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Abstract

US national parks are challenged by climate and other forms of broad-scale environmental change that operate beyond
administrative boundaries and in some instances are occurring at especially rapid rates. Here, we evaluate the climate
change exposure of 289 natural resource parks administered by the US National Park Service (NPS), and ask which are
presently (past 10 to 30 years) experiencing extreme (,5th percentile or .95th percentile) climates relative to their 1901–
2012 historical range of variability (HRV). We consider parks in a landscape context (including surrounding 30 km) and
evaluate both mean and inter-annual variation in 25 biologically relevant climate variables related to temperature,
precipitation, frost and wet day frequencies, vapor pressure, cloud cover, and seasonality. We also consider sensitivity of
findings to the moving time window of analysis (10, 20, and 30 year windows). Results show that parks are overwhelmingly
at the extreme warm end of historical temperature distributions and this is true for several variables (e.g., annual mean
temperature, minimum temperature of the coldest month, mean temperature of the warmest quarter). Precipitation and
other moisture patterns are geographically more heterogeneous across parks and show greater variation among variables.
Across climate variables, recent inter-annual variation is generally well within the range of variability observed since 1901.
Moving window size has a measureable effect on these estimates, but parks with extreme climates also tend to exhibit low
sensitivity to the time window of analysis. We highlight particular parks that illustrate different extremes and may facilitate
understanding responses of park resources to ongoing climate change. We conclude with discussion of how results relate to
anticipated future changes in climate, as well as how they can inform NPS and neighboring land management and planning
in a new era of change.
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Introduction

Recent scientific reviews of the US National Park Service (NPS)

suggest the agency needs to manage its parks for changing climatic

and ecological baselines in a landscape context [1–3]. These

recommendations reiterate and heighten the imperative that it is

no longer ecologically viable to manage resources solely within

park boundaries, nor feasible to meet objectives based on pre-

European settlement conditions. Broad-scale anthropogenic

changes impact even the most remote areas with the highest

levels of protection (e.g., federally designated wildernesses [4]).

Climate change, land use change, pollution, and invasive species

are pervasive and have additive and interactive effects on species

and ecosystems [5], and they challenge the NPS to work under

rapidly shifting conditions at broad spatial scales in order to

protect park resources for future generations [6,7].

Climate change is a principal factor driving the imperative for

progressive management aimed at achieving a specified ‘desired

future condition’ (DFC) [8,9]. Magnitudes and rates of modeled

future climate change suggest that temperatures in many regions

of the globe may shift outside the envelope of historical (1860–

2005) variability by mid-century [10], thus requiring DFCs to

depart from past observations or records. Furthermore, climate

change may already be affecting park natural resources. According

to the Intergovernmental Panel on Climate Change (IPCC),

globally each of the last three decades was increasingly warmer

than any preceding decade since 1850, and – in the northern

hemisphere –1983–2012 was possibly the warmest 30-year period

of the last 1400 years [11]. In these situations, DFC management

confronts existing ‘retrospective’ management practices that have

for decades worked to preserve areas and resources within an

‘historical range of variability’ (HRV) [12]. For example, in a

coastal park such as Point Reyes National Seashore [13], where

the physical shoreline and intertidal wetlands are important

resources, park managers may need to consider facilitating the

inland migration of both features into new areas, rather than

retain HRV by resisting sea level rise. Depending on the proximity

of the current shoreline to the park’s boundary, some of this DFC

management may necessitate accepting or promoting resource

migration beyond areas administered by the NPS. Due in part to

logistical dilemmas posed by these possible futures, coupled with

their novelty, there is often a desire to – where possible and as

supported by current policy – manage under an existing, observed

HRV, rather than an entirely new and uncertain set of conditions.

Recommendations to both scale up and consider changing

baselines [1–3] encourage a thorough analysis of the exposure of

individual parks and surrounding landscapes to climate change.

Such insights are foundational to understanding which climate
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drivers are already statistically extreme relative to HRV, and

whether ongoing climate change will further exacerbate (vs.

alleviate) these conditions. Here, we evaluate the recent climate

(past 10–30 years) of each US NPS natural resource park relative

to its HRV across the past 112 years (1901–2012). We consider

parks in a landscape context (park + surrounding 30 km) and

evaluate both mean and inter-annual variation in major climate

drivers over multiple climatically and management relevant time

periods. Our analyses address three questions relevant to

individual park management and NPS planning and policy: (i)

relative to 1901–2012 HRV, do recent climate conditions NPS-

wide tend to be unusually low or high on certain climate variables,

(ii) how sensitive are these statistical distributions to the time

window of analysis (10, 20, or 30 years), and (iii) which individual

parks are climatically extreme relative to their HRV? We conclude

with discussion of how results relate to anticipated future changes

in climate and – by extension – how they may inform NPS climate

adaptation.

Materials and Methods

Study Sites
Our analyses were performed for all natural resource parks

considered by the NPS Inventory & Monitoring Program’s

landscape dynamics monitoring project, NPScape (n = 289),

including a 30 km buffer around each park’s boundary [14].

Hereafter these areas of analysis are referred to generally as

‘parks’. The 30 km buffer was selected because of the relatively

coarse spatial resolution of the climate data (see below), as well as

to approximate the surrounding zone of ecological influence [15].

Natural resource parks range from approximately 14uS to 68uN
latitude (spanning the Equator) and 115uW to 65uE longitude

(spanning the International Date Line), hence the need to use

global climate data as a single, common source for consistent

coverage of all parks in this study.

Climate Data
Gridded climate data were obtained from the Climatic

Research Unit (CRU) high-resolution time series version 3.21

(TS 3.21) [16]. CRU TS 3.21 data are globally available at 0.5

decimal degrees (approximately 3000 km2 at the Equator and

2000 km2 at 70uN latitude) for each month 6 year, 1901–2012.

Although this dataset is spatially coarse, at least relative to the size

of some parks (e.g., the smallest park with 30 km buffer

encompasses roughly one grid cell), it offers for all NPS

geographies the highest spatiotemporal resolution of observed

climate over the 20th and 21st centuries. We selected for analysis

monthly averages of daily temperature (minimum, maximum,

mean; uC), percentage cloud cover, and vapor pressure (haP), as

well as total monthly precipitation (mm) and monthly frequencies

of frost days (a period of 24 hours in which the minimum

temperature falls below 0uC) and wet days (rain days per month).

We used the monthly climate variables to calculate a series of

biologically meaningful variables, including 19 standard biocli-

matic variables [17], as well as six other variables that relate to

photosynthetic activity and plant growth [18,19] (Table 1).

Although correlations exist among some of these variables, we

include the full suite in our analysis because the relevance of

individual climate variables can vary dramatically by park

resource (e.g., minimum winter temperature may influence a bird

distributional limit, while maximum summer temperature may be

a more important driver for particular mammals). As such, the

elimination of certain variables due to high statistical correlations

would adversely restrict the value of these analyses for park

interpretation. Furthermore, the data presented here are percen-

tiles calculated from HRV (see below), not the raw climate

variables. Hence, whether variables are correlated is not simply a

question of correlation at one point in time; it is a complex

question of how sensitive correlations are across the entire 1901–

2012 period of analysis, interacting with the moving time window

of summarization.

Statistical Analysis
For each biologically relevant variable, over the entire time

series (1901–2012), we used three moving windows (10, 20, and 30

years) to calculate a series of running means and standard

deviations (SD). Hereafter we refer to these as ‘moving window

means’ and ‘moving window standard deviations’. These statistical

distributions are what we use to estimate HRV. For example, with

the 10 year window, we calculated the mean and SD for 103

windows (1901–1910, 1902–1911, …, 2003–2012) to create the

HRV distribution. The three windows were designed to encom-

pass both near- and long-term management and planning

considerations, as well as important climatic periods and cycles.

In the NPS, many implementation plans have short horizons (,10

years), while strategic plans forecast out 10 to 20 years [20].

Traditional climate summaries span periods of 30 years [21], while

major climate cycles affecting NPS geographies (e.g., Pacific

Decadal Oscillation and North Atlantic Oscillation) tend to

operate roughly on decadal to multi-decadal scales (e.g., over

periods of 10, 20, or 30 years) [22].

For each variable, moving window size, and summary statistic

(temporal mean and SD), we calculated the area-weighted mean

for each park, based on the spatial intersect of park areas of

analysis with the CRU lattice. Using processing logic contained in

the NPScape climate grid analysis toolset [23], a resource designed

by the NPS Inventory and Monitoring Program to facilitate

common statistical analyses of gridded climate data, we then

computed using R [24] the percentile of each most recent window

(2003–2012, 1993–2012, 1983–2012) on the corresponding

distribution of moving window values for each park (i.e., its

HRV). In other words, we quantified recent conditions as the

percentile of the most recent moving window value relative to the

entire distribution of moving window values for that climate

variable and window size (e.g., a 90th percentile for the most recent

10 year moving window of annual mean temperature signifies that

the value of this climate variable during this time period was

greater than 90% of all annual mean temperature 10 year moving

window values). Hereafter we refer to these estimates as ‘recent

percentiles’.

We then averaged the recent percentiles of the most recent 10,

20, and 30 year moving windows and computed the maximum

difference in percentile (max D) among windows; this resulted in –

for each park, variable, and summary statistic – both an overall

measure of recent climate change exposure with respect to HRV,

and an estimate of how sensitive that measure was by comparing

the different moving window sizes. Note that our measure of

variability (moving window SD) does not reveal any information

regarding extreme events, such as droughts, heat waves, and

storms, which can also impact park resources [25].

An example of these steps with annual mean temperature (Bio1)

is shown for Grand Canyon National Park (Figure 1). In this

instance, the percentiles associated with the most recent mean

temperature windows (computed over 10, 20, and 30 years) are all

.95% (mean = 99%), showing that recent temperature has been

at the extreme warm end of the entire distribution of moving

windows (see location of red asterisks in boxplot distributions,

Figure 1B). The max D for mean temperature is relatively small

Climate Change Exposure of US National Parks
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(2.9%), confirming that recent conditions have been very warm

across all three window sizes. The standard deviation of Bio1

(inter-annual variability over 10, 20, and 30 years) shows a more

variable pattern among window sizes, with SD percentiles

associated with the most recent windows varying between 25

and 80% (red asterisks, Figure 1D). Hence, estimates of recent

inter-annual variability in annual mean temperature are sensitive

to window size (max D= 55%).

Given the number and complexity of variables considered in

our analysis, we performed two multivariate analyses in an effort

to produce more integrated summaries of recent percentiles.

Principal component analyses were used to identify a small set of

uncorrelated axes for each combination of summary statistic

(temporal mean and SD) and measure (mean percentile and max

D percentile). We also conducted a threshold-based classification

analysis of mean percentiles, on both the moving window mean

and SD, to characterize which parks were extreme on their

annual, monthly, or quarterly temperature (Bio1, 5, 6, 8–11) or

precipitation (Bio12–14, 16–19) variables. In this classification

analysis, as well as in other evaluations of individual climate

variables, we define ‘extreme’ as either less than the 5th percentile

(low) or greater than the 95th percentile (high), and all intervening

percentiles as ‘average’. We tallied the total number of temper-

ature and precipitation variables that met either of these

conditions and categorized each park as extreme low or high on

temperature and precipitation if at least one variable in each class

was low or high. Parks were considered ‘mixed’ if they possessed

low and high estimates of temperature, or low and high estimates

of precipitation. Then, considering only the low and high

variables, we calculated the maximum value of their max D’s to

provide a maximum estimate of sensitivity to window size. Given

the thresholds used to define ‘extreme’, the maximum possible

value for max D is 15%.

For a subset of parks spanning the contiguous US, we conducted

another sensitivity analysis using local weather station data to

examine the degree to which CRU results differ from those

obtained using direct climate observations. For local station data,

we identified 18 United States Historical Climatology Network

stations located within park boundaries that similarly span the

1901–2012 period of analysis [26]. We repeated the above

threshold-based classification analysis and found strong corre-

spondence between datasets. Agreement in classification of

extreme warm temperatures based on moving window means

occurred at 17 of 18 sites (94%); the station data identified all

parks as extreme warm whereas the CRU data found one park

that was not extreme. For precipitation moving window means,

agreements in classification for extreme wet and extreme dry

conditions were 83% and 94%, respectively. Considering extremes

of both temperature and precipitation, the CRU and weather

station datasets matched in moving window mean classifications at

14 of 18 sites (78%). With moving window standard deviations,

agreements in temperature and precipitation classifications were

on average 74%. These comparisons suggest that the CRU dataset

likely provides reasonable climate estimates for parks in this

Table 1. Biologically relevant variables considered in the analyses of climate change exposure of US national parks.

Code Name

Bio1 Annual mean temperature

Bio2 Mean diurnal range (mean of monthly (max temp – min temp))

Bio3 Isothermality (Bio2/Bio7)

Bio4 Temperature seasonality (standard deviation)

Bio5 Maximum temperature of the warmest month

Bio6 Minimum temperature of the coldest month

Bio7 Temperature annual range (Bio5– Bio6)

Bio8 Mean temperature of the wettest quarter

Bio9 Mean temperature of the driest quarter

Bio10 Mean temperature of the warmest quarter

Bio11 Mean temperature of the coldest quarter

Bio12 Annual precipitation

Bio13 Precipitation of the wettest month

Bio14 Precipitation of the driest month

Bio15 Precipitation seasonality (coefficient of variation)

Bio16 Precipitation of the wettest quarter

Bio17 Precipitation of the driest quarter

Bio18 Precipitation of the warmest quarter

Bio19 Precipitation of the coldest quarter

Cld1 Mean annual percentage cloud cover

Cld4 Cloud seasonality (standard deviation)

Vap18 Vapor pressure of the warmest quarter

Wet12 Annual number of wet days

Wet18 Number of wet days of the warmest quarter

Frs12 Annual number frost days

doi:10.1371/journal.pone.0101302.t001
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analysis, especially considering how the two data sources measure

climate at such different spatial scales (see discussion).

Lastly, as part of the CRU-based classification analysis, for each

climate variable (Bio1, 5, 6, 8–14, 16–19) we used a Monte Carlo

simulation to test whether the number of extreme parks was

significantly different than random expectations. To conduct this

test, we first randomly selected 100000 samples of size 289 from a

uniform distribution (min = 0, max = 1) to develop a sampling

distribution of the expected number of extreme parks under the

null hypothesis (mean = 14.5, SD = 3.7). Using that sampling

distribution, we then computed the probability of obtaining the

observed number of extreme parks for each climate variable.

Results

Climatic Variation across the NPS
Parks vary considerably in how their recent climates compare to

their 1901–2012 HRV, as estimated by mean percentiles for

moving window means and standard deviations (Figure 2). For

recent mean percentiles associated with moving window means

(Figure 2A, white boxes), parks are most broadly distributed on

precipitation variables (Bio12–19) and most skewed on tempera-

ture and cloud variables (Bio1, 6, 10, 11, Cld1, 4, Frs12). In

particular, recent percentiles for moving window means associated

with temperature variables tend to be quite high across most parks

(e.g., annual mean temperature (Bio1) is higher than the 50th

percentile in 99% of parks), while recent percentiles associated

with the annual number of frost days (Frs12) are correspondingly

quite low (Figure 2A). The mean diurnal temperature range (Bio2)

is also low, suggesting a greater warming of nighttime low

temperatures than of daytime highs.

For recent mean percentiles associated with moving window

standard deviations (Figure 2A, gray boxes), parks are most skewed

low on temperature variables (Bio3, 6, 7) and skewed high on the

number of wet days (Wet12, 18) and vapor pressure (Vap18).

Hence, recent patterns of inter-annual variability tend to be

especially low or high on these variables. However, compared to

moving window means, percentiles for moving window standard

deviations are overall less skewed and more broadly distributed

across parks.

Sensitivity to Moving Window Size
Moving window size has a considerable and consistent effect

across most parks and variables on the maximum difference in

recent percentile, as evident by inter-quartile ranges often

extending to upwards of 30 to 40% (Figure 2B). In other words,

Figure 1. Example moving window time series (used to estimate HRV) and recent percentiles shown for Bio1 (annual mean
temperature), Grand Canyon National Park (with 30 km buffer). A, B) Moving window means; C, D) Moving window standard deviations (SD).
Three moving windows –10 years (light gray), 20 years (medium gray), and 30 years (dark gray) – are calculated from the annual time series (blue, A).
Bio1 values for the most recent windows (2003–2012 (10 yr), 1993–2012 (20 yr), 1983–2012 (30 yr)) are indicated by the red asterisks. Boxes in B and
D are the inter-quartile range (median = thick perpendicular line), dashed lines the outer tails (1.56 inter-quartile range), and dots the outliers. Recent
percentiles are calculated for the red asterisks shown in B and D.
doi:10.1371/journal.pone.0101302.g001
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evaluating whether a park is presently low or high on its HRV can

depend on the time window of analysis. In terms of moving

window means, the same temperature and cloud variables with

skewed recent mean percentile distributions (Figure 2A, white

boxes) also tend to exhibit low maximum differences in recent

percentile (Figure 2B, white boxes). Similar patterns are seen with

moving window standard deviations (comparing gray boxes

between Figures 2A and 2B).

Contrary to the example shown for Grand Canyon National

Park in Figure 1, the maximum difference in recent percentile

between moving windows is not always based on 10 and 30 year

moving windows. Omitting ties (,10% of the park 6 variable

combinations), 49% of the largest ranges in recent moving window

means involve 10 and 30 years, 30% involve 10 and 20 years, and

21% involve 20 and 30 years. For moving window standard

deviations, 46% of the largest ranges involve 10 and 30 years, 30%

involve 10 and 20 years, and 24% involve 20 and 30 years. Hence,

about half the observations do not follow a simple linear trend

whereby change in the 10, 20, and 30 year windows is

unidirectional.

Climatically Extreme vs. Average Parks
The mean and maximum difference in recent percentile for all

parks and variables are given as a series of appendices for moving

window means (Appendix S1: Bio1–6; Appendix S2: Bio7–11;

Appendix S3: Bio12–19; Appendix S4: Cld1, 4, Vap18, Wet12,

18, Frs12) and standard deviations (Appendix S5: Bio1–6;

Appendix S6: Bio7–11; Appendix S7: Bio12–19; Appendix S8:

Cld1, 4, Vap18, Wet12, 18, Frs12).

Focusing on two common climate variables, annual mean

temperature (Bio1) and annual precipitation (Bio12), geographic

distributions of recent percentiles are illustrated for moving

window means (Figure 3) and standard deviations (Figure 4).

Considering moving window means for annual mean temperature

(Figure 3A), practically all natural resource parks are warm with

respect to their HRV (262 parks (91%) are greater than the 75th

percentile; 158 parks (55%) are greater than the 95th percentile),

with low sensitivity to moving window size (125 parks (43%) have a

maximum difference in percentile that is less than 5%). This

general pattern holds for parks from the Pacific Islands to Alaska

to the East Coast of the US.

Corresponding results for annual precipitation (Figure 3B) are

rather different: parks are heterogeneous with respect to where

Figure 2. Distribution of recent climate percentiles from each park (with 30 km buffer) for 25 biologically relevant climate
variables, showing both moving window means (white boxes) and moving window standard deviation (gray boxes), calculated for
three moving windows (10, 20, 30 years). A) Mean percentile across windows; B) Maximum difference in percentile across windows. Boxes are
the inter-quartile range (median = thick perpendicular line), dashed lines the outer tails (1.56 inter-quartile range), and dots the outliers. Climate
variables are sorted based on median values of mean climate percentiles, thus for a large majority of parks, recent conditions include very low
numbers of frost days (Frs12), low diurnal range (Bio2), very warm annual and summer temperatures (Bio1 and 10), and very high cloud cover (Cld1).
See Table 1 for definitions of climate variables.
doi:10.1371/journal.pone.0101302.g002
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Figure 3. The average (Mean) and maximum difference (Max D) of recent percentiles calculated for moving window means. A)
Annual mean temperature (Bio1); B) Annual precipitation (Bio12). Mean values provide an overall measure of recent (past 10, 20, and 30 year
windows) climate change exposure with respect to 1901–2012 HRV, while the maximum difference measures sensitivity to moving window size
(smaller values are less sensitive).
doi:10.1371/journal.pone.0101302.g003
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Figure 4. The average (Mean) and maximum difference (Max D) of recent percentiles calculated for moving window standard
deviations. A) Annual mean temperature (Bio1); B) Annual precipitation (Bio12). Mean values provide an overall measure of recent (past 10, 20, and
30 year windows) climate change exposure with respect to 1901–2012 HRV, while the maximum difference measures sensitivity to moving window
size (smaller values are less sensitive).
doi:10.1371/journal.pone.0101302.g004
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recent precipitation percentiles fall on their HRV and in many

instances are very sensitive to moving window size (i.e., large max

D). Furthermore, unlike annual mean temperature, most parks

have average recent precipitation percentiles: 135 parks (47%) are

within the 25th to 75th percentiles and 233 parks (81%) are within

the 5th to 95th percentiles. Hence, only 56 parks (19%) are extreme

(,5th percentile or .95th percentile) with respect to annual

precipitation.

In terms of inter-annual variability, as measured by moving

window standard deviations, recent percentiles for both annual

mean temperature (Figure 4A) and annual precipitation (Figure 4B)

also exhibit complex heterogeneous patterns that are highly

sensitive to window size. Most parks have average recent

percentiles for inter-annual variability. For annual mean temper-

ature, 176 parks (61%) are within the 25th to 75th percentiles and

275 parks (95%) are within the 5th to 95th percentiles. Annual

precipitation is similar: 188 parks (65%) are within the 25th to 75th

percentiles and 277 parks (96%) are within the 5th to 95th

percentiles. Hence, only about 10 parks are extreme with respect

to either annual mean temperature or annual precipitation, and

these parks differ between the two variables (Figure 4).

Principal component analyses on the data in Figure 2 reveal

further that the percentiles encompass complex correlations that

can only be partially captured by a handful of uncorrelated

multivariate axes. Principal components 1 and 2 (PC1 and PC2)

for the recent mean percentile associated with moving window

means explain 38% of the variation (PC1: 21%; PC2: 17%) while

those associated with moving window standard deviations explain

31% (PC1: 20%; PC2: 11%). Similarly, PC1 and PC2 for the

maximum difference in percentile associated with moving window

means explain 26% of the variation (PC1: 15%; PC2: 11%) while

those associated with moving window standard deviations explain

21% (PC1: 12%; PC2: 9%). The top two components thus only

capture a portion of the information contained by the original 25

variables and suggest strong heterogeneity in climate patterns

across parks.

In the classification analysis, considering extreme climates (,5th

percentile or .95th percentile) triggered by any one of the

temperature (Bio1, 5, 6, 8–11) or precipitation (Bio12–14, 16–19)

variables, most parks are presently dominated by extreme high

temperatures (235 parks (81%) are higher than the 95th percentile),

and – independent of temperature – some also by either extreme

high precipitation (78 parks (27%) are higher than the 95th

percentile) or low precipitation (43 parks (15%) are lower than the

5th percentile) (Figure 5A). Excluding the 30 parks (10%) that do

not exhibit any extreme percentiles with respect to temperature or

precipitation, the maximum difference in percentile across moving

windows is less than 10% in 84% of the remaining parks

(Figure 5A).

The number of parks that are extreme high or low on each

temperature or precipitation variable considered in the classifica-

tion analysis are reported in Table 2 and summarized below. For

all temperature variables (Bio1, 5, 6, 8–11), a significantly large

number of parks exhibit extreme high temperatures, while a

significantly small number of parks exhibit extreme low temper-

atures (Table 2). The three most frequent extreme high

temperature variables are Bio10 (170 parks, 59%), Bio1 (158

parks, 55%), and Bio6 (102 parks, 35%); numbers sum to more

than 234 because parks could be extreme on more than one

variable. Extreme low temperature is only documented for two

variables (Bio5 and 8) in a total of 3 parks (1%). The number of

parks with extreme high precipitation is significantly large for four

out of 7 variables, e.g., Bio12 and 16 (44 parks each, 15%). Bio14

and 19 are associated with a significantly small number of parks

with extreme low values (8 parks each, 3%). Two of the three

‘mixed’ category parks are explained by concurrent high and low

extremes of precipitation. For example, Assateague Island

National Seashore in Maryland has experienced extreme warm

temperatures (Bio1, 5, 10), extreme wet conditions during the

wettest quarter (Bio16), and extreme dry conditions during the

driest month (Bio14). The third mixed category park, Santa

Monica Mountains National Recreation Area in southern

California, has experienced extreme cold conditions for maximum

temperature of the warmest month (Bio5), and extreme warm

conditions for minimum temperature of the coldest month (Bio6),

resulting in an extreme low percentile for temperature annual

range (Bio7).

Parks are quite heterogeneous in whether inter-annual variabil-

ity is high (.95th percentile) or low (,5th percentile) on

temperature or precipitation variables (Figure 5B). In terms of

temperature, 43 parks (15%) exhibit extreme low inter-annual

variability and 69 parks (24%) exhibit extreme high inter-annual

variability. For precipitation, independent of temperature, 42

parks (15%) exhibit extreme low inter-annual variability and 76

parks (26%) exhibit extreme high inter-annual variability.

Excluding the 108 parks (37%) that are not extreme with respect

to either temperature or precipitation inter-annual variability, the

maximum difference in percentile across moving windows is less

than 10% in 91% of the remaining parks (Figure 5B).

A significantly small number of parks exhibit extreme low

temperature inter-annual variability on four variables: Bio5 (0

parks), Bio1 and 10 (1 park each, ,1%), and Bio11 (4 parks, 1%;

Table 2). For high temperature inter-annual variability, multiple

variables exhibit both significantly small and large numbers of

extreme parks. For example, fewer parks than expected have high

temperature inter-annual variability on Bio6 (0 parks) and Bio8 (5

parks, 2%), while a significantly large number of parks have high

inter-annual variability on Bio5 (40 parks, 14%) and Bio10 (33

parks 11%). Patterns of inter-annual variability for precipitation

are similar to temperature. A significantly small number of parks

exhibit low precipitation inter-annual variability for Bio12 (2

parks, 1%), Bio13 (3 parks, 1%), and Bio16 (1 park, ,1%). For

high precipitation inter-annual variability, a significantly small

number of parks are extreme for Bio19 (6 parks, 2%), while

significantly large numbers of parks are extreme for Bio14 (32

parks, 11%) and Bio16 (24 parks, 8%). The 11 ‘mixed’ category

parks for inter-annual variability include 8 parks with high and low

extremes of temperature and 3 parks with high and low extremes

of precipitation.

Finally, we highlight parks from the classification analysis that

exemplify particular cases of extreme temperature or precipitation

and are supported by maximum differences in percentile that are

less than 5%. Parks that exhibit extreme high temperatures and

high temperature inter-annual variability include Mammoth Cave

National Park in Kentucky and Appomattox Court House

National Historical Park in Virginia. Examples of parks that also

possess extreme high temperatures but low temperature inter-

annual variability include Niobrara National Scenic River in

Nebraska and Fort Larned National Historic Site in Kansas.

Relative to HRV, pronounced warming characterizes these four

parks, but they differ in terms of whether recent extreme warm

temperatures have been more or less variable. In terms of

precipitation, an example of an extreme wet park with high

precipitation inter-annual variability is Chesapeake & Ohio Canal

National Historical Park in Washington DC, Maryland, and West

Virginia. At the other extreme, Pu’ukohola Heiau National

Historic Site in Hawaii is extreme dry with low precipitation

inter-annual variability. Parks that have been experiencing
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extreme warm and dry climates include Kalaupapa National

Historical Park in Hawaii, Mojave National Preserve in southern

California, and Lake Mead National Recreation Area in Nevada

and Arizona. Parks that are extreme warm and wet include Cape

Lookout National Seashore in North Carolina, Florissant Fossil

Beds National Monument in Colorado, and Delaware Water Gap

National Recreation Area in New Jersey and Pennsylvania. These

examples represent different categories of extreme climate and

may offer insights for understanding how park resources are

responding to ongoing changes in climate.

Discussion

Natural resource parks in the US NPS exhibit complex patterns

of exposure to climate change when their recent climates are

evaluated relative to their 1901–2012 HRV. However, some

regional patterns are clearly identified and corroborated by the

literature: parks in the desert southwest are warmer and drier [27];

parks in Hawaii are warmer and drier [28]; parks in the northeast

are warmer and wetter [29]; parks in the Midwest are warmer

[30]; and parks in the southeast exhibit signs of the ‘warming hole’

[31]. Parks are overwhelmingly at the extreme warm end of

historical temperature distributions and this is true for several

variables, including annual mean temperature (Bio1), minimum

temperature of the coldest month (Bio6), and mean temperature of

the warmest quarter (Bio10). Precipitation patterns are more

heterogeneous across parks and variables. For example, relative to

HRV, precipitation may presently be high during the wettest

month (Bio13) and low during the driest month (Bio14) (e.g., Jean

Lafitte National Historical Park and Preserve in Louisiana).

Climate variability did not show strong or consistent trends, i.e.,

recent inter-annual variability is generally within the range

observed since 1901. Combined, these results suggest that many

natural resource parks are already experiencing extreme climatic

conditions with respect to their HRV, but these patterns vary

across parks, climate variables, summary statistics (temporal mean

or SD), and time windows of analysis.

Species within national parks are experiencing extreme climates

and measurable plant and animal responses to recent climate

change have already been documented [32–35]. The complexity

of climate change shown here will likely be mirrored by species

and other resources responding to different climate drivers. For

example, temperate tree species in the Great Lakes region appear

to be responding to summer temperature, while white-tailed deer

are more sensitive to winter conditions [36,37]. Additionally,

Figure 5. Summary of all temperature (Bio1, 5, 6, 8–11) and precipitation (Bio12–14, 16–19) variables with recent mean percentiles
that are either less than the 5th percentile or greater than the 95th percentile (i.e., extreme on HRV). A) Moving window means; B)
Moving window standard deviations (SD). T(l) = one or more temperature variables low (,5th percentile; ‘cold’ or decreased inter-annual variability).
T(h) = one or more temperature variables high (.95th percentile; ‘warm’ or increased inter-annual variability). P(l) = one or more precipitation
variables low (,5th percentile; ‘dry’ or decreased inter-annual variability). P(h) = one or more precipitation variables high (.95th percentile; ‘wet’ or
increased inter-annual variability). Parks with both T(l) and T(h) or both P(l) and P(h) are symbolized as ‘mixed’. Parks that fall between the 5th and 95th

percentiles on all temperature and precipitation variables are symbolized as ‘no extreme’. The maximum difference (Max D) in percentile was
calculated only for temperature and precipitation variables that were extreme; maximum values are reported to represent maximum sensitivity. Max
D is undefined in the case of parks symbolized as ‘no extreme’; parks that fall into all other categories, and with a max D of 0, are also shown without
outlines.
doi:10.1371/journal.pone.0101302.g005

Table 2. Monte Carlo simulations identifying significantly small (,9) or large (.20) numbers of parks with extreme climates
(recent mean percentiles either ,5th percentile or .95th percentile), reported for all temperature (Bio1, 5, 6, 8–11) and
precipitation (Bio12–14, 16–19) variables considered in the classification analysis.

Moving window mean Moving window SD

Variable ,5% .95% ,5% .95%

Bio1 0**** 158**** 1*** 13

Bio5 2*** 93**** 0**** 40****

Bio6 0**** 102**** 20 0****

Bio8 1*** 39**** 10 5**

Bio9 0**** 54**** 17 9

Bio10 0**** 170**** 1*** 33****

Bio11 0**** 58**** 4** 1***

Bio12 12 44**** 2*** 10

Bio13 15 18 3** 10

Bio14 8* 30**** 11 32****

Bio16 16 44**** 1*** 24**

Bio17 17 30**** 12 13

Bio18 15 16 10 13

Bio19 8* 13 9 6*

*P,0.05,
**P,0.01,
***P,0.001,
****P,0.0001.
doi:10.1371/journal.pone.0101302.t002
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species adapted to more extreme precipitation regimes may show

positive responses to warming temperatures, whereas mesic species

may show increased stress [38]. These differential responses are

likely to cause natural communities to disassemble and novel

communities to form [39,40]. Climate complexity – as well as

complex interactions between climate and other global change

agents [5] – require that land managers possess tremendous

scientific knowledge about the ecosystems under their jurisdiction,

and develop coherent and achievable resource management goals.

Hansen et al. [9] identify HRV and DFC as different

management philosophies necessitated by the degree to which

past, present, and future ecological conditions overlap. Parks like

Grand Canyon National Park, with natural resources that are

sensitive to temperature (e.g., annual mean temperature, Figure 1),

may require DFC management strategies because their temper-

ature trajectories lead to a complete decoupling of past, present,

and future conditions. Such a decision, however, should be

resource specific, and especially in the case of culturally significant

natural resources (e.g., cultural landscapes, seascapes, glaciers, and

iconic organisms) may consider resistance as a viable, short-term

management realization of DFC. For example, the General

Sherman giant sequoia in Sequoia National Park is an iconic

organism of cultural significance that – should it be threatened

directly or indirectly by climate change through drought or fire –

could receive intensive management intervention (i.e., it could be

proactively maintained within its HRV). As climate shifts further

outside of HRV bounds, resistance strategies will likely become

less effective and extremely difficult management decisions – with

input from the public and stakeholder groups – will be required.

Indeed, because US national parks are for the benefit and

enjoyment of the people [41] (the current motto is ‘‘Experience

Your America’’), many park resources will be subject to these

decisions requiring compromise solutions that weigh results

emerging from climate science against a suite of public values

and socioeconomic considerations.

Estimates of future climate are – to varying degrees – uncertain,

especially for particular variables considered in our analysis (e.g.,

cloud cover, vapor pressure) [42,43]. Some CRU variables (e.g.,

cloud cover, vapor pressure, number of frost and wet days) are also

more uncertain than others (e.g., temperature and precipitation,

used to derive bioclimatic variables), owing to a comparably sparse

record of observation and the need to initially model and

interpolate at a coarser resolution [16]. Nevertheless, even

considering just temperature and precipitation, climate projections

for the 21st century suggest many park geographies will become

warmer and either drier or wetter [44]. Regionally, these

predictions generally follow the same patterns and trends seen in

our results. In other words, climate change is ongoing, and parks

are already experiencing changes that can be documented without

having to necessarily look out an additional 50 or 100 years.

Importantly, future changes in temperature and precipitation will

likely push many parks beyond the limits of their HRV. For

example, recent mean temperature of the warmest quarter (Bio10)

at Apostle Islands National Lakeshore in Wisconsin has already

reached its 100th percentile, meaning that any continued increase

in temperature will push the park higher than all warm quarter

temperatures it has experienced since 1901. Similarly, many parks

are already extreme dry or wet; if these observed extremes are

followed by future changes in the same direction, then affected

parks will experience precipitation regimes unlike any they have

seen in over a century. Furthermore, changes in some climate

variables may exacerbate or override shifts in other variables. For

example, extreme warm temperatures will cause considerably

drier conditions, even if precipitation amounts remain within

HRV. Although it is reasonable to expect HRV to increase with

time, and indeed there may be real biological, ecological, or

cultural reasons to consider longer periods [12], other practical

management and planning considerations affect the determination

of a meaningful HRV baseline. The year 1901 predates the

establishment of the NPS by over a decade [41] and now many

parks are transcending all climates they have experienced during

their entire tenure. In this sense, 1901–2012 represents a

reasonable baseline, and HRV analyses based on it suggest that

the NPS is entering a new era of change. Furthermore, given that

recent temperatures may be extreme even compared to longer

baselines [11], the present analyses likely offer conservative

estimates of temperature extremes in parks.

Management and planning decisions will be greatly informed by

an overall assessment of vulnerability that integrates the present

climate change exposure analyses with others that consider both

the sensitivity and adaptive capacity of park resources to climate

change [9,45–48]. Beyond climate, additional change agents with

additive and interactive effects (e.g., land use, pollution, biological

invasions, fire) could also be profitably included as other analyses

of exposure [49]. Here, a principal challenge will be developing

vulnerability models that can be parameterized at the desired

spatial and temporal scales of analysis. Given tradeoffs between the

extent and resolution characteristics of scale (e.g., a long time

series (extent) may be restricted to a monthly instead of daily time

step (resolution)), vulnerability models will be subject to some of

the classical model tradeoffs involving realism, precision, and

generality [50]. Although there is an unstated desire in vulnera-

bility assessments to maximize realism and precision at the cost of

generality (i.e., collect site-level data and develop highly param-

eterized models that predict ecological complexity), we draw

attention to the inability of these models to encompass broad

geographic extents and suggest that vulnerability models maxi-

mizing generality and realism at the cost of precision stand to play

an especially pivotal role in planning and policy.

Our measures of climate change exposure support broad-scale

vulnerability assessments in the NPS, but they also help individual

parks understand and interpret which of their major climate

drivers are beginning to approach the limits of 1901–2012 HRV.

Such insights facilitate discussion of how climate change may

impact diverse park resources and values (e.g., natural resources,

cultural resources, facilities, visitor experience, wilderness charac-

ter), which are often sensitive to different measures of exposure,

but they are not intended to replace more detailed analyses

required for site-level management and planning within park

boundaries. Many parks are in areas of complex topography and

indeed this heterogeneity has important implications for climate

adaptation [51,52]. We suggest that the present analyses may be

used to prioritize and select climate variables for more park-

specific analyses of meso- and topo-climatic exposure. This ‘coarse

filter’ approach is valuable because it allows parks to initiate

resource-specific assessments with a priori knowledge of how major

climate drivers have changed in recent time. For resources

influenced by climate variables that are presently well within the

bounds of HRV, parks might decide that limited funding should

be redirected to study other resources that are sensitive to variables

approaching the limits of HRV. Parks might also decide to

monitor variables with recent extreme percentiles to assess rates of

change and detect when and where they become ‘novel’ with

respect to 1901–2010 HRV. Beyond applications related to

monitoring and management, results offer park interpreters

scientific information that may be translated and communicated

to the public.
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In approaching the 100-year anniversary of its creation in 2016,

the NPS is poised to enter its next century of natural resource

stewardship and science. The new century brings new challenges

in terms of stewarding park resources in the face of environmental

drivers that operate beyond park boundaries. Climate change

further challenges us to develop new, ecologically viable desired

conditions to guide the preservation of park resources in this new

era of change. While such challenges remain paramount, more

integrative research and education in the climate and landscape

arenas will contribute to solutions.
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