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Abstract

A number of social-ecological systems exhibit complex behaviour associated with nonlinearities, bifurcations, and
interaction with stochastic drivers. These systems are often prone to abrupt and unexpected instabilities and state shifts
that emerge as a discontinuous response to gradual changes in environmental drivers. Predicting such behaviours is crucial
to the prevention of or preparation for unwanted regime shifts. Recent research in ecology has investigated early warning
signs that anticipate the divergence of univariate ecosystem dynamics from a stable attractor. To date, leading indicators of
instability in systems with multiple interacting components have remained poorly investigated. This is a major limitation in
the understanding of the dynamics of complex social-ecological networks. Here, we develop a theoretical framework to
demonstrate that rising variance—measured, for example, by the maximum element of the covariance matrix of the
network—is an effective leading indicator of network instability. We show that its reliability and robustness depend more
on the sign of the interactions within the network than the network structure or noise intensity. Mutualistic, scale free and
small world networks are less stable than their antagonistic or random counterparts but their instability is more reliably
predicted by this leading indicator. These results provide new advances in multidimensional early warning analysis and offer
a framework to evaluate the resilience of social-ecological networks.
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Introduction

Social-ecological systems are often difficult to investigate and

manage because of their inherent complexity [1]. Small variations

in external drivers can lead to abrupt changes associated with

instabilities and bifurcations in the underlying dynamics [2–4].

These transitions can occur in a variety of ecological and social

systems, and are often unexpected and difficult to revert [4].

Anticipating critical transitions and divergence from the present

state of the system is particularly crucial to the prevention or

mitigation of the effects of unwanted and irreversible changes

[5–10]. Recent research in ecology has focused on leading

indicators of regime shift in ecosystems characterized by one state

variable [5,7,11,12]. These indicators are typically associated with

the critical slowing down phenomenon: as the system approaches a

critical transition, its response to small perturbations of the stable

state becomes slower [11]. It has been shown that in univariate

systems (i.e., with only one state variable) critical slowing down

entails an increase in the temporal variance and autocorrelation of

the state variable [5]. The case of systems with several mutually

interacting components, however, has remained poorly investi-

gated [13–15], while the connection between network stability and

research on indicators for loss of resilience has been elusive [16].

Here we develop a theoretical framework to analyze early

warning signs of instability and regime shift in complex networks.

We provide analytical expressions for a set of precursors of

instability in complex systems with additive noise for a variety of

network structures.

We consider a social-ecological system with N components

(nodes) coupled through a set of links. The state of the system is

expressed by the vector x of length N, whose terms xi represent the

state of node i. The local stability of a state x* is evaluated through

a linearization,
d y

d t
~A:y, where y = x2x* is the displacement of x

from x*; A is the N6N matrix expressing the interactions among

nodes in the (linearized) dynamics (see Methods). In population

ecology this framework is typically used to express the dynamics of

a community of N populations interacting according to the

relationships determined by the matrix A, often known as

‘‘community matrix’’ [2,17–19]; likewise, in social systems A describes

the network of interactions (e.g., trade, migration, flow of

information among people, groups of individuals, or countries

[20–23]). The off-diagonal terms of A determine the pairs of

interacting nodes as well as the strength of their interaction. The

dynamics are stable if the maximum real part of the eigenvalues of

A, Max[Re(l)], is negative.

Classic ecological theories [2,3] have considered the case of

networks with randomly connected nodes (with a certain

probability, C). The strength (p) of the interactions between them

is represented by a zero-mean random variable of variance s2.

May [2,3] showed that random networks become unstable as

connectivity (i.e., C), size (i.e., N) or the strength variance increase.

The stability of networks with prescribed architectures (e.g.,

predator-prey, competitive or mutualistic interactions) also

depends on connectivity, strength variance, system size, as well

as on the network structure [17,19].
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More generally, the off-diagonal terms of A may result from a

set of ‘‘rules’’ expressed as a function of a few parameters of which

connectivity and strength variance are just an example. Changes

in the structure and intensity of the interactions correspond to

variations in these parameters, which, in turn, can lead to

instability by modifying the community matrix and its eigenvalues.

How can we evaluate whether ongoing changes in the interactions

within a social-ecological network are reducing its resilience? Is

there a way to use measurable quantities to determine whether the

system is about to become unstable?

In one-dimensional systems leading indicators are typically

associated with behaviors resulting from the eigenvalue tending to

zero at the onset of instability. This effect entails a slower return to

equilibrium after a ‘‘small’’ perturbation [11,24]. Known as

‘‘critical slowing down’’, this phenomenon exists also in systems

with multiple interacting components, though it is hard to

recognize and therefore it does not constitute an effective leading

indicator of instability. In fact, in ‘‘real world’’ applications the

equations driving the dynamics are not known and, therefore, the

network nodes in which slowing down is expected to occur are not

known a priori. Critical slowing down, however, has been related

to an increase in variance and autocorrelation in the state variable

of one dimensional systems [5,7,25]. Here we provide a theoretical

framework to investigate early-warnings in the variance, autocor-

relation, and power spectrum of multi-dimensional systems with

interactions described by a given network structure.

Methods

We consider a network with N interacting nodes. The state of

the system, x = {x1, x2, … xN}, is governed by dynamics:

d x~f(x,p,C)dtzn I dW , where f = {f1, f2, …, fN} is a N-

dimensional vector function expressing the deterministic compo-

nent of the dynamics of x, as a function of a set of parameters, p

and C; I is the identity matrix, and ndW is an additive stochastic

driver represented by a white Gaussian noise of mean zero and

intensity ndt. If we consider a small perturbation y forcing the

system away from its equilibrium point x* (i.e., y = x2x*),

inserting x = x*+y in the above equation and linearizing f(x*+y, p,

C) around x* we obtain

d y~A(p):y dtzI n dW , ð1Þ

Where Ai,j~ L fi=L xj

� �
x~x�. Eq. (1) is a multivariate Ornstein–

Uhlenbeck process [26].

The stable states, x*, of Eq. (1) are the same as those of their

deterministic counterparts,
d x

d t
~f(x,p,C) [27]. These states are

stable if the maximum real part of the eigenvalues of A is negative.

To identify early warning signs of network instability, we relate the

steady state covariance matrix Sy~Sys,y
T
s T to the eigenvalues, l,

of A, where ys is calculated from the steady state solution of Eq. (1).

We first look for leading indicators of instability in the behavior of

the covariance matrix, Sy, of y as the system approaches

instability. The (i,j) element of Sy is: Sy(i,j)~SyiyjT{SyiTSyjT,

where ST represents the average. The covariance matrix of the

stationary dynamics of the system can be obtained [26] as the

solution of Eq. (2):

A(p,C) SyzSyAT(p,C)~{n I : ð2Þ

Sy is a function of the linearization matrix, A(p,C), which, in

turn, depends on the control parameters (p or C). At the onset of

instability (i.e., as Max[Re(l)] R0) the maximum element of the

covariance matrix, Sy, of y increases. More details on the time-lag

correlation and power spectrum can be found in the Materials S1.

While the linearization matrix, A, here accounts the interconnec-

tions existing among nodes within the network (i.e. the pairs of

nodes that are connected by a link [3,17]), the covariance matrix,

Sy, expresses the variance of the fluctuations of the state variable at

each node (diagonal terms) and the interrelationship (positive or

negative) of the fluctuations between pairs of nodes (off-diagonal

terms). To better understand the structure of Sy, we look at the

case of a network with only two nodes. In this case the above

equation for the covariance matrix can be solved analytically, and

the covariance matrix reads [26]

Figure 1. Leading indicators of instability based on different elements of the covariance matrix (Sy), including the maximum (in
absolute value) element, Max[Sy], the difference between Max[Sy] and Min[Sy], the element of Sy corresponding to the most
connected, least connected, or highest eigenvector centrality (24) network node. Random (left) and scale free (right) (30) network
generated with N = 50 and C = 0.1 (main panels) and N = 0.1 and C = 0.5 (insets). Instability (i.e., decrease in Max[Re(l)]) is attained by increasing the
interaction strength p (mean field case). The figures represent average behavior over 100 realizations.
doi:10.1371/journal.pone.0101851.g001
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Sy(p)~
{nDet(A)Iz(Tr(A)I{A) n I (Tr(A)I{A)T

2Det(A)Tr(A)
,

where Det is the determinant and Tr the trace of the matrix, which

can be expressed as a function of the eigenvalues, l1,2.

Thus, the covariance matrix diverges for l1, l2R0. The time

correlation matrix, ry(D), can also be computed analytically and

also diverges for l1, l2R0, independently of D. The general

analytical expressions of ry(D) and of the power spectrum of y are

also reported in the Materials S1.

We generate networks of size N, with a variety of architectures

for A (see Materials S1), and reach instability either by keeping

constant the connectivity, C, while changing the strength of the

interactions, p, or by varying C for a fixed p [2,17,19]. We then use

the analytical relationship between the steady state covariance

matrix, Sy, of y and the eigenvalues of the matrix A (Eq. (2)).

Similarly, we express the time-lag correlation, ry, and the power

spectrum, Py, of y as a function of A and its eigenvalues.

Results and Discussion

We find that the elements of both Sy and ry increase as the

system approaches instability (i.e., Max[Re(l)]R0). Therefore, we

investigate potential indicators for early warning in the behavior of

suitable components of Sy, ry and Py for Max[Re(l)]R0. To that

end we first consider the components of Sy corresponding to the

most connected, the most central [28] and the least connected

nodes of the network. We also consider indicators based on the

properties of the entire network, such as the maximum and the

difference between the maximum and minimum of the matrix Sy.

Most of the indicators based on the covariance matrix, Sy, have

a non-trivial dependence on Max[Re(l)] (see Figures 1, S1, S2, S3,

S4, S5, and S6). The maximum element of Sy (Max[Sy]) and

Max[Sy]-Min[Sy] provide the most effective indicator of early

warning in most networks (Figures 1, S7 and S8). In mutualistic

(++) networks Max[Sy] corresponds to the most connected node

(the ‘‘hub’’), regardless of their topological structure (Materials S1,

Figures S9 and S10). All these indicators based on Sy improve

their performances when the size, N, of the network increases

(compare main panels to insets in Figure 1; see also Materials S1,

Figure S11). Thus our ability to detect early warning signs and

predict tipping points is enhanced in more diverse systems [16].

We also look at the relationship between the maximum element

of the time-lag correlation matrix, ry(D) (where D is the time lag),

and Max[Re(l)] for different values of D, p and C (Figures S12,

S13, and S14). Although significant, these indicators are less

efficient with respect to the case with zero time-lag (i.e., indicators

based on Sy). Finally, the power spectrum does not appear to be an

effective indicator, as we identified only weak changes in Py for

increasing values of p and Max[Re(l)] (see Materials S1, Figure

S15). Therefore, here we focus on early warning signs provided by

the way Max[Sy] varies as a function of changes in Max[Re(l)]

A warning sign is effective if (a) it appears in time to prevent (or

prepare for) the occurrence of instability [29–30]; (b) it relies on a

well-defined and easy to recognize indicator (e.g., a detectable or

significant increase in variance [29–30]); and (c) it does not give

false positives (or false negatives) [31]. We use these criteria to

evaluate the effectiveness of Max[Sy] as a leading indicator of

instability with different network structures and levels of noise

[32].

To investigate the effect of noise, we first consider the ‘‘mean-

field’’ case of networks in which the absolute value of the

interaction strength between connected nodes is a constant, p; we

gradually increase p or C until Max[Re(l)] becomes positive [17–

19]. We observe (Figure 2) a consistent increase in Max[Sy] for all

network structures, regardless of whether instability is attained by

increasing interaction strength or connectivity (Figures S1, S2, S3,

S4, S5, and S6). The network structure, however, affects the

timeliness of Max[Sy] as a leading indicator. In fact, Max[Sy]

exhibits a more defined increase and a better anticipation of the

onset of instability in the case of random networks than with all the

other structures. In the case of these ‘‘mean field’’ networks we did

not consider the antagonistic structure because antagonistic

networks with constant interaction strength (in absolute value)

are always stable regardless of the parameters p and C (see

Materials S1, Figs. S1, S2).

Likewise, in the case of random interaction strengths Max[Sy]

exhibits a well-defined increase and a better anticipation of the

instability in random networks than with the more organized

structures typical of ecological or social systems (Figures 3, S3, S4,

Figure 2. Max [Sy]as a leading indicator of instability in a ‘‘mean field’’ network with constant interaction intensity (in absolute
value), p. Instability is attained by increasing p (main panel A, with N = 20, C = 0.2) or C (inset B, with N = 20, and C increasing from 0.1 to 1) with
different network structures. The figures represent average behavior over 1000 realizations.
doi:10.1371/journal.pone.0101851.g002
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S5, and S6). The seemingly weaker increase in Max[Sy] observed

in the social-ecological networks is only an apparent effect of the

scale. Indeed, as it will be shown later, suitable detection criteria of

early warnings are more successful in mutualistic networks than in

their random counterparts. Noise has the effect of amplifying the

intensity of the warning sign (compare the scales in Figs. 2 and 3),

while inducing weak random fluctuations with no substantial

impact on the overall behavior of Max[Sy] at the onset of

instability (see Materials S1). In scale free networks the increase in

Max[Sy] (Figure 3) is again only apparently muted. In fact, in these

networks detection criteria are quite successful in recognizing early

warning signs (Figure 4); moreover, local indicators (e.g., the

variance of the most central node) can exhibit a more pronounced

increase that can be used as an early warning sign of instability

(Figure 1 and Materials S1).

Conclusions

We have identified some suitable early warning signs in social-

ecological networks in agreement with those identified by Ref.

[33], and provided a theoretical framework for their interpreta-

tion. Overall, the performances of Max[Sy] as a leading indicator

of instability change between random, antagonistic, mutualistic/

social networks. This indicator gives an earlier and ‘‘sharper’’

warning sign in random than mutualistic and social networks. The

warning sign, however, is harder to detect and is more likely to be

missed in random and antagonistic networks than in their

mutualistic or social counterparts (Figures 4, S16). Thus, by

affecting the probability that early warnings are missed, the sign of

the interactions within the network determines the consistency and

reliability of this leading indicator. In fact, different realizations of

the same network dynamics can yield different results in the

behavior of Max[Sy] and thus this indicator might not detect in

useful advance the emergence of instability (Figures S17 and S18).

The probability of true positives is close to 100% (i.e., negligible

probability of false negatives) in mutualistic networks, and much

smaller in random and antagonistic (predator-prey, cascade or

compartment) networks (Figures 4, S16). Thus, while mutualistic

networks are less stable than their antagonistic counterparts [17],

their instability can be predicted with less uncertainty. An increase

in Max[Sy], however, would not provide information on how close

the system is to the onset of instability. Rather, it would just

indicate that the system is losing resilience and approaching

unstable conditions [29]. Therefore, in contrast to previous

expectations [16], it is not the heterogeneity in the topology of

the network that plays a key role in the abruptness of critical

transitions and our ability to predict them. Rather, it is the type of

interactions between the nodes that determines how networks

respond to external perturbations. In fact, there is a trade-off

between local and systemic resilience: mutualism (++) is associated

Figure 3. A) Case with random interaction strength (see methods). Main panel: instability is reached by increasing p (with N = 20; C = 0.2).
First inset (B): p is constant while C increases between 0.1 and 1. C) Same as the first inset (B) but only for the scale-free network (notice the different
scale on the vertical axis). The figures represent average behavior over 1000 realizations.
doi:10.1371/journal.pone.0101851.g003

Figure 4. Distribution of the correlation, rK, between Max[Sy]
and the parameter p, after 1000 realizations for the full
disordered (not mean-field) case. If rK is significant (p-value,
0.05) and rK.0.5 the increase in Max[Sy] is interpreted as an early
warning sign. We calculate these detection statistics for several
realizations of each network structure and determine the probability
of detecting the early warning sign of instability. We consider eleven
different network architectures typical of ecological or social networks,
including random (R), predator-prey (PP), cascade (Casc), compartmen-
talized (Comp), mutualistic (M), bipartite (Bip), nested (N), nested with
competition (N+C), scale free (SF), and small world (SW). These networks
have different structures for the adjacency matrix and different
combination of interaction types, i.e (++) mutualistic, (+2) antagonistic,
(22) competitive or a combination of them (See Materials S1 for more
details).
doi:10.1371/journal.pone.0101851.g004
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with a reduced local stability and resilience of the system [17,19],

but does not induce abrupt critical transitions. In contrast,

networks with mixtures of interaction types (+2,++, 22) exhibit

shorter recovery times after displacement from equilibrium (i.e., a

stronger local resilience) [17–18], but in these systems the

emergence of systemic instability and critical transitions is more

difficult to predict in useful advance.

This study combines stability theories from community ecology

[2,17] to recent research on indicators of critical transition

[7,9,16], and develops a unified framework that offers a new

perspective for the evaluation of the resilience and anticipation of

instability in social-ecological networks.

Supporting Information

Figure S1 Increase in Max[Sy] as Max[Re(l)] tends to
zero for mean field networks of size, N = 20, C = 0.2.
Increasing values of Max[Re(l)] are obtained by increasing the

interaction strength, p. The plotted values are the ensemble

averages of 1000 realizations.

(TIFF)

Figure S2 Increase in Max[Sy] as Max[Re(l)]R0 for
mean field networks of size, N = 20, p,,pc. Increasing

values of Max[Re(l)] are obtained by increasing the connectivity,

C. The plotted values are the ensemble averages of 1000

realizations.

(TIFF)

Figure S3 Increase in Max[Sy] as Max[Re(l)] tends to
zoro for complex networks with ‘‘weak’’ disorder (see
Section 1) of size, N = 20 and C = 0.2. Increasing values of

Max[Re(l)] are obtained by increasing the interaction strength, p.

The plotted values are the ensemble averages of 1000 realizations.

(TIFF)

Figure S4 Increase in Max[Sy] as Max[Re(l)]R0 for
complex networks with ‘‘weak’’ disorder (see Section 1)
of size, N = 20 and p,,pc. Increasing values of Max[Re(l)] are

obtained by increasing the connectivity, C. The plotted values are

the ensemble averages of 1000 realizations.

(TIFF)

Figure S5 Increase in Max[Sy] as Max[Re(l)] tends to
zero for complex networks with ‘‘strong’’ disorder (see
Section 1) of size, N = 20 and C = 0.2. Increasing values of

Max[Re(l)] are obtained by increasing the interaction strength, p.

The plotted values are the ensemble averages of 1000 realizations.

(TIFF)

Figure S6 Increase in Max[Sy] as Max[Re(l)] tends to
zero for complex networks with ‘‘strong’’ disorder (see
Section 1) of size, N = 20. Increasing values of Max[Re(l)] are

obtained by increasing the connectivity, C. The plotted values are

the ensemble averages of 1000 realizations.

(TIFF)

Figure S7 Elements of the covariance matrix Sy corre-
sponding to nodes with the highest number of connec-
tions (green), lowest number of connections (light blue),
highest eigenvector centrality (gold), max[Sy] (violet)
and max[Sy]-min[Sy] (purple), in the case of: (A)
mutualistic, (B) mutualistic nested with competition,
(C) small world interactions, for mean field networks (of
size N = 20 and connectivity C = 0.3). The plotted values are

the ensemble averages of 1000 realizations.

(TIFF)

Figure S8 Elements of the covariance matrix Sy corre-
sponding to nodes with the highest number of connec-
tions (green), lowest number of connections (light blue),
highest eigenvector centrality (gold), max[Sy] (violet)
and max[Sy]-min[Sy] (purple) in the case of (A) random,
(B) predator-prey, (C) mutualistic, (D) mutualistic
nested with competition, (E) Small world, (F) Barabasi-
Albert, networks with strong disorder (of size N = 20 and
connectivity C = 0.3). The plotted values are the ensemble

averages of 1000 realizations.

(TIFF)

Figure S9 Frequency distribution of the degrees (i.e.,
number of connections) of the networks’ nodes and (with
partially filled circles) of the nodes associated with the
maximum value of the covariance matrix Sy in mean
field networks with a variety of interactions. Based on a

set of 100 realizations. Notice how, in mutualistic networks the

node corresponding to max[Sy] is associated with the nodes with

the highest degrees (i.e. the generalist species).

(TIFF)

Figure S10 Frequency distribution of the degrees (i.e.,
number of connections) of the networks’ nodes, and
(with partially filled circles) frequency distribution of
the nodes associated with the maximum value of the
covariance matrix Sy in ‘‘strongly’’ disorganized net-
works with a variety of interactions. Based on a set of 100

realizations. Notice how, in mutualistic networks the node

corresponding to max[Sy] is associated with the nodes with the

highest degrees (i.e. the generalist species).

(TIFF)

Figure S11 Effect of the network size on the magnitude
of the early warning sign. Maximum real part (in absolute

value) of the network’s eigenvalues as a function of the network

size, N for a random network with C = 0.25 and p = pc = 1/!NC.

As N increases the max of Re(l) tends to zero as Max[Re(l)]

,N21.5 and the resilience of the system decreases, while the

‘‘height’’ of the early warning increases. Therefore, as N increases,

the early warning sign becomes sharper (see also Figure 1 in the

main text).

(TIFF)

Figure S12 Increase in Max[ry] as Max[Re(l)] tends to
zero for ‘‘strongly’’ disordered networks with a random
architecture with N = 20 and C = 0.3. Increasing values of

Max[Re(l)] are obtained by increasing the interaction strength, p.

The plotted values are ensemble averages of 100 realizations.

(TIFF)

Figure S13 Increase in Max[ry] as Max[Re(l)] tends to
zero for ‘‘strongly’’ disordered networks with a preda-
tor-prey architecture and N = 20, C = 0.3. Increasing values

of Max[Re(l)] are obtained by increasing the interaction strength,

p. The plotted values are ensemble averages of 100 realizations.

(TIFF)

Figure S14 Increase in Max[ry] as Max[Re(l)] tends to
zero for ‘‘strongly’’ disordered networks with a mutu-
alistic architecture and N = 20, C = 0.3. Increasing values of

Max[Re(l)] are obtained by increasing the interaction strength, p.

The plotted values are ensemble averages of 100 realizations.

(TIFF)

Figure S15 Left panel: max element of the power
spectrum matrix as a function of frequency for three
different architectures. The impact of the structure on the
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spectrum is negligible. Right panel: Power spectrum evaluated in

the minimum and maximum frequency as p tends to pc (and thus

Max[Re(l)] tends to zero) for strongly disordered systems (N = 20

and C = 0.2) with random, predator-prey, and mutualistic interac-

tions. Increasing values of Max[Re(l)] lead to a decrease in d=

Max[P(vmin)] - Max[P(vmax)], that therefore might be considered a

precursor for a critical transition. However, the intensity of this early

warning sign is quite weak and thus difficult to detect. The plotted

values are ensemble averages of 100 realizations.

(TIFF)

Figure S16 Probability of detecting true positives (i.e. of
not missing a warning sign) in the case of mean field
networks, using the same detection criteria as in Figure 4.
(TIFF)

Figure S17 Frequency distribution of the rK statictics
used to detect early warning signs of instability in the
case of mean field networks.
(TIFF)

Figure S18 Frequency distribution of the rK statictics
used to detect early warning signs of instability in the
case of full disordered networks.

(TIFF)

Materials S1

(DOC)
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