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Abstract

K-mer abundance analysis is widely used for many purposes in nucleotide sequence analysis, including data preprocessing
for de novo assembly, repeat detection, and sequencing coverage estimation. We present the khmer software package for
fast and memory efficient online counting of k-mers in sequencing data sets. Unlike previous methods based on data
structures such as hash tables, suffix arrays, and trie structures, khmer relies entirely on a simple probabilistic data structure,
a Count-Min Sketch. The Count-Min Sketch permits online updating and retrieval of k-mer counts in memory which is
necessary to support online k-mer analysis algorithms. On sparse data sets this data structure is considerably more memory
efficient than any exact data structure. In exchange, the use of a Count-Min Sketch introduces a systematic overcount for k-
mers; moreover, only the counts, and not the k-mers, are stored. Here we analyze the speed, the memory usage, and the
miscount rate of khmer for generating k-mer frequency distributions and retrieving k-mer counts for individual k-mers. We
also compare the performance of khmer to several other k-mer counting packages, including Tallymer, Jellyfish, BFCounter,
DSK, KMC, Turtle and KAnalyze. Finally, we examine the effectiveness of profiling sequencing error, k-mer abundance
trimming, and digital normalization of reads in the context of high khmer false positive rates. khmer is implemented in C++
wrapped in a Python interface, offers a tested and robust API, and is freely available under the BSD license at github.com/
ged-lab/khmer.
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Introduction

The goal of k-mer counting is to determine the number of

occurrences for each fixed-length word of length k in a DNA data

set [1]. Efficient k-mer counting plays an important role in many

bioinformatics approaches, including data preprocessing for de

novo assembly, repeat detection, and sequencing coverage

estimation [2].

Short-read shotgun sequencing data is both relatively sparse in

k-mers and contains many erroneous k-mers. For typical values of

k such as 32 these data sets are sparse, as only a small fraction of

the total possible number of k-mers (432) are actually present in

any genome or read data sets derived from the genome. The high

error rate (e.g. Illumina has a 0.1–1% per-base error rate [3])

generates many unique k-mers. As the total number of generated

reads increases, the total number of errors grows with it linearly.

This leads to data sets where the erroneous k-mers vastly

outnumber the true k-mers [4]. Tracking and counting the

resulting large number of k-mers, most of which are erroneous, has

become an unavoidable and challenging task in sequence analysis

[5].

A variety of k-mer counting approaches, and standalone

software packages implementing them, have emerged in recent

years; this includes Tallymer, Jellyfish, BFCounter, DSK, KMC,

Turtle and KAnalyze [1,2,6–10].

These approaches and implementations each offer different

algorithmic trade-offs and enable a non-overlapping set of

functionality. Tallymer uses a suffix tree to store k-mer counts in

memory and on disk [2]. Jellyfish stores k-mer counts in in-

memory hash tables, and makes use of disk storage to scale to

larger data sets [1]. BFCounter uses a Bloom filter as a pre-filter to

avoid counting unique k-mers, and is the first published

probabilistic approach to k-mer counting [6]. DSK adopts an

approach to k-mer counting that enables time- and memory-

efficient k-mer counting with an explicit trade-off between disk and

memory usage [7]. KMC and KAnalyze rely primarily on fast and

inexpensive disk access to count k-mers in low memory [8,10].

Turtle provides several different containers that offer different false

positive and false negative tradeoffs when counting k-mers [9].

Our motivation for exploring efficient k-mer counting comes

from our work with metagenomic data, where we routinely

encounter data sets that contain 300|109 bases of DNA and over
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50 billion distinct k-mers [11]. To efficiently filter, partition, and

assemble these data, we need to store counts for each of these k-

mers in main memory, and query and update them in realtime —

a set of functionality not readily offered by current packages.

Moreover, we wish to enable the use of cloud and desktop

computers, which may have poor I/O performance or limited

memory. These needs have dictated our exploration of efficient in-

memory k-mer counting techniques.

Below, we describe an implementation of a simple probabilistic

data structure for k-mer counting. This data structure is based on a

Count-Min Sketch [12], a generalized probabilistic data structure

for storing the frequency distributions of distinct elements. Our

implementation extends an earlier implementation of a Bloom

filter [13], which has been previously used in bioinformatics

applications, such as sequence matching [14], k-mer counting [6],

and de Bruijn graph storage and traversal [15,16]. Many other

variations of Bloom filters have been proposed [17], including

counting Bloom filters [18], multistage filters [19], and spectral

Bloom filters [20], which are related to the Count-Min Sketch and

our khmer implementation.

Probabilistic approaches can be particularly memory efficient

for certain problems, with memory usage significantly lower than

any exact data structure [15]. However, their use introduces set

membership or counting false positives, which have effects that

must be analyzed in the context of specific problems. Moreover,

unlike existing techniques, the Count-Min Sketch stores only

counts; k-mers must be retrieved from the original data set. In

exchange, the low memory footprint enabled by this probabilistic

approach enables online updating and retrieval of k-mer counts

entirely in memory, which in turn supports streaming applications

such as digital normalization [21].

We use the Amazon cloud to compare time, memory, and disk

usage of our k-mer counting implementation with that of other k-

mer counting software packages, for two problems. First, we

generate a k-mer abundance distribution for large data sets; and

second, we query many individual k-mer counts at random from a

previously constructed k-mer count database. We show that khmer

is competitive in speed, memory, and disk usage for these

problems. We also analyze the effects of counting error on

calculations of the k-mer count in sequencing data sets, and in

particular on metagenomic data sets. Finally, we discuss khmer’s

miscount performance in the context of two specific applications:

low-abundance k-mer trimming of reads, and digital normaliza-

tion.

The khmer software [22] is implemented in C++ in a Python

wrapper, enabling flexible use and reuse by users with a wide

range of computational expertise. The software package is freely

available for academic and commercial use and redistribution

under the BSD license at github.com/ged-lab/khmer/. khmer

comes with substantial documentation and many tutorials, and

contains extensive unit tests. Moreover, we have built several

applications on top of khmer, including memory-efficient de

Bruijn graph partitioning [15] and lossy compression of short-read

data sets for assembly [21].

Results

Implementing a Count-Min Sketch for k-mers
The two basic operations supported by khmer are increment_-

count(kmer) and c = get_count(kmer). Both operate on the data

structure in memory, such that neither incrementing a count nor

retrieving a count involves disk access.

The implementation details are similar to those of the Bloom

filter in [15], but with the use of 8 bit counters instead of 1 bit

counters. Briefly, Z hash tables are allocated, each with a different

size of approximately H bytes (H1,H2,:::,HZ ); the sum of these

hash table sizes must fit within available main memory. To

increment the count for a particular k-mer, a single hash is

computed for the k-mer, and the modulus of that hash with each

hash table’s size H gives the location for each hash table; the

associated count in each hash table is then incremented by 1. We

use different sizes for each hash table so as to vary the hash

function. Even if two k-mers have the same modulus in one hash

table (a collision), they are unlikely to collide in the other hash

tables. To retrieve the count for a k-mer, the same hash is

computed and the minimum count across all hash tables is

computed. While different in implementation detail from the

standard Bloom filter, which uses a single hash table with many

hash functions, the performance details are identical [15]. One

particularly important feature of the Count-Min Sketch is that the

counting error is one-sided [12]. Because counts are only

incremented, collisions result in inflated miscounts; if there is no

collision for a particular k-mer, the count is correct.

An additional benefit of the Count-Min Sketch is that it is

extremely easy to implement correctly, needing only about 3

dozen lines of C++ code for a simple threadsafe implementation.

(We have described how khmer scales with multiple threads in

[23].)

To determine the expected false positive rate — the average

frequency with which a given k-mer count will be incorrect when

retrieved — we can look at the hash table load. Suppose N distinct

k-mers have been counted using Z hash tables, each with size H.

The probability that no collisions happened in a specific entry in

one hash table is (1{1=H)N , or approximately e{N=H . The

individual collision rate in one hash table is then &1{e{N=H .

The total collision rate, which is the probability that a collision

occurred in each entry where a k-mer maps across all Z hash

tables, is &(1{e{N=H )Z , which is also the expected false positive

rate.

While the false positive rate can easily be calculated from the

hash table load, the average miscount — the degree to which the

measured count differs from the true count — depends on the k-

mer frequency distribution, which must be determined empirical-

ly. We analyze the effects of this below.

Choosing number and size of hash tables used for k-mer
counting

The false positive rate depends on the number of distinct k-mers

N, the number of hash tables Z, and the size of the hash tables H:

f&(1{e{N=H )Z, with an associated memory usage of M~HZ.

We face two common scenarios: one in which we have a fixed

number of k-mers N and fixed memory M and we want to

calculate the optimal number of hash tables Z; and one in which

we have a desired maximum false positive rate f and a fixed

number of k-mers N, and we want to calculate the minimum

memory usage required to achieve f .

For fixed memory M and number of distinct k-mers N , the

optimal number of hash tables can be found by minimizing f ;

taking the derivative, df =dZ, with f& exp (Z log (1{e{ZN=M ))
and solving for 0, we find that f is minimized when

Z~ log (2) � (M=N) (see [24] for details).

Given a desired false positive rate f and a fixed number of k-

mers N , the optimal memory usage can be calculated as follows.

First, the optimal number of hash tables is determined by the

expected false positive rate alone: Z~ log0:5 f . Using this Z, the

minimum average hash table size H necessary to achieve f can be

calculated as H~( log0:6185 (f )|N)=Z (see [24] for details).

Efficient Probabilistic Online K-mer Counting
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A remaining problem is that the number of distinct k-mers N is

typically not known. However, memory- and time-efficient

algorithms for calculating N do exist and we plan to implement

this in khmer in the future [25].

khmer efficiently calculates k-mer abundance histograms
We measured time and memory required to calculate k-mer

abundance histograms in five soil metagenomic read data sets

using khmer, Tallymer, Jellyfish, DSK, KMC, Turtle, and

KAnalyze (Table 1; Figures 1 and 2). We chose to benchmark

abundance histograms because this functionality is common to all

the software packages, and is a common analysis approach for

determining assembly parameters [26]. We applied each package

to increasingly large subsets of a 50 m read soil metagenome data

set [11]. For the BFCounter, KMC, Turtle and KAnalyze

packages, which do not generate k-mer abundance distribution

directly, we output the frequency of each k-mer to a file but do no

further analysis.

Figure 1 shows that the time usage of the khmer approach is

comparable to DSK and BFCounter, and, as expected, increases

linearly with data set size. Tallymer is the slowest of the four tools

in this testing, while KMC, Turtle, and Jellyfish are the fastest.

Figure 1. Comparison of the time it takes for k-mer counting tools to calculate k-mer abundance histograms, with time (y axis, in
seconds) against data set size (in number of reads, x axis). All programs executed in time approximately linear with the number of input
reads.
doi:10.1371/journal.pone.0101271.g001

Table 1. Benchmark soil metagenome data sets for k-mer counting performance, taken from [11].

Data set size of file (GB) number of reads number of distinct k-mers total number of k-mers

subset 1 1.90 9,744,399 561,178,082 630,207,985

subset 2 2.17 19,488,798 1,060,354,144 1,259,079,821

subset 3 3.14 29,233,197 1,445,923,389 1,771,614,378

subset 4 4.05 38,977,596 1,770,589,216 2,227,756,662

entire data set 5.00 48,721,995 2,121,474,237 2,743,130,683

doi:10.1371/journal.pone.0101271.t001
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From Figure 2, we see that the memory usage of Jellyfish,

Tallymer, BFCounter, and Turtle increases linearly with data set

size. Tallymer uses more memory than Jellyfish generally, while

BFCounter and Turtle have considerably lower memory usage.

DSK, KMC, and KAnalyze use constant memory across the data

sets, but at the cost of more limited functionality (discussed below).

The memory usage of khmer also increases linearly with data set

size as long as we hold the false positive rate constant. However,

the memory usage of khmer varies substantially with the desired

false positive rate: we can decrease the memory usage by

increasing the false positive rate as shown in Figure 2. We also

see that with a low false positive of 1%, the memory usage is

competitive with Tallymer and Jellyfish; with a higher 5% false

positive rate, the memory usage is lower than all but the disk-based

DSK; with an false positive rate as high as 20%, the memory usage

is further lower, close to DSK, KAnalyze, and KMC.

We also measured disk usage during counting. Figure 3 shows

that the disk usage also increases linearly with the number of k-mers

in the data set. For a high-diversity metagenomic data set of 5 GB,

the disk usage of both Jellyfish and Tallymer is around 30 GB.

khmer counts k-mers entirely in working memory and does not rely

on any on-disk storage to store or retrieve k-mer counts, although

for practicality the hash tables can be saved for later reuse; the

uncompressed disk usage for khmer in Figure 3 is the same as its

memory. At the expense of more time, khmer supports saving and

loading gzip-compressed hash tables, which are competitive in size

to DSK’s on-disk database (Figure 3, dashed line).

khmer accesses k-mer counts efficiently
We measured the time it took to access 9.7 m 22-mers across

five different data sets after the initial databases had been built

(Figure 4). Note that Tallymer, Jellyfish, and khmer all support

random access to k-mer counts, while BFCounter, DSK, KMC,

Turtle and KAnalyze do not. Here, khmer performed well,

dramatically outperforming Jellyfish and Tallymer. In all three

cases, system time dominated the overall time required to retrieve

k-mers, suggesting that the primary reason for the increase in

retrieval time was due to the increased size of the database on the

disk (data not shown). In particular, khmer is independent of the

size of the database in retrieval time once the hash tables are

loaded into memory.

The measured counting error is low on short-read data
Due to the use of Count-Min Sketch and its lack of collision

tracking, khmer will report some incorrect counts for k-mers; these

counts are always higher than the true counts, up to the bound of

255 (a limit imposed by our use of 8-bit counters). The frequency

with which incorrect counts are reported can be estimated from

the hash table load. However, the expected miscount — the

Figure 2. Memory usage of k-mer counting tools when calculating k-mer abundance histograms, with maximum resident program
size (y axis, in GB) plotted against the total number of distinct k-mers in the data set (x axis, billions of k-mers).
doi:10.1371/journal.pone.0101271.g002
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difference between the true k-mer frequency and the reported k-

mer frequency — cannot be calculated without knowing the

distribution of k-mer abundances; in general, the average miscount

will be small if the data is left-skewed. As noted by Melsted and

Pritchard, a large number of k-mers in short-read data are low-

abundance, leading to precisely the skew that would yield low

miscounts [6]. Here we use both real and simulated data sets to

evaluate the counting performance in practice.

Figure 5 shows the relationship between average miscount and

counting false positive rate for five different test data sets with

similar numbers of distinct k-mers: one metagenome data set; a

simulated set of random k-mers; a simulated set of reads, chosen

with 3x coverage and 1% error; a simulated set of reads (3x) with

no error; and a set of E. coli reads (Table 2). Even when the

counting false positive rate is as high as 0.9 — where 90% of k-

mers have an incorrect count — the average miscount is still below

4.

We separately analyzed the average percentage miscount

between true and false k-mers; e.g. an miscount of 4 for a k-mer

whose true count is 1 would be 400%. Figure 6 shows the

relationship between average miscount and counting false positive

rate for the same five data sets as in Figure 5. For a false positive

rate of 0.1 (10% of k-mer counts are incorrect), the average

percentage miscount is less than 10% for all five data sets; this will

of course generally be true, because the average miscount is

bounded by the product of the false positive rate with k-mer

abundance.

We see here that for a fixed false positive rate, the simulated

reads without error have the highest average miscount, and the

randomly generated k-mers have the lowest average miscount.

This is because these two abundance distributions have the least

and most left-skew, respectively: the simulated reads without error

have no abundance-1 k-mers, while the randomly generated k-

mers are entirely low abundance.

Sequencing error profiles can be measured with k-mer
abundance profiles

One specific use for khmer is detecting random sequencing

errors by looking at the k-mer abundance distribution within reads

[27]. This approach, known also as ‘‘k-mer spectral analysis’’, was

first proposed in by [28] and further developed in [29]. The

essential idea is that low-abundance k-mers contained in a high-

coverage data set typically represent random sequencing errors.

A variety of read trimming and error correcting tools use k-mer

counting to reduce the error content of the read data set,

independent of quality scores or reference genomes [30]. This is

an application where the counting error of the Count-Min Sketch

approach used by khmer may be particularly tolerable: it will

Figure 3. Disk storage usage of different k-mer counting tools to calculate k-mer abundance histograms in GB (y axis), plotted
against the number of distinct k-mers in the data set (x axis). �Note that khmer does not use the disk during counting or retrieval, although
its hash tables can be saved for reuse.
doi:10.1371/journal.pone.0101271.g003
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never falsely call a high-abundance k-mer as low-abundance

because khmer never underestimates counts.

In Figure 7, we use khmer to examine the sequencing error

pattern of a 5m-read subset of an Illumina reads data set from

single-colony sequencing of E. coli [31]. The high rate of

occurrence of unique k-mers close to the 39 end of reads is due

to the increased sequencing error rate at the 39 end of reads.

khmer can be applied iteratively to read trimming
We next evaluated the effect of false-positive induced miscounts

on read trimming, in which reads are truncated at the first low-

abundance k-mer. Because the Count-Min Sketch never under-

counts k-mers, reads will never be erroneously trimmed at truly

high-abundance k-mers; however, reads may not be trimmed

correctly when miscounts inflate the count of low-abundance k-

mers. In cases where many errors remain, read trimming can

potentially be applied multiple times, with each round reducing

the total number of k-mers and hence resulting in lower false

positive rates for the same memory usage.

We performed six iterations of unique k-mer trimming on 5

million Illumina reads from sequencing of E. coli, with memory

usage less than 30 MB. For each iteration we measured empirical

false positive rate compared with number of bases trimmed as well

as the total number of k-mers (Table 3). In the first round, the

estimated false positive rate was 80.0%, and 13.5% of the total

bases were removed by trimming reads at low-abundance k-mers;

the second iteration had a false positive rate of 37.7%, and

removed only 1.5% additional data; and by the fourth iteration the

false positive rate was down to 23.2% with 0.0% of the data

removed.

The elimination of so many unique k-mers (column 5) in the

first pass was unexpected: the high false positive rate should have

resulted in fewer k-mers being identified as unique, were the

erroneous k-mers independent of each other. Upon examination,

we realized that in Illumina data erroneous k-mers typically come

from substitution errors that yield runs of up to k erroneous k-mers

in a row [30]. When trimming reads with high false positive rates,

these runs are typically trimmed after the first few unique k-mers,

leaving unique k-mers at the 39 end. Because of this we

hypothesized that high-FP rate trimming would result in the

retention of many unique k-mers at the 39 end of the read, and this

was confirmed upon measurement (Table 3, column 6, pass 1 vs

pass 2).

In comparison to quality-based trimming software such as seqtk

and FASTX, trimming at unique k-mers performed very well: in

this data set, all unique k-mers represent errors, and even with an

initial false positive rate of 80%, khmer outperformed all but the

most stringent seqtk run (Table 3). With a lower false positive rate

or multiple passes, khmer eliminates more erroneous k-mers than

seqtk or FASTX. The tradeoff here is in memory usage: for larger

Figure 4. Time for several k-mer counting tools to retrieve the counts of 9.7 m randomly chosen k-mers (y axis), plotted against the
number of distinct k-mers in the data set being queried (x axis). BFCounter, DSK, Turtle, KAnalyze, and KMC do not support this functionality.
doi:10.1371/journal.pone.0101271.g004

Efficient Probabilistic Online K-mer Counting

PLOS ONE | www.plosone.org 6 July 2014 | Volume 9 | Issue 7 | e101271



data sets, seqtk and FASTX will consume the same amount of

memory as on smaller data sets, while khmer’s memory usage will

need to grow with the data set size.

Using khmer for digital normalization, a streaming
algorithm

Digital normalization is a lossy compression algorithm that

discards short reads based on saturating coverage of a de Bruijn

graph [21]. While several non-streaming implementations exist,

including Trinity’s in silico normalization [32,33], digital normal-

ization can be efficiently implemented as a streaming algorithm. In

the streaming implementation, if a read is not kept, it is not loaded

into the Count-Min Sketch structure, and the false positive rate

does not increase. For high coverage data sets, the digital

normalization algorithm is sublinear in memory because it does

not collect the majority of k-mers in those data sets [21]. This has

the advantage of enabling low-memory preprocessing of both

high-coverage genomic data sets, as well as mRNAseq or

metagenomic data sets with high-coverage components [11,21].

Figure 5. Relation between average miscount — amount by which the count for k-mers is incorrect — on the y axis, plotted against
false positive rate (x axis), for five data sets. The five data sets were chosen to have the same total number of distinct k-mers: one metagenome
data set; a set of randomly generated k-mers; a set of reads, chosen with 3x coverage and 1% error, from a randomly generated genome; a simulated
set of error-free reads (3x) chosen from a randomly generated genome and a set of E. coli reads.
doi:10.1371/journal.pone.0101271.g005

Table 2. Data sets used for analyzing miscounts.

Data set Size of data set file Number of total k-mers Number of distinct k-mers

Real metagenomics reads 7.01 M 2,917,200 1,944,996

Totally random reads with randomly generated k-mers 3.53 M 2,250,006 1,973,059

Simulated reads from simulated genome with error 5.92 M 3,757,479 2,133,592

Simulated reads from simulated genome without error 9.07 M 5,714,973 1,989,644

Real E. coli reads 4.85 M 4,004,911 2,079,302

doi:10.1371/journal.pone.0101271.t002
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While digital normalization is already implemented inside

khmer, previous work did not explore the lower bound on

memory usage for effective digital normalization. In particular, the

effects of high false positive rates have not been examined in any

prior work.

We applied digital normalization to the E. coli data set used

above, and chose seven different Count-Min Sketch sizes to yield

seven different false positive rates 4. The data set was normalized

to a k-mer coverage of 20 and the resulting data were evaluated for

retention of true and erroneous k-mers, as in [21] (Table 4). The

results show that digital normalization retains the same set of

underlying ‘‘true’’ k-mers until the highest false positive rate of

100% (Table 4, column 5), while discarding only about 2%

additional reads (Table 4, column 6).

To evaluate the effect of digital normalization with high false

positive rates on actual genome assembly, we next performed

normalization to a coverage of 20 with the same range of false

positive rates as above. We then assembled this data with Velvet

[34] and compared the resulting assemblies to the known E. coli
MG1655 genome using QUAST (Table 5). To our surprise, we

found that even after executing digital normalization with a false

positive rate of 83.2%, a nearly complete assembly was generated.

No progressive increase in misassemblies (measured against the

real genome with QUAST) was seen across the different false

positive rates (data not shown). This suggests that below 83.2% FP

rate, the false positive rate of digital normalization has little to no

effect on assembly quality with Velvet. (Note that the Velvet

assembler itself used considerably more memory than digital

normalization.)

While these results are specific to Velvet and the coverage

parameters used in digital normalization, they do suggest that no

significant information loss occurs due to false positive rates below

80%. Further evaluation of assembly quality in response to

different normalization parameters and assemblers is beyond the

scope of of this paper.

Discussion

khmer enables fast, memory-efficient online counting
khmer enables memory- and time-efficient online counting

(Figures 1, 2, and 4). This is particularly important for the

streaming approaches to data analysis needed as data set sizes

increase. Because query and updating of k-mer counts can be done

directly as data is being loaded, with no need for disk access or an

indexing step, khmer can also perform well in situations with poor

disk I/O performance. (Note that BFCounter also supports online

k-mer counting [6].)

Figure 6. Relation between percent miscount — amount by which the count for k-mers is incorrect relative to its true count — on
the y axis, plotted against false positive rate (x axis), for five data sets. The five data sets are the same as in Figure 5.
doi:10.1371/journal.pone.0101271.g006
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Figure 7. Number of unique k-mers (y axis) by starting position within read (x axis) in an untrimmed E. coli 100-bp Illumina shotgun
data set, for k = 17 and k = 32. The increasing numbers of unique k-mers are a sign of the increasing sequencing error towards the 39 end of reads.
Note that there are only 69 starting positions for 32-mers in a 100 base read.
doi:10.1371/journal.pone.0101271.g007

Table 3. Iterative low-memory k-mer trimming.

FP rate bases trimmed distinct k-mers unique k-mers unique k-mers at 39 end

untrimmed - - 41.6 m 34.1 m 30.4%

khmer iteration 1 80.0% 13.5% 13.3 m 6.5 m 29.8%

khmer iteration 2 40.2% 1.7% 7.6 m 909.9k 12.3%

khmer iteration 3 25.4% 0.3% 6.8 m 168.1k 3.1%

khmer iteration 4 23.2% 0.1% 6.7 m 35.8k 0.7%

khmer iteration 5 22.8% 0.0% 6.6 m 7.9k 0.2%

khmer iteration 6 22.7% 0.0% 6.6 m 1.9k 0.0%

filter by FASTX - 9.1% 26.6 m 20.3 m 26.3%

filter by seqtk(default) - 8.9% 17.7 m 12.1 m 12.3%

filter by seqtk(-q 0.01) - 15.4% 9.9 m 5.1 m 5.2%

filter by seqtk(-b 3 -e 5) - 8.0% 34.5 m 27.7 m 25.3%

The results of trimming reads at unique (erroneous) k-mers from a 5 m read E. coli data set (1.4 GB) in under 30 MB of RAM. After each iteration, we
measured the total number of distinct k-mers in the data set, the total number of unique (and likely erroneous) k-mers remaining, and the number
of unique k-mers present at the 3’ end of reads.
doi:10.1371/journal.pone.0101271.t003
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khmer is a generally useful k-mer counting approach
In addition to online counting, khmer offers a general range of

useful performance tradeoffs for disk I/O, time and memory.

From the performance comparison between khmer and other k-

mer counting packages in calculating k-mer abundance distribu-

tions, khmer is comparable with existing packages. In time, khmer

performs competitively with DSK and BFCounter (Figure 1);

khmer also provides a way to systematically trade memory for

miscounts across a wide range of parameters (Figure 2). khmer’s

uncompressed disk storage is competitive with Jellyfish, and, in

situations where disk space is at a premium, khmer can take

advantage of gzip compression to provide storage similar to that of

DSK (Figure 3, purple line with boxes).

KMC, DSK, and KAnalyze perform especially well in memory

usage for calculating the abundance distribution of k-mers.

However, in exchange for this efficiency, retrieving specific k-

mer counts at random is likely to be quite slow, as DSK is

optimized for iterating across partition sets of k-mers rather than

randomly accessing k-mer counts.

For retrieving the counts of individual k-mers, khmer is

significantly faster than both Tallymer and Jellyfish. This is not

surprising, since this was a primary motivation for the develop-

ment of khmer.

khmer memory usage is fixed and low
The memory usage of the basic Count-Min Sketch approach is

fixed: khmer’s memory usage does not increase as data is loaded.

While this means that khmer will never crash due to memory

limitations, and all operations can be performed in main memory

without recourse to disk storage, the false positive rate may grow

too high. Therefore the memory size must be chosen in light of the

false positive rate and miscount acceptable for a given application.

In practice, we recommend choosing the maximum available

memory, because the false positive rate decreases with increasing

memory and there are no negative effects to minimizing the false

positive rate.

For any given data set, the size and number of hash tables will

determine the accuracy of k-mer counting with khmer. Thus, the

user can control the memory usage based on the desired level of

accuracy (Figure 2). The time usage for the first step of k-mer

counting, consuming the reads, depends on the total amount of

data, since we must traverse every k-mer in every read. The

second step, k-mer retrieval, is algorithmically constant for fixed k;

however, for practicality, the hash tables are usually saved to and

loaded from disk, meaning that k-mer retrieval time depends

directly on the size of the database being queried.

The memory usage of khmer is particularly low for sparse data

sets, especially since only main memory is used and no disk space is

Table 4. Low-memory digital normalization.

memory FP rate retained reads retained reads % true k-mers missing total k-mers

before diginorm - 5,000,000 100.0% 170 41.6 m

2400 MB 0.0% 1,656,518 33.0% 172 28.1 m

240 MB 2.8% 1,655,988 33.0% 172 28.1 m

120 MB 18.0% 1,652,273 33.0% 172 28.1 m

60 MB 59.1% 1,633,182 32.0% 172 27.9 m

40 MB 83.2% 1,602,437 32.0% 172 27.6 m

20 MB 98.8% 1,460,936 29.0% 172 25.7 m

10 MB 100.0% 1,076,958 21.0% 185 20.9 m

The results of digitally normalizing a 5 m read E. coli data set (1.4 GB) to C = 20 with k = 20 under several memory usage/false positive rates. The
false positive rate (column 1) is empirically determined. We measured reads remaining, number of ‘‘true’’ k-mers missing from the data at each
step, and the number of total k-mers remaining. Note: at high false positive rates, reads are erroneously removed due to inflation of k-mer counts.
doi:10.1371/journal.pone.0101271.t004

Table 5. E. coli genome assembly after low-memory digital normalization.

memory FP rate N contigs total length(bases) % of true genome covered

before diginorm - 106 4,546,051 97.84%

2400 MB 0.0% 617 4,549,235 98.05%

240 MB 2.8% 87 4,549,253 98.04%

120 MB 18.0% 86 4,549,335 98.04%

60 MB 59.1% 90 4,548,619 98.03%

40 MB 83.2% 89 4,550,599 98.11%

20 MB 98.8% 85 4,550,014 98.04%

10 MB 100.0% 97 4,545,871 97.97%

A comparison of assembling reads digitally normalized with low memory/high false positive rates. The reads were digitally normalized to C = 20
(see [21] for more information) and were assembled using Velvet. We measured total length of assembly, as well as percent of true MG1655
genome covered by the assembly using QUAST.
doi:10.1371/journal.pone.0101271.t005
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necessary beyond that required for the read data sets. This is no

surprise: the information theoretic comparison in [15] shows that,

for sparse sequencing data sets, Bloom filters require considerably

less memory than any possible exact information storage for a

wide range of false positive rates and data set sparseness.

In our implementation we use 1 byte to store the count of each

k-mer in the data structure. Thus the maximum count for a k-mer

will be 255. In cases where tracking bigger counts is required,

khmer also provides an option to use an STL map data structure

to store counts above 255, with the trade-off of significantly higher

memory usage. In the future, we may extend khmer to counters of

arbitrary bit sizes.

False positive rates in k-mer counting are low and
predictable

The Count-Min Sketch is a probabilistic data structure with a

one-sided error that results in random overestimates of k-mer

frequency, but does not generate underestimates.

In the Count-Min Sketch, the total memory usage is fixed; the

memory usage, the hash functions, and the total number of distinct

objects counted all influence the accuracy of the count. While the

probability of an inaccurate count can easily be estimated based on

the hash table load, the miscount size is dependent on details of the

frequency distribution of k-mers [12].

More specifically, in the analysis of the Count-Min Sketch, the

difference between the incorrect count and actual count is related

to the total number of k-mers in a data set and the size of each

hash table [12]. Further study has shown that the behavior of

Count-Min Sketch depends on specific characteristics of the data

set under consideration, especially left-skewness [35,36]. These

probabilistic properties suit short reads from next generation

sequencing data sets: the miscounts are low because of the highly

left-skewed abundance distribution of k-mers in these data sets.

Figures 5 and 6 demonstrate these properties well. We see more

correct counting for error-prone reads from a genome than for

error-free reads from a genome, with a normal distribution of k-

mer abundance. Thus, this counting approach is especially suitable

for high diversity data sets, such as metagenomic data, in which a

larger proportion of k-mers are low abundance or unique due to

sequencing errors.

Real-world applications for khmer
For many applications, an approximate k-mer count is

sufficient. For example, when eliminating reads with low

abundance k-mers, we can tolerate a certain number of low-

frequency k-mers remaining in the resulting data set falsely. If

RAM-limited we can do the filtering iteratively so that at each step

we are making more effective use of the available memory.

In practice, we have found that a false positive rate of between

1% and 10% offers acceptable miscount performance for a wide

range of tasks, including error profiling, digital normalization and

low-abundance read-trimming. Somewhat surprisingly, false

positive rates of up to 80% can still be used for both read

trimming and digital normalization in memory-limited circum-

stances, although multiple passes across the data may be needed.

For many applications, the fact that khmer does not break an

imposed memory bound is extremely useful, since for many data

sets — especially metagenomic data sets — high memory demands

constrain analysis [11,37]. Moreover, because the false positive

rate is straightforward to measure, the user can be warned that the

results should be invalidated when too little memory is used. When

combined with the graceful degradation of performance for both

error trimming and digital normalization, khmer readily enables

analysis of extremely large and diverse data sets [38]. In an

experiment to assemble the reads of a soil metagenomic sample

collected from Iowa prairie, the number of reads to assemble drops

from 3.3 million to 2.2 million and the size of the data set drops

from 245GB to 145GB accordingly after digital normalization

[11]. 240GB memory was used in the process. This also shows that

khmer works well to analyze large, real-world metagenomic data

sets.

Conclusion
K-mer counting is widely used in bioinformatics, and as

sequencing data set sizes increase, graceful degradation of data

structures in the face of large amounts of data has become

important. This is especially true when the theoretical and

practical effects of the degradation can be predicted (see e.g.

[6,9,15]). This is a key property of the Count-Min Sketch

approach, and its implementation in khmer.

The khmer software implementation offers good performance, a

robust and well-tested Python API, and a number of useful and

well-documented scripts. While Jellyfish, DSK, KMC, and Turtle

also offer good performance, khmer is competitive, and, because it

provides a Python API for online counting, is flexible. In memory-

limited situations with poor I/O performance, khmer is particu-

larly useful, because it will not break an imposed memory bound

and does not require disk access to store or retrieve k-mer counts.

However, in exchange for this memory guarantee, counting

becomes increasingly incorrect as less memory is used or as the

data set size grows large; in many situations this may be an

acceptable tradeoff.

Future considerations
Applying khmer to extremely large data sets with many distinct

k-mers requires a large amount of memory: approximately

446 GB of memory is required to achieve an false positive rate

of 1% for 50|109 k-mers. It is possible to reduce the required

memory by dividing k-mer space into multiple partitions and

counting k-mers separately for each partition. Partitioning k-mer

space into M partitions results in a linear decrease in the number

of k-mers under consideration, thus reducing the occupancy by a

constant factor M and correspondingly reducing the collision rate.

Partitioning k-mer space is a generalization of the systematic prefix

filtering approach, where one might first count all k-mers starting

with AA, then AC, then AG, AT, CA, etc., which is equivalent to

partitioning k-mer space into 16 equal-sized partitions. These

partitions can be calculated independently, either across multiple

machines or iteratively on a single machine, and the results stored

for later comparison or analysis. This is similar to the approach

taken by DSK [7], and could easily be implemented in khmer.

Further optimization of khmer on single machines, e.g. for

multi-core architectures, is unlikely to achieve significantly greater

speed. Past a certain point k-mer counting is fundamentally I/O

bound [23].

Perhaps the most interesting future direction for probabilistic k-

mer counting is that taken by Turtle [9], in which several data

structures are provided, each with different tradeoffs, but with a

common API. We hope to pursue this direction in the future by

integrating such approaches into khmer.

Methods

Code and data set availability
The version of khmer used to generate the results below is

available at http://github.com/ged-lab/khmer.git, tag ‘2013-

khmer-counting’. Scripts specific to this paper are available in

the paper repository at https://github.com/ged-lab/2013-khmer-
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counting. The IPython[39] notebook file and data analysis to

generate the figures are also available in that github repository.

Complete instructions to reproduce all of the results in this paper

are available in the khmer-counting repository; see README.rst.

Sequence Data
One human gut metagenome reads data set (MH0001) from the

MetaHIT (Metagenomics of the Human Intestinal Tract) project

[40] was used. It contains approximately 59 million reads, each

44 bp long; it was trimmed to remove low quality sequences.

Five soil metagenomics reads data sets with different size were

taken from the GPGC project for benchmark purpose (see

Table 1). These reads are from soil in Iowa region and they are

filtered to make sure there are less than 30% Ns in the read and

each read is longer than 30 bp. The exact data sets used for the

paper are available on Amazon S3 and the instructions to acquire

these data sets are available in the paper repository on github.com.

We also generated four short-read data sets to assess the false

positive rate and miscount distribution. One is a subset of a real

metagenomics data set from the MH0001 data set, above. The

second consists of randomly generated reads. The third and fourth

contain reads simulated from a random, 1 Mbp long genome. The

third has a substitution error rate of 3%, and the fourth contains

no errors. The four data sets were chosen to contain identical

numbers of distinct 22-mers. The scripts necessary to regenerate

these data are available in the paper repository on github.com.

Count-Min Sketch implementation
We implemented the Count-Min Sketch data structure, a simple

probabilistic data structure for counting distinct elements [12].

Our implementation uses Z independent hash tables, each

containing a prime number of counters Hi. The hashing function

for each hash table is fixed, and reversibly converts each DNA k-

mer (for kƒ32) into a 64-bit number to which the modulus of the

hash table size is applied. This provides Z distinct hash functions.

To increment the count associated with a k-mer, the counter

associated with the hashed k-mer in each of the N hash tables is

incremented. To retrieve the count associated with a k-mer, the

minimum count across all N hash tables is chosen.

In this scheme, collisions are explicitly not handled, so the count

associated with a k-mer may not be accurate. Because collisions

only falsely increment counts, however, the retrieved count for any

given k-mer is guaranteed to be no less than the correct count.

Thus the counting error is one-sided.

Hash function and khmer implementation
The current khmer hash function works only for kƒ32 and

converts DNA strings exactly into 64-bit numbers. However, any

hash function would work. For example, a cyclic hash would

enable khmer to count k-mers larger in size than 32; this would not

change the scaling behavior of khmer at all, and is a planned

extension.

By default khmer counts k-mers in DNA, i.e. strandedness is

disregarded by having the hash function choose the lower

numerical value for the exact hash of both a k-mer and its reverse

complement. This behavior is configurable via a compile-time

option.

Comparing with other k-mer counting programs
We generated k-mer abundance distribution from five soil

metagenomic reads data sets of different sizes using khmer,

Tallymer, Jellyfish, DSK, BFCounter, KMC, Turtle and KAna-

lyze. If the software does not include function to generate k-mer

abundance distribution directly, we output the frequency of each

k-mer in an output file. We fixed k at 22 unless otherwise noted.
hmer. For khmer, we set hash table sizes to fix the false

positive rate at either 1%, 5% or 20%, and used 8 threads in

loading the data.

We did the khmer random-access k-mer counting benchmark

with a custom-written Python script khmer-count-kmers which

loaded the database file and then used the Python API to query

each k-mer individually.
Tallymer. Tallymer is from the genometools package version

1.3.4. For the suffixerator subroutine we used: -dna -pl -tis -suf -

lcp.

We use the mkindex subroutine to generate k-mer abundance

distribution, we used: -mersize 22.

The Tallymer random access k-mer counting benchmark was

done using the ‘tallymer search’ routine against both strands; see

the script tallymer-search.sh.
Jellyfish. The Jellyfish version used was 1.1.10 and the

multithreading option is set to 8 threads.

Jellyfish uses a hash table to store the k-mers and the size of the

hash table can be modified by the user. When the specified hash

table fills up, Jellyfish writes it to the hard disk and initializes a new

hash table. Here we use a similar strategy as in [6] and chose the

minimum size of the hash tables for Jellyfish so that all k-mers were

stored in memory.

We ran Jellyfish with the options as below:

jellyfish count -m 22 -c 2 -C for k = 22.

The Jellyfish random access k-mer counting benchmark was

performed using the ‘query’ routine and querying against both

strands; see the script jelly-search.sh.
DSK. We ran DSK with default parameters with -histo option

to generate k-mer abundance distribution. The DSK version used

was 1.5031.
BFCounter. The BFcounter version used was 1.0 and the

multithreading option is set to 8 threads.

We ran BFCounter count subroutine with the options as below:

BFCounter count -k 22 -t 8 -c 100000. -n option representing

the estimated number of k-mers is adjusted to the different test

data sets.

This subroutine produces the actual count of k-mers in input

files.

We ran BFCounter dump subroutine with the options as below:

BFCounter dump -k 22.

This subroutine can write k-mer occurrences into a tab-

separated text file.
KMC. The KMC version used was 0.3. We ran both kmc and

kmc_dump subroutines with default parameters.
Turtle. The Turtle version used was 0.3. We ran scTurtle32

with the multithreading option set to 8 threads and -n option

representing expected number of frequent k-mers is adjusted to

different test data sets.
KAnalyze. The KAnalyze version used was 0.9.3. We ran

count subroutine with default parameters.
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