 3). However, PSA revealed

that a herd’s incidence rate of lameness was highly unlikely to

make a significant contribution to its overall level of reproductive

performance when other factors affecting fertility were also taken

into account. As the simulation model was constructed to

represent a herd with even all-year-round calving, it is possible

that the results will be less applicable to block calving herds, where

cows may have a limited timeframe in which to conceive. It is

plausible that clinical lameness events may have an increased

importance in the latter situation, as even a modest reduction in

risk of pregnancy during the breeding period could increase the

risk of a cow being culled.

There is substantial variation in the conclusions of existing work

evaluating the association between lameness and reproductive

performance. A variety of previous studies have found associations

between decreased fertility and either clinical lameness events

Table 4. Parameter estimates for discrete time survival model with pregnancy during a two-day risk period as the outcome, in a
study investigating the association between lameness and fertility in 39 dairy herds.

Model term n coefficient odds ratio HPD1 2.5% HPD1 97.5%

Intercept 1247677 240.1 240.3 239.9

ln DIM 1247677 15.4 15.3 15.4

(ln DIM)‘2 1247677 21.62 21.62 21.61

Parity 1 325621 Reference

Parity 2 288951 1.056 1.006 1.109

Parity 3 223118 0.978 0.923 1.034

Parity 4 153753 0.948 0.888 1.010

Parity .4 256234 0.761 0.720 0.805

Year: 2002 or earlier 148578 Reference

Year: 2003 86158 1.000 0.924 1.088

Year: 2004 147847 0.901 0.831 0.970

Year: 2005 216142 0.928 0.864 1.000

Year: 2006 313278 0.858 0.796 0.923

Year: 2007–8 335674 0.897 0.833 0.967

Season 1: Jan–Mar 332357 Reference

Season 2: Apr–Jun 278139 0.897 0.857 0.938

Season 3: Jul–Sept 266050 0.736 0.701 0.775

Season 4: Oct–Dec 371131 0.997 0.957 1.040

Centred 305 d yield (61000 kg) 1247677 0.917 0.906 0.928

No lameness 70-43 d before 1219868 Reference

Lameness case 70-43 d before 27809 0.850 0.760 0.948

No lameness within 14 d 1207760 Reference

Lameness case within 14 d 39917 0.760 0.686 0.839

No lameness 43–70 d after 1207155 Reference

Lameness case 43–70 d after 40522 0.880 0.803 0.968

No lameness 71–100 d after 1203737 Reference

Lameness case 71–100 d after 43940 0.861 0.787 0.947

1HPD: interval of highest posterior density (so the range between HPD 2.5% and HPD 97.5% represents the 95% of the parameter space with highest posterior density).
doi:10.1371/journal.pone.0103426.t004
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Figure 3. Association between predicted relative risk of pregnancy at a given risk period and clinical lameness. Error bars represent
the 95% credible interval for each predicted relative risk.
doi:10.1371/journal.pone.0103426.g003

Figure 4. Predicted and observed risk of pregnancy across various categories. Predicted absolute risk of pregnancy (black bars) at risk
periods in various categories (x-axis) compared to the observed proportion of risk periods in that category where a pregnancy occurred (white bars).
Error bars represent the 95% credible interval for each predicted relative risk.
doi:10.1371/journal.pone.0103426.g004
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[2,3,25] and/or identification of lameness through visual gait

assessment [26,27]. In contrast, other studies have failed to reveal

such an association [1,18,19]: notably there seems to be a

tendency for studies involving larger numbers of herds to fail to

identify significant associations. Many of the pre-existing papers in

this area describe studies involving less than five herds (and most

use a single herd); the notable exceptions to this are Loeffler et al.

[18] (43 herds) and Sogstad et al. [19] (112 herds), neither of

which found significant associations between lameness events and

reproductive outcomes. It is biologically plausible that any effect of

lameness on reproductive performance will vary between herds

(for example, due to the variation in the predominant causes of

lameness in each herd and variation in the effectiveness of

management of lame cows). The current study used data from 39

herds, but from a much larger number of cows compared to

previous work. The possibility of between-herd variability in the

Figure 5. Associations between simulation inputs and overall herd-level reproductive performance. High density scatterplots showing
the association between each simulated herd’s reproductive performance (represented by modified FERTEX score, mFX, y-axis) and selected
simulation input variables. Darker colours indicate areas of higher point density, IRCL: Incidence rate of clinical lameness.
doi:10.1371/journal.pone.0103426.g005

Table 5. Multiple regression derived partition of variance in modified FERTEX score across simulation input variables in a study
evaluating associations between lameness and fertility in dairy herds.

Input parameter Proportion of variance explained

Submission rate 41.4%

Pregnancy rate 34.2%

305-day adjusted lactation milk yield 8.9%

Cost per additional day on calving interval 5.7%

Cost per failure-to-conceive cull 2.0%

Incidence rate of clinical lameness 0.1%

Proportion of herd in lactation 1 0.0%

doi:10.1371/journal.pone.0103426.t005
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association between lameness events and fertility was explored

here using herd-level random effects terms for the explanatory

variables related to lameness. This revealed relatively little

between-herd variability in effect within this group of herds. It is

possible that somewhat different results would have been derived

from building the statistical model using data from a different

group of herds, but since the simulation model showed such a

small potential for lameness to influence herd fertility, the

difference in the statistical model results would have had to be

extremely large in order to change the interpretation of the

simulation results to any meaningful degree.

Some of the variation in previous published results may also be

related to the way in which reproductive outcomes were

measured: this study revealed significant associations between

lameness events and the probability of pregnancy over a specific

window of time relative to the lameness case, but when results

were used to evaluate this within a PSA framework it transpired

that lameness incidence rate was unlikely to influence overall herd

reproductive performance. This means that previous studies

focussing on particular categories or timings of lameness event

and/or reproductive outcome may have been more likely to

generate significant findings than those using broader categories or

timeframes.

This study illustrates the usefulness of simulation-based tech-

niques (such as PSA) to aid interpretation and contextualisation of

model results. The approach we describe provides a potential

route for researchers to facilitate better understanding of the

results of their work and how they should be interpreted in a

clinical context. This in turn can enhance research impact, and

accelerate change in clinical practice. Although this example

describes application of PSA to help interpret the results of a

discrete time survival analysis, the technique would be equally

applicable to other types of complex model, and to other analyses

based on logistic regression. In logistic regression, the model

coefficients themselves can be difficult to interpret. Classically the

coefficients are exponentiated to produce odds ratios (as shown in

Table 4), but odds ratios themselves can be misleading because

humans intuitively tend to think in terms of risk or probability

rather than odds (and these can be quite different, especially where

the risk is close to 0.5). This topic has been extensively explored in

the medical literature [28–30], where results of such analyses must

be interpreted by clinicians, some of whom may have a limited

understanding of statistical methods. It is possible to convert an

odds ratio to a relative risk for more intuitive interpretation (as

shown in Figure 3), but where decisions are to be made at

population level these can also be difficult to interpret. For

example, in this case the relative risks would have been hard to

interpret without a method to incorporate the likely range of herd-

level lameness incidence rates and the distribution of lameness

events through lactation. Here, the results from the discrete time

survival model alone (along with some of the pre-existing

literature) may have encouraged clinicians to place too much

emphasis on control of lameness to improve herd-level reproduc-

tive performance.

This study highlights the usefulness of simulation-based

techniques such as PSA as an extension of statistical modelling

to help illustrate model results in an intuitive way within a clinical

veterinary context. In this example, while there are associations

between lameness events and reproductive performance at specific

time-points, it is unlikely that a herd’s incidence rate of lameness

will have a substantial impact on herd fertility. This does not mean

that lameness control is not important: lameness has significant

impacts on both animal welfare and productivity [31]. Rather, our

analysis suggests that herd lameness control is unlikely to lead to a

significant improvement in overall reproductive performance in

the majority of situations.

Figure 6. Predicted effect of an equivalent increase in each input parameter on overall reproductive performance. Tornado plot
showing the predicted effect of increasing each input parameter in turn by a value representing 25% of the range of its input distribution from the
median value, while the other input parameters are held at their population medians. The input parameters are listed on the right hand side of the
graph, and the change in each input (from median to upper quartile) is given in parentheses. For example, the top bar shows that the predicted
effect of moving from a submission rate of 45% (the median of the input distribution for this parameter) to 62.5% (the upper quartile of the input
distribution) would be a decrease of just over £100/cow/year in the herd’s modified FERTEX (mFX) score.
doi:10.1371/journal.pone.0103426.g006
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