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Abstract

It has been a challenge in systems biology to unravel relationships between structural properties and dynamic behaviors of
biological networks. A Cytoscape plugin named NetDS was recently proposed to analyze the robustness-related dynamics
and feed-forward/feedback loop structures of biological networks. Despite such a useful function, limitations on the
network size that can be analyzed exist due to high computational costs. In addition, the plugin cannot verify an intrinsic
property which can be induced by an observed result because it has no function to simulate the observation on a large
number of random networks. To overcome these limitations, we have developed a novel software tool, PANET. First, the
time-consuming parts of NetDS were redesigned to be processed in parallel using the OpenCL library. This approach utilizes
the full computing power of multi-core central processing units and graphics processing units. Eventually, this made it
possible to investigate a large-scale network such as a human signaling network with 1,609 nodes and 5,063 links. We also
developed a new function to perform a batch-mode simulation where it generates a lot of random networks and conducts
robustness calculations and feed-forward/feedback loop examinations of them. This helps us to determine if the findings in
real biological networks are valid in arbitrary random networks or not. We tested our plugin in two case studies based on
two large-scale signaling networks and found interesting results regarding relationships between coherently coupled feed-
forward/feedback loops and robustness. In addition, we verified whether or not those findings are consistently conserved in
random networks through batch-mode simulations. Taken together, our plugin is expected to effectively investigate various
relationships between dynamics and structural properties in large-scale networks. Our software tool, user manual and
example datasets are freely available at http://panet-csc.sourceforge.net/.
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Introduction

The dynamical behavior of a biological network is highly related

to its structural characteristics [1,2]. In particular, there have been

many studies of the effects of feedback loops (FBLs) and feed-

forward loops (FFLs) on network robustness [3–5]. For example,

networks robustly converging to a fixed state are inclined to have a

larger number of positive FBLs and a smaller number of negative

FBLs [3]. Coherent coupling of FBLs is a design principle of a

robust cell signaling network [6]. It was also shown that the

number of FBLs involving a node is positively correlated with the

functional importance of the node [7], and two diseases are more

likely to be comorbid if the genes associated with each disease are

connected with FBLs of a relatively short length in a human

signaling network [8]. With respect to a feed-forward loop

structure, its dynamical role was also explained in various

biological processes, for example, in guaranteeing robust carbo-

hydrate uptake in Escherichia coli [4] or adapting to variations in

the critical morphogen level in a switch of the cell fate [9]. In

addition, the degree to which an FFL consisting of three positive

transcriptional regulators was sensitive to primary level perturba-

tion was related to the robustness [10], and the coherent FFLs can

be considered as a design principle of human signaling networks

that improve network robustness against update-rule perturbations

[5].

Inspired by those studies, NetDS, a Cytoscape [11] plugin, was

recently developed to analyze the robustness-related dynamics and

FFL/FBL structures of networks [12]. However, there were some

significant limitations with regard to fully utilizing the plugin. First,

analyses of large-scale networks were limited due to high

computational complexity (Actually, the plugin was effective for

networks having about several tens of nodes). In addition, the

observed result could not be validated as a design principle

because there was no function to simulate the result on a large
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number of arbitrary random networks. To resolve these limita-

tions, we developed a new software tool by making the core

algorithms run in parallel and providing a new function of a batch-

mode simulation on a large number of random Boolean networks

(RBNs). For the parallel computation, we employ an OpenCL

parallel computing platform, which is an open-source library

designed to run on any modern central processing units (CPUs) or

graphics processing units (GPUs) (see Text S1 in File S1 for a brief

introduction to OpenCL). Thus, our new plugin PANET can be

used on any computer equipped with multi-core CPUs and/or

GPUs that can support the OpenCL library for analyses of

network robustness and FBL/FFL structures. For the batch-mode

simulation, PANET first generates a large number of RBNs from

various models, and examines their robustness-related dynamics

and FBLs/FFLs structures during batch processing. This new

function helps us to conclude whether a finding in real biological

networks can be a design principle or not by examining the

consistency of the finding in random networks. We tested PANET

in two case studies based on two large real networks. In the first

case study, we found that coherent FFLs are frequently found in

the real signaling networks and explained that abundant coherent

FFLs are needed to improve robustness against update-rule

perturbations. In the second case study, we observed that coherent

FBLs are ubiquitously found in the real signaling networks but

there is no significant relation between coherent couplings of FBLs

and robustness against initial-state perturbations unlike the

previous studies having shown the positive correlation of them in

very small networks.

Material and Methods

In this section, we explain the implementation issues of PANET.

We first provide a summary of a Boolean network model which

was used for robustness calculation in PANET. Next, we describe

the parallelization of two core algorithms: robustness computation

and FBLs/FFLs detection. Finally, we explain a function for a

batch-mode investigation on RBNs.

A Boolean network model and robustness-related
dynamics

To compute the robustness of a network, we employed a

Boolean network model [7,13,14]. A Boolean network is

represented with a directed graph G(V, A), where V = {n0, n1,

…, nN-1} is a set of Boolean variables and A is a set of ordered

pairs of Boolean variables called directed links. Each niMV has a

value of 1 (‘‘on’’) or 0 (‘‘off’’), which represents the possible states of

the corresponding elements. In gene networks, value 1 represents

the ‘‘turn-on’’ status in which a gene is expressed. The state of a

Boolean network is defined as a vector of the states of all nodes. A

directed link (ni, nj) has a positive (‘‘activating’’) or negative

(‘‘inhibiting’’) relationship from ni to nj. The value of each variable

ni at time t+1 is determined by the values of ki other variables

vi1 ,vi2 ,:::,viki
with a link to ni at time t by the Boolean function

fi : f0,1gki? f0,1g, and all variables are also synchronously

updated. Hence, the update rule can be written as the following

formula: vi(tz1)~fi(vi1 (t),vi2 (t),:::,viki
(t)). In many previous

studies, biological networks such as signaling pathways and

gene-regulatory networks were successfully described with Boolean

network models that employ conjunction or disjunction update-

rules [15–18].

A state of G is defined as a vector of values n0 through nN-1. A

state trajectory starts from an initial state and eventually converges

to either a fixed-point or limit-cycle attractor. These attractors can

represent diverse biological network behaviors such as multi-

stability, homeostasis, and oscillation [19–21]. For each attractor,

the basin of an attractor can be defined as a set of initial states that

will eventually converge to the attractor. The size of a basin

indicates the ratio of the number of initial states belonging to the

basin to the entire number of initial states. Based on the definition

of the attractor, we can introduce the notion of robustness in terms

of converging dynamics. If a network sustains the converged

attractor against perturbations that affect some nodes, it is robust

against those perturbations. Therefore, the change in the

converging attractor can be interpreted as a loss of robustness.

This concept has been widely used in a number of previous studies

[22–26]. Here, we considered two types of perturbations: an

initial-state perturbation and an update-rule perturbation. Given a

sequence of update-rules f = [f0, f1, …, fN-1] and an initial state

s = [n0(0), n1(0), …, nN-1(0)], an initial-state perturbation at a node

niMV is a situation in which s is changed to s9 = [n0(0), …,

1-ni(0),…, nN-1(0)], i.e., the corresponding initial value is switched

to �vvi(0) (the negation of ni(0)). An initial-state perturbation

represents the abnormal (or malfunctioning) status of a protein

or gene caused by a mutation. On the other hand, an update-rule

perturbation at a node niMV involves a scenario where f is changed

to f9 = {f0,…, fi,9, …, fN-1}, where fi9 is the disjunction rule if fi is

the conjunction rule and vice versa. The update-rule perturbation

may represent a change in the relationship between nodes. For a

set of considered initial states S, we now define the robustness of a

node ni against the initial-state perturbation and the update-rule

perturbation, denoted as cs(ni) and cr(ni), respectively, as follows:

cs(vi)~

P

s[S

I(a(s,G,F )~a(s0,G,F ))

DSD
and

cr(vi)~

P

s[S

I(a(s,G,F )~a(s,G,F 0))

DSD
,

where a(s, G, F) represents the attractor that s will converge to in a

Boolean network G specified by the set of update-rules F, and

I(condition) denotes an indicator function that returns 1 if the

condition is true and 0 otherwise. In other words, cs(ni) and cr(ni)

represent the probability with which a network sustains the

converging attractor against initial-state and update-rule pertur-

bations, respectively. Furthermore, the robustness of a network G
against the initial-state perturbation and the update-rule pertur-

bation, denoted as cs(G) and cr(G), respectively, are defined as

follows:

cs(G)~

P

v[V

cs(v)

DV D
and cr(G)~

P

v[V

cr(v)

DV D
:

In other words, the robustness of a network is computed by

averaging the robustness of all nodes in the network.

Parallel computation of robustness-related dynamics
Unfortunately, it is very time-consuming to compute converging

attractors over all possible initial-states or all sequences of update-

rules, which is a required process when computing robustness. To

reduce the computation time, we introduced a parallel algorithm

which utilizes numerous processing units in CPUs or GPUs (see

Text S2 in File S1 for the pseudo-code). More specifically, a

parallel algorithm is needed to compute multiple attractors over a

lot of different initial-states (or update-rules, respectively) for the

A Tool for Fast Parallel Analysis of Network Dynamics and Structures
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robustness calculation. This task is parallelized in PANET by

assigning the attractor computation for each initial-state (or each

sequence of update-rules, respectively) to a Processing Element

(PE) of a CPU/GPU (see the left part in Figure 1).

Definition of feedback and feed-forward loops
A feedback loop, which can be described as a circular chain of

relationships, is very common and plays an important role in the

dynamic behaviors of cellular signaling networks [2,27,28]. Given

a network, a feedback loop is a closed simple cycle in which all

nodes, with the exception of the starting and ending nodes, are not

revisited. More specifically, n0 R n1 R n2 R … R nL-1 R nL is an

FBL of length L($1) if there are links from ni-1 to ni (i = 1, 2, …, L)

with n0 = nL and nj ? nk for j, kM{0, 1, …, L-1}. The number of

FBLs of node n denotes the number of different FBLs starting from

n. In addition, the sign of an FBL is easily determined by the parity

of the number of negative relationships involved. If the parity

number is even or zero, the FBL is positive; otherwise, it is

negative. We further consider the notion of coupled FBLs because

of their relationship to the dynamic properties of a network

[29,30]. To define the coupling of feedback loops, let us first define

a sub-sequence of a feedback loop. Given a feedback loop P = n0

R n1 R n2 R ??? R nL, we call u0 R u1 R ??? R uM a sub-

sequence of P of length M if there is iM{0, …, L} such that

n (i+j)%(L+1) = uj for j = 0, …, M. If there is a non-empty common

sub-sequence between two feedback loops, there is a coupling

between the feedback loops. When the two FBLs involved in the

coupling have the same sign, it is a coherent coupling; otherwise, it

is an incoherent coupling. In addition, we define the intersection

length of a coupling as the number of common links.

A feed-forward loop is also an important motif in network

dynamics [31–33]. Thus, we implemented a feed-forward loop

based on the following definition. Given a network G(V, A), n0 R
n1 R n2 R … R nL-1 R nL is a simple path of length L($1) if

there are links from ni-1 to ni (i = 1, 2, …, L) with nj ? nk for j, kM{0,

1, …, L}. Similar to the definition of the sign of an FBL, the sign of

a simple path is determined by the parity of the number of

negative links involved. If the parity number is even or zero, the

path is positive; otherwise, it is negative. When a pair consisting of

a source node (ni) and a sink node (nj) has two or more simple

paths, the set of simple paths is a feed-forward loop starting from ni

and ending at nj. Furthermore, an FFL is coherent if all simple

paths involved have the same sign; otherwise, it is incoherent.

Parallel detection of FBLs and FFLs
In NetDS, a user could search FBLs and FFLs for a specified

maximal length (L). This function was implemented using a depth-

first search, which is a kind of graph traversal method. It will take a

long time for a large network to be traversed, though, so we

introduced a parallel algorithm for FBL and FFL searches to

reduce the computation time by using the OpenCL library (see

Text S3 in File S1 for the pseudo-code).

More specifically, each directed link should be examined to

determine whether there exist FBLs/FFLs involving the link or

not. This task is parallelized in PANET by assigning the

examination of each link to a PE of a CPU/GPU (see the right

part of Figure 1). In addition, we improved the search speed by

avoiding redundant examination (see Text S3 in File S1).

A batch-mode simulation on random Boolean networks
We developed a function for a batch-mode simulation on RBNs

to examine if a finding in biological networks holds in RBNs or

not. As shown in Figure 2, the batch-mode simulation requires

three steps for configuring parameters. The first step is to select an

RBN generation model from among five models: Barabási-Albert

(BA) model [34], Erdős-Rényi (ER) model [35], an Erdős-Rényi

variant model [12] and two shuffling models. Actually, all of them

have been widely used to investigate biological networks [3,5–

8,12,36–39]. The BA model uses a preferential attachment

scheme, which is a type of network growth model, as follows.

The desirable number of nodes (N), the number of nodes of a seed

network (e), and the number of interactions that should be added

at each iteration (d) are given as parameters. A small seed network

G(V, A) is then created, where V = {n1, n2, …, ne} and A = {(ni, nj)

| i, j = 1,2, …, e, i?j}, i.e., a complete network. At each iteration,

a new node n is added to V. Then, d different interactions that

individually connect n and n9MV \{n} are newly added to A, where

n9 is determined with a probability proportional to the connectivity

of n9 (the connectivity of a node is defined as the number of

interactions incident to the node), and both the direction and sign

of the added interactions are specified uniformly at random. This

iteration process is repeated until |V| = N. In the ER model, the

Figure 1. Core OpenCL-based implementation for robustness calculation (left) and FBLs examination (right) in parallel. It is shown
how in parallel PANET computes converging attractors over all possible initial-states or all update-rules (left) and searches FBLs (right).
doi:10.1371/journal.pone.0103010.g001
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desirable number of nodes (N) and a probability (p) are given as

parameters. The decision whether to create an interaction from an

arbitrary node n to another arbitrary node n9 is then independently

determined with a probability p. PANET also uses a variant of the

ER model where the desirable numbers of nodes (N) and

interactions (E) are given as parameters. An RBN is then

generated in such a way that E different interactions are chosen

uniformly at random out of N6(N-1) possible candidates.

Moreover, we implemented two shuffling techniques where a

reference network should be given. The first shuffling technique

creates random networks by shuffling the direction and the sign of

every interaction from the reference network (Shuffle I). More

specifically, each directed link denoted by (ni, nj, t) where ni, nj, and

t denote a starting node, an ending node, and the sign of the link,

respectively, is replaced by one of (ni, nj, t), (ni, nj, -t), (nj, ni, t), and

(nj, ni, -t) uniformly at random [5]. On the other hand, the other

shuffling technique creates random networks by rewiring the edges

of the reference network such that the in-degree and the out-

degree of all nodes are conserved (Shuffle II) [36,37]. More

specifically, a pair of directed links (na, nb, tab) and (nc, nd, tcd) such

that there is no link from na to nd and from nc to nb is randomly

selected, and the pair is replaced by a new pair of links (na, nd, tab)

and (nc, nb, tcd). In our tool, the number of rewirings is set to the

multiplication of the value of the "Shuffling intensity" parameter

and the number of edges of the reference network. We note that

the shuffling models generate RBNs whose structure is more

similar to the reference network than BA, ER, and ER-variant

models because the degree distribution is conserved.

The second step of parameter configuration is to set the number

of considered initial-states and the type of update-rule schemes (see

the subsection ‘‘A Boolean network model and robustness-related

dynamics’’). We provide three update-rule schemes; CONJ-DISJ,

CONJ, and DISJ. CONJ and DISJ denote that each node of an

RBN would be assigned a conjunction and disjunction function,

respectively. CONJ-DISJ denotes that each node of an RBN

would be assigned a conjunction or disjunction function randomly.

The final step is to specify the maximal length of the FBLs/FFLs to

be searched. By clicking the ‘Execute’ button, the tool examines

robustness and FFL/FBL structures of the generated RBNs in

batch mode. After it is completed, all the analyzed results are

saved in the two resulting files: ‘‘net_based_result.txt’’ and

‘‘node_based_result.txt’’. The former and the latter describe the

network-based and the node-based results, respectively (see Text

S4 in File S1 for the format of the output file). We note that

parallel computation during robustness calculation and FBLs/

FFLs search made it possible to massively analyze RBNs of the

same size with real signaling networks in a practical period of time.

Results

In this section, we first present scalability of PANET by running

it with a large-scale human signaling network (HSN) with 1,609

nodes and 5,063 links [40]. Then, we show two case studies

regarding the relationships between dynamics and structural

Figure 2. User interface for a batch-mode simulation on RBNs. There are three steps for configuring parameters of the batch-mode
simulation: selecting an RBN generation model, setting the number of considered initial-states and the type of update-rule schemes, and specifying
the maximal length of FBLs/FFLs to be searched.
doi:10.1371/journal.pone.0103010.g002
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properties in two signaling networks, HSN and a canonical cell

signaling network (CCSN) obtained from http://stke.sciencemag.

org/, including 818 nodes and 1,801 links [6]. In particular, we

tried to verify the relationships through the batch-mode simulation

on a lot of large-scale RBNs in those case studies. We note that it

could be conducted in a practical time by the parallel implemen-

tation of main functions in PANET.

Scalability by parallel computation in PANET
To show the scalability of PANET over the original plugin

NetDS, we compared their running times for calculating

robustness and for searching FBLs in the HSN. All were tested

on a system with an NVIDIA GeForce GTX 680 GPU with 1536

processor at 1 GHz, four-core Intel Core2 Quad Q9400 CPU

2.66 GHz, and 8 GB of memory. Table 1 shows the result. In the

table, ‘‘PANET on CPU’’ and ‘‘PANET on GPU’’ represent

results of PANET executed on CPU and GPU only, respectively.

Longer FBLs or increases in the number of considered initial-states

result in greater performance improvement. More specifically, the

maximum speedup factor of the FBLs searching task was 165 with

a maximal length of 7. In the robustness calculation, the speedup

factor was 453 when the number of considered random initial-

states was 1,000. Therefore, the analyses of robustness and FBLs/

FFLs could be conducted in a practical time in PANET. In

addition to the parallel implementation, the performance

improvement of PANET is higher than expectation considering

the specification of the used CPU and GPU. This was achieved

through utilization of an efficient memory type and a simple data

type besides the parallelization. More specifically, the network

data can be stored in the local cache memory which is the fastest

memory type by the OpenCL library in PANET whereas it was

stored in the normal memory in NetDS. In addition, we modified

the ‘String’ class-based implementation in NetDS to a primitive

data type (the signed integer) based implementation in PANET for

fast processing.

Another point to be noted is that the performance improvement

of ‘‘PANET on GPU’’ over that of ‘‘PANET on CPU’’ is not so

large. Basically, GPU processes ‘‘single instruction & multiple data

(SIMD)’’ whereas CPU does ‘‘multiple instruction & multiple data

(MIMD)’’. Therefore, the execution time on GPU is highly

affected by how many diverging branch codes are involved in the

execution path. The tasks such as FBLs/FFLs search and

robustness calculation necessarily include many branching state-

ments and this might reduce the utilization efficiency of

multiprocessors in the GPU.

Case study 1: Relationship between coherent feed-
forward loops and network robustness

Some previous studies have shown that an individual coherent

structure of the FFL can play an important role in the dynamic

behavior of biological networks. For example, a coherent FFL

serves as a sign-sensitive delay element in transcription networks

[41], and prolongs flagella expression in E. coli [42]. In addition,

there was a study showing that coherent FFLs are abundant in

biological networks and these coherent FFLs can improve network

robustness against update-rule perturbations [5]. In particular,

they found that coherent FFLs increase robustness because these

structures induce downstream nodes to be robust against update-

rule perturbations. However, the effect of coherent FFLs on the

robustness in a large-scale network was not proven. For this

reason, we further conducted two batch-mode simulations on

RBNs to examine whether such a coherent FFL structure is a

design principle or not.

In the first simulation, we examined whether coherent FFLs are

ubiquitously found in HSN and CCSN. To this end, we generated

eight sets of 1,000 random Boolean networks of the same size with

each of the real network by using Shuffle I, Shuffle II, BA and ER

models, respectively, and examined the ratio of coherent FFLs

within them. As shown in Table 2, we found that the ratio of

coherent FFLs in the real networks is significantly greater than

those of the random Boolean networks (using one-sample t-test, all

P-values,0.0001) except for ER model cases. This indicates that

coherent FFLs are likely to be ubiquitously found in the large-scale

signaling networks. In the second simulation, we examined

whether the highly coupled structure of FFLs also has an effect

on the network robustness or not as in the previous study [5]. To

this end, we generated eight sets of 1,000 random Boolean

networks of the same size with the HSN (|V| = 1,609 and

|A| = 5,063) and the CCSN (|V| = 818 and |A| = 1,801),

respectively, by using BA, ER, Shuffle I and Shuffle II models

Table 1. Performance comparisons of PANET with NetDS.

(a) Running time (seconds) for FBLs search

Maximal Length (L) NetDS (A) PANET on CPU (B) Speedup (A/B) PANET on GPU (C) Speedup (A/C)

4 1 1 1 1 1

5 7 2 4 1 7

6 72 3 24 3 24

7 1,984 12 165 21 94

(b) Running time (seconds) for robustness calculation

Number of considered initial-
states (S) NetDS (A) PANET on CPU (B) Speedup (A/B) PANET on GPU (C) Speedup (A/C)

50 4,016 19 211 11 365

100 8,026 41 196 19 422

150 12,069 58 208 30 402

200 16,220 78 208 37 438

1000 80,600 387 208 178 453

doi:10.1371/journal.pone.0103010.t001
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and examined the relation of the ratio of coupled FFLs on the

robustness against the update-rule perturbation (cr(G)). As shown

in Figure 3, we observed that there are significantly positive

relationships between the ratio of coherent FFLs and cr(G) as for

BA and ER model cases (in subfigures (a), (b), (c) and (d), the slopes

of the regression lines are 0.66315, 0.36297, 1.38296 and 1.01162,

respectively; all P-values,0.0001 using t-test). On the other hand,

it is observed that there is little significant relationship between the

ratio of coherent FFLs and cr(G) as for Shuffle I and Shuffle II

models (see Figure S1 in File S1). This implies that the relationship

between coherent coupling of FFLs and network robustness can

depend on the types of random network models.

Case study 2: Relationship between coherent feedback
loops and network robustness

FBLs actually exist in the form of multiple coupled feedback

loops in many biological systems such as budding yeast polariza-

tion [43], eukaryotic chemotaxis [44] and Ca2+ spikes [45]. For

large-scale networks containing a number of coupled feedback

loops, the role of feedback loops in realizing the robustness is

needed to be fully understood. There was a previous study

showing that the coherent coupling of FBLs may be a design

principle of a cell signaling network [6]. More specifically, a larger

number of coherent coupled FBLs than incoherent coupled FBLs

were found in the cell signaling network, and it was argued that

such the highly coherent coupling of FBLs strengthens the

robustness of the network against state perturbations. However,

the effect of coherent FBLs on robustness in a large-scale network

was not proven. Hence, we examined it based on the HSN and

CCSN. By using the function of FBL search, we determined that

both the real networks have a larger number of coherent FBLs

than incoherent FBLs as shown in Table 3. To examine whether

such the finding in two real networks is a design principle or not,

we further conducted two batch-mode simulations on RBNs.

In the first simulation, we tried to verify whether coherent FBLs

are ubiquitously found structures in the HSN and CCSN or not.

To this end, we generated eight sets of 1,000 random Boolean

networks of the same size with each of the real network by using

Shuffle I, Shuffle II, BA and ER models, respectively, and

examined the ratio of coherent FBLs in them. As shown in Table 3,

the ratio of coherent FBLs in the real networks is significantly

greater than those of the random networks of all models (using

one-sample t-test, all P-values,0.0001). This indicates that

coherent FBLs are ubiquitously found in the large-scale signaling

networks. In the second simulation, we examined whether the

highly coupled structure of FBLs has an effect on the network

robustness or not. To this end, we generated two sets of 1,000

random Boolean networks of the same size with the HSN

(|V| = 1,609 and |A| = 5,063) and the CCSN (|V| = 818 and

|A| = 1,801), respectively, by using the BA model and examined

the relation of the ratio of coherently coupled FBLs on the

robustness against initial-state perturbation (cs(G)) (Figure 4). As

shown in Fig. 4(a) and (b), there was no significant relationship

between the ratio of coherent FBLs and cs(G) (P-value = 0.645 and

P-value = 0.895, respectively, using t-test). This implies that the

previous hypothesis about the relationship between highly

coherent coupling of FBLs and the robustness does not hold in

the large scale networks. To examine the dependency of the

network size, we additionally generated two sets of 1,000 small-

scale random Boolean networks with different network densities:

(|V| = 50 and |A| = 97) and (|V| = 50 and |A| = 117), respec-

tively, by using the BA model. For the first set, we also observed a

non-significant relationship (Fig. 4(c); the slope of the regression

line is 0.04192 and the P-value = 0.167 using t-test). On the other

hand, there was a significant negative relationship in the latter set

(Fig. 4(d); the slope of the regression line is 20.17934 and the P-

value = 0.048 using t-test). Moreover, the random networks

generated by ER, Shuffle I and Shuffle II models have also

shown similar results (see Figure S2 and S3 in File S1). Taken

together, we can conclude that coherent FBLs are ubiquitously

found in the real signaling networks but there is no significant

correlation between coherent couplings of FBLs and robustness

against initial-state perturbations unlike the previous studies

having shown the positive correlation of them.

Conclusions

It was very time-consuming to calculate robustness and to

examine FBLs/FFLs in large-scale biological networks. In this

study, we developed PANET which employs an OpenCL library

to perform robustness calculations and to examine FBLs/FFLs in

parallel on multi-core CPUs or GPUs. We also implemented a

convenient function for batch-mode simulation on a large number

of random Boolean networks. We tested our plugin in two case

studies based on two large-scale signaling networks and found

interesting results regarding relationships between coherently

coupled feed-forward/feedback loops and robustness. In addition,

we could verify whether or not those findings are consistently

Table 2. Comparison of the ratios of coherent FFLs between each of the real signaling networks (HSN and CCSN) and RBNs.

Network Maximal Length
Number of
Coherent FFLs (A)

Number of
Incoherent FFLs (B) Ratio of coherent FFLs (

A

AzB
)

HSN 4 125884 131121 0.48981

RBNs (Shuffle I) 4 0.2067460.00658

RBNs (Shuffle II) 4 0.3971960.01418

RBNs (BA) 4 0.4372160.12885

RBNs (ER) 4 0.5921060.09595

CCSN 6 41961 46676 0.47340

RBNs (Shuffle I) 6 0.1454860.01004

RBNs (Shuffle II) 6 0.2005860.01460

RBNs (BA) 6 0.2585960.11572

RBNs (ER) 6 0.5322260.09046

doi:10.1371/journal.pone.0103010.t002
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Table 3. Comparison of the ratios of coherent FBLs between each of the real signaling networks (HSN and CCSN) and RBNs.

Network Maximal Length
Number of
Coherent FBLs (A)

Number of
Incoherent FBLs (B) Ratio of coherent FBLs (

A

AzB
)

HSN 6 7186506 4537973 0.61295

RBNs (Shuffle I) 6 0.5001160.00016

RBNs (Shuffle II) 6 0.5460060.01173

RBNs (BA) 6 0.5019260.00160

RBNs (ER) 6 0.5032860.03620

CCSN 8 556910 369011 0.60147

RBNs (Shuffle I) 8 0.4999960.00016

RBNs (Shuffle II) 8 0.5014260.00156

RBNs (BA) 8 0.5009560.00179

RBNs (ER) 8 0.5019260.03864

doi:10.1371/journal.pone.0103010.t003

Figure 3. Relationship between the ratio of coherent FFLs and update-rule robustness in large-scale Boolean networks by BA and
ER models. (a) Result of BA-based RBNs of the same size with HSN. (b) Result of BA-based RBNs of the same size with CCSN. (c) Result of ER-based
RBNs of the same size with HSN. (d) Result of ER-based RBNs of the same size with CCSN. The maximal length of examined FFLs is set to 4 or 6 for (a)
and (c), or (b) and (d), respectively. For robustness against update-rule perturbation, |S| is set to 1,024. The slopes of the regression lines are 0.66315,
0.36297, 1.38296 and 1.01162 in (a), (b), (c) and (d), respectively (all P-values,0.0001 using t-test).
doi:10.1371/journal.pone.0103010.g003
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conserved in random networks through batch-mode simulations.

In particular, we found that coherently coupled FFLs/FBLs are

ubiquitously found in the real signaling networks. Moreover, we

found that abundant coherent FFLs can improve robustness

against update-rule perturbations in some random network

models; however, we observed no significant relation between

coherent couplings of FBLs and robustness against initial-state

perturbations in any random network model. Our Cytoscape

plugin is expected to help us to efficiently investigate the

relationships between dynamics and structural properties in a

large-scale network.

Supporting Information

File S1 Supporting information file. File S1 includes the

following: Text S1. A brief introduction to OpenCL. Text S2.
OpenCL-based parallel computation of robustness. Text S3.

OpenCL-based parallel examination of feedback and feed-forward

loops. Text S4. Format of an output file by batch-mode

simulation on RBNs. Figure S1. Relationship between the ratio

of coherent FFLs and update-rule robustness in large-scale

Boolean networks by Shuffling models. Figure S2. Relationship

between the ratio of coherent FBLs and initial-state robustness in

Boolean networks by the ER model. Figure S3. Relationship

between the ratio of coherent FBLs and initial-state robustness in

Boolean networks by Shuffling models.
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