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Abstract

Spike-Timing Dependent Plasticity (STDP) is characterized by a wide range of temporal kernels. However, much of the
theoretical work has focused on a specific kernel – the ‘‘temporally asymmetric Hebbian’’ learning rules. Previous studies
linked excitatory STDP to positive feedback that can account for the emergence of response selectivity. Inhibitory plasticity
was associated with negative feedback that can balance the excitatory and inhibitory inputs. Here we study the possible
computational role of the temporal structure of the STDP. We represent the STDP as a superposition of two processes:
potentiation and depression. This allows us to model a wide range of experimentally observed STDP kernels, from Hebbian
to anti-Hebbian, by varying a single parameter. We investigate STDP dynamics of a single excitatory or inhibitory synapse in
purely feed-forward architecture. We derive a mean-field-Fokker-Planck dynamics for the synaptic weight and analyze the
effect of STDP structure on the fixed points of the mean field dynamics. We find a phase transition along the Hebbian to
anti-Hebbian parameter from a phase that is characterized by a unimodal distribution of the synaptic weight, in which the
STDP dynamics is governed by negative feedback, to a phase with positive feedback characterized by a bimodal
distribution. The critical point of this transition depends on general properties of the STDP dynamics and not on the fine
details. Namely, the dynamics is affected by the pre-post correlations only via a single number that quantifies its overlap
with the STDP kernel. We find that by manipulating the STDP temporal kernel, negative feedback can be induced in
excitatory synapses and positive feedback in inhibitory. Moreover, there is an exact symmetry between inhibitory and
excitatory plasticity, i.e., for every STDP rule of inhibitory synapse there exists an STDP rule for excitatory synapse, such that
their dynamics is identical.
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Introduction

Spike timing dependent plasticity (STDP) is a generalization of

the celebrated Hebb postulate that ‘‘neurons that fire together wire

together’’ to the temporal domain, according to the temporal

order of the presynaptic and postsynaptic spike times. A

temporally asymmetric Hebbian (TAH) plasticity rule has been

reported in experimental STDP studies of excitatory synapses [1–

3], in which an excitatory synapse undergoes long-term potenti-

ation when presynaptic firing precedes the postsynaptic firing and

long-term depression is induced when the temporal firing order is

reversed, e.g., Figure 1A.

Many theoretical studies [4–9] that followed these experiments

used an exponentially decaying function to represent the temporal

structure of the STDP. Throughout this paper we term this STDP

pattern the ‘‘standard exponential TAH’’. Gütig and colleagues

[7] also provided a convenient mathematical description for the

dependence of STDP on the synaptic weight in the standard

exponential TAH STDP rule:

Dw~+lf+ wð ÞK Dtð Þ ð1Þ

K Dtð Þ~e{DDtD=t ð2Þ

fz wð Þ~ 1{wð Þm ð3Þ

f{ wð Þ~awm ð4Þ

where w[ 0,1½ � is the dynamic parameter that describes the

synaptic strength; Dw is the modification of w following pre (2) or

post (+) synaptic firing; Dt is the time difference between the

presynaptic and postsynaptic firing; l is the learning rate; t is the

temporal decay constant and m[ 0,1½ � and aw0 are dimensionless
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parameters of the model that characterize the weight dependent

component of the STDP rule. This representation introduces a

convenient separation of variables, in which the synaptic update is

given as a product of two functions. One function is the temporal

kernel of the STDP rule, i.e. K Dtð Þ, and the other is the weight

dependent STDP component, i.e. f+ wð Þ. For convenience,

throughout this paper we shall adopt the notation of Gütig and

colleagues for the weight dependence of the STDP rule, fz={ wð Þ,
equations (3) – (4). This function, fz={ wð Þ, is characterized by two

parameters: the relative strength of depression – a, and the degree

of non-linearity in w of the learning rule – m. Note, that other

choices for fz={ wð Þ have also been used in the past [5],[10],[11].

Properties of the ‘‘standard exponential TAH’’
As previously shown [6,7], the standard exponential TAH

model can generate positive feedback that induces bi-stability in

the learning dynamics of an excitatory synapse. For a qualitative

intuition into this phenomenon, consider the case of a weight-

independent STDP rule, also termed the additive model, i.e.,

m~0. If the synaptic weight is sufficiently strong, there is a

relatively high probability that a presynaptic spike will be followed

by a postsynaptic spike. Hence, causal events (i.e., Dtw0 post

firing after pre) are more likely to occur than a-causal events (with

Dtv0). Because the STDP rule of the standard exponential TAH

model implies LTP for Dtw0 there is a greater likelihood for LTP

than for LTD. Thus, a ‘‘strong’’ synapse will tend to become

stronger. On the other hand, if the synaptic weight is sufficiently

weak, then pre and post firing will be approximately uncorrelated.

As a result, the stochastic learning dynamics will randomly sample

the area under the STDP temporal kernel. Here we need to

consider two types of parameter settings. If the area under the

causal branch in equation (1) is larger than the area under the a-

causal branch, av1, the net effect is LTP for weak synapses as

well. Thus, in this case, all synapses will potentiate until they reach

their upper saturation bound at 1. Hence, the regime of av1, in

this case, is not interesting. On the other hand, if the area under

the a-causal branch is larger than the area under the causal

branch, aw1, random sampling of the STDP temporal kernel by

the stochastic learning dynamics (in the limit of weakly correlated

pre-post firing, mentioned above) will result in LTD. Thus, in the

interesting regime, aw1, a ‘‘weak’’ synapse will tend to become

weaker; thus producing the positive feedback mechanism that can

generate bi-stability.

It was further shown [7] that this positive feedback can be

weakened by introducing the weight dependent STDP component

via the non-linearity parameter m in equations (3) and (4). Setting

mw0 decreases the potentiation close to the upper saturation

bound and decreases the depression close to the lower saturation

bound; thus, for sufficiently large values of m the learning dynamics

will lose its bi-stability.

Experimental studies have found that the temporally asymmet-

ric Hebbian rule is not limited to excitatory synapses and has been

reported in inhibitory synapses as well [12]. Similar reasoning

shows that in the case of inhibitory synapses the standard

exponential TAH induces negative feedback to the STDP

dynamics. It was shown [13] that this negative feedback acts as

a homeostatic mechanism that can balance feed-forward inhibi-

tory and excitatory inputs. Interestingly, Vogels and colleagues

[14] studied a temporally symmetric STDP rule for inhibitory

synapses, and reported that this type of plasticity rule also results in

negative feedback that can balance the feed-forward excitation.

This raises the question whether inhibitory plasticity always results

in a negative feedback regardless of the temporal structure of the

STDP rule? On the other hand, theoretical studies have shown

that the inherent positive feedback of excitatory STDP causes the

learned excitatory weights to be sensitive to the correlation

structure of the pre-synaptic excitatory population – for different

choices of STDP rules [5,7,10]. Does STDP dynamics of

excitatory synapses always characterized by a positive feedback?

Outline
Although theoretical research has emphasized the standard

exponential model, empirical findings report a wide range of

temporal kernels for both excitatory and inhibitory STDP; e.g.,

[1,12,15–19], (see also the comprehensive reviews by Caporale

and Dan [20] and Vogels and colleagues [21]). Here we study the

effect of the temporal structure of the STDP kernel on the

resultant synaptic weight for both excitatory and inhibitory

synapses. This is done in the framework of learning of a single

synapse in a purely feed-forward architecture, as depicted in

Figure 2. First, we suggest a useful STDP model that qualitatively

captures these diverse empirical findings. Below we define our

STDP model. This model serves to study a large family of STDP

learning rules. We derive a mean field Fokker-Planck approxima-

tion to the learning dynamics and show that it is governed by two

Figure 1. Illustration of different STDP temporal kernels (K+)
as defined by equations (7) and (8) with the ‘‘standard
exponential TAH’’ as a reference. Each plot (normalized to a
maximal value of 1 in the LTP branch) qualitatively corresponds to some
experimental data. In all plots, the blue curve represents the
potentiation branch Kz, the red curve represents the depression
branch {K{ and the dashed black curve represents the superposition/
sum of Kz{K{. For simplicity, all plots were drawn with the same
t~20ms. (A) The ‘‘standard exponential TAH’’ [1,18]. (B) +K+ Dt; 1,tð Þ
Alternate approximation to the standard exponential TAH [1,18]. (C)
+K+ Dt; {1,tð Þ Temporally asymmetric Anti-Hebbian STDP [15]. (D)
+K+ Dt; 0:75,tð Þ TAH variation [12,19]. (E) +K+ Dt; 0,tð Þ Temporally
symmetric Hebbian STDP [16,17]. (F) +K+ Dt; {0:75,tð Þ Variation to a
temporally asymmetric Anti-Hebbian STDP [19]
doi:10.1371/journal.pone.0101109.g001
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global constants that characterize the STDP temporal kernel.

Stability analysis of the mean-field solution reveals that the STDP

temporal kernels can be classified into two distinct types: Class-I,

which is always mono-stable, and Class-II that can bifurcate to bi-

stability. Finally, we discuss the symmetry between inhibitory and

excitatory STDP dynamics.

Results

Generalization of the STDP rule
In order to analyze various families of STDP temporal kernels

found in experimental studies [1,12,15–19] we represent the

STDP as the sum of two independent processes: one for

potentiation and the other for depression. The synaptic update

rule that we use throughout this paper is given by:

Dw~l fz wð ÞKz Dtð Þ{f{ wð ÞK{ Dtð Þ½ � ð5Þ

Note that the main distinction between equation (5) and (1), is

that here, equation (5), the z={ signs denote potentiation and

depression, respectively; while in equation (1) the z={ signs

denote causal/a-causal branch. Thus, in our model for every Dt
the synapse is affected by both potentiation and depression;

whereas, according to the model of equation (1) the synapse

undergoes either potentiation or depression – depending on the

sign of Dt. For example, in the standard exponential TAH model

defined above in equation (2), this generalization implies a

K+ Dtð Þ~H +Dtð Þe+Dt=t temporal kernel, where H Dtð Þ is the

Heaviside step function. For the weight dependent STDP

component (f+ wð Þ) we adopt the formalism of equations (3) and

(4). Below we describe a workable parameterization for the STDP

temporal kernel.

Skew-Normal kernel
Here we used the Skew-Normal distribution function to fit the

temporal kernels of the STDP rule, K+ Dtð Þ. Note that the specific

choice of the Skew-Normal distribution is arbitrary and is not

critical for the analysis below. Other types of functions may serve

as well. The ‘‘Skew-Normal distribution’’ is defined by:

SN Dt; j,t,Qð Þ~ 1

t
ffiffiffiffiffiffi
2p
p e

{1
2

Dt{j
t

� �2

1zerf
Q Dt{jð Þ

t
ffiffiffi
2
p

� �� �
ð6Þ

where j is the temporal shift, t is the temporal decay constant, and

Q is a dimensionless constant that affects the skewness of the curve

and erf xð Þ is the Gaussian error function. It is also useful to reduce

the number of parameters that define the STDP temporal kernel.

Thus, we define:

Kz Dt; h,tð Þ~SN Dt; 2th 1{h2
� �

,t,20h3
� �

ð7Þ

K{ Dt; h,tð Þ~Kz Dt; {h,t 1z0:5 1{h2
� �2

	 
	 

ð8Þ

where h[ {1,1½ � is a single continuous dimensionless parameter of

the model that characterizes the STDP temporal kernel and t is

the time constant of the exponential decay of the potentiation

branch. The mapping of j!h 1{h2
� �

ensures that the temporal

shift parameter, j, will be zero for h~{1,0,1. In order to

obtain temporally symmetric Mexican hat STDP rule for

h~0 one needs to demand tdepwtpot, where tpot~t

and tdep~t 1z0:5 1{h2
� �2

	 

. We also required tdep~tpot for

h~+1, in order to be compatible with several previous studies.

This reduction in parameters was chosen in order to capture the

qualitative characteristics of various experimental data; however,

other choices are also possible. Figure 1B-F illustrates how one can

shift continuously from a temporally asymmetric Hebbian kernel

(h~1,Figure 1B) to a temporally asymmetric anti-Hebbian kernel

(h~{1,Figure 1F). Figure 1A shows the temporal kernel of the

standard exponential TAH model, compare with h~1, Figure 1B.

‘‘Mean field’’ Fokker-Planck approximation
We study the STDP dynamics of a single feed-forward synapse

to a postsynaptic cell receiving other feed-forward inputs through

synapses that are not plastic. We assume that all inputs to the cell

obey Poisson process statistics with constant mean firing rate, rpre;

that the presynaptic firing of the studied synapse is uncorrelated

with all other inputs to the postsynaptic neuron; and that the

synaptic coupling of a single synapse is sufficiently weak. The

STDP dynamics is governed by two factors: the STDP rule and

the pre-post correlations. To define the dynamics one needs to

describe how the pre-post correlations depend on the dynamical

variable, w. Under the above conditions one may assume that the

contribution of a single pre-synaptic neuron that is uncorrelated

with the rest of the feed-forward input to the post-synaptic neuron

will be small. Thus, it is reasonable to approximate the pre-post

correlation function (see Methods – equation (26)) up to a first

order in the synaptic strength w (e.g., [8,22–24]), yielding:

C Dð Þ~Srpre tð Þrpost tzDð ÞT~
rprerpost 1zwc Dð Þð Þ,Dw0

rprerpost, Dƒ0

�
ð9Þ

where rpre=post is the instantaneous firing of the pre/post synaptic

cell represented by a train of delta functions at the neuron’s spike

times (see Methods), rpre=rpost is the pre/post synaptic mean firing

rate; and the function c Dð Þ describes the change in the conditional

Figure 2. Model architecture. The STDP dynamics of a single either
excitatory or inhibitory synapse is studied in purely feed-forward model.
In all of the simulations presented here, the activity of the presynaptic
inputs is modeled by a homogeneous Poisson process, with mean firing
rate rpre~10spikes=s. The synaptic weights of all synapses except one is
kept fixed at a value of 0.5. The post synaptic neuron is simulated using
an integrate and fire model as elaborated. See Methods for further
details.
doi:10.1371/journal.pone.0101109.g002
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mean firing rate of the postsynaptic neuron at time Dzt following

a presynaptic spike at time t. Note that we use upper case C to

represent the full pre-post correlations, C~SrprerpostT, whereas c

denotes the first order term in the synaptic weight, w, of these

correlations.

In the limit of a slow learning rate, l?0, one obtains the mean-

field Fokker-Planck approximation to the stochastic STDP

dynamic (see Methods – equation (27)), and using the linear

approximation of the pre-post correlations, equation (9), yields:

S _wwT wð Þ~lrprerpost fz wð Þ
ð?

{?
Kz Dð ÞdDzw

ð?
0

c Dð ÞKz Dð ÞdD
� ��

{f{ wð Þ
ð?

{?
K{ Dð ÞdDzw

ð?
0

c Dð ÞK{ Dð ÞdD
� ��

~lrprerpost fz wð Þ KzzwcKz

� �
{f{ wð Þ K{zwcK{

� �� 
ð10Þ

where �FF:
Ð?
{? F Dð ÞdD denotes the mean over time (using equa-

tion (9) with c Dð Þ~0 for Dv0).

In our choice of parameterization, Kz={ are set to have the

same integral; i.e., Kz~K{~�KK . The difference between the

strength of potentiation and depression of the STDP rule is

controlled by the parameter a (equation (4)). Substituting

expressions (3) & (4) into equation (10) yields:

S _wwT wð Þ~lrprerpost
�KK 1{wð Þm 1zwXzð Þ{awm 1zwX{ð Þ½ � ð11Þ

where Xz={:cKz={

�
Kz={ are constants that govern the

mean-field dynamics. A fixed point solution, w�, of the mean-

field Fokker-Planck dynamics, S _wwT wð Þ~0, satisfies:

a~
1zw�Xz

1zw�X{

1{w�

w�

� �m

ð12Þ

Numerical simulations – the steady state of STDP
learning

We performed a series of numerical simulations to test the

approximation of the analytical result of the mean-field approx-

imation at the limit of vanishing learning rate, using a conductance

based integrate-and-fire postsynaptic neuron with Poisson feed-

forward inputs (see Methods for details; a complete software

package generating all the numerical results in this manuscript can

be downloaded as File S1). We simulate a single postsynaptic

neuron receiving feed-forward input from a population of

NE~120 excitatory neurons and NI~40 inhibitory neurons

firing independently according to a homogeneous Poisson process

with rate rpre~10spikes=s. All synapses except one (either

excitatory or inhibitory) were set at a constant strength (of 0.5).

The initial conditions for the plastic synapse were as specified

bellow.

We first estimated the spike triggered average (STA) firing rate

of a single presynaptic neuron triggered on postsynaptic firing, in

order to approximate the function c Dð Þ, equation (9). Figure 3

shows the STAs of excitatory (A) and inhibitory (B) synapses for

varying levels of synaptic weights (color coded), as were estimated

numerically (dots). The dashed lines show smooth curve fits to the

STA. The specific temporal structure of these curves depends upon

particular details of the neuronal model. Nevertheless, the linear

dependence on the synaptic weight is generic for weak synapses;

thus, in line with the assumed linearity of the model, equation (9).

The STA shows the conditional mean firing rate of the pre-

synaptic neuron, given that the post fired at time t~0. In the limit

of weak coupling, w?0, pre and post firing are statistically

independent and the conditional mean equals the mean firing rate

of the pre, rpre~10spikes=s. For an excitatory synapse, as the

synaptic weight is increased the probability of a post spike

following pre will also increase. Consequently, so will the

likelihood of finding a pre spike during a certain time interval

preceding a post spike. Hence, the STA of an excitatory synapse is

expected to show higher amplitude for stronger synapse (as shown

in A). Correspondingly, the STA of an inhibitory synapse is

expected to show a more negative amplitude for stronger synapse

(as shown in B).

To fit the STA with an analytic function we used c Dð Þ~
ac sin vcD

� �yc

	 

e{D=tc , with the fitted parameters ac,vc,yc,tc for

both the inhibitory and excitatory cases. This ad hoc approxima-

tion serves to enable the numerical integration that calculates the

constants Xz={ that govern equation (11) for the mean field

approximation to the STDP dynamics.

All the richness of physiological details that characterize the

response of the post-synaptic neuron affect the STDP dynamics

only via the two constants Xz and X{. These two constants

Xz={ denote the overlap between the temporal structure of the

pre-post correlations, c Dð Þ, and the temporal kernel, Kz={, of the

potentiation/depression kernel, respectively, Figure 4. Conse-

quently, as c Dð Þ, is positive for excitatory synapses and negative for

inhibitory synapses – so are the constants Xz={. In addition, as

the correlations in our model are causal, c Dð Þ~0 for tv0, the

constant Xz (X{) is expected to decay to zero when the STDP

kernel Kz (K{) vanishes from the causal branch, h?1 (h?{1).

For the specific choice of parameters in our simulations, DXzD
obtains its maximal value at h~1. However, one may imagine

other choice of parameters in which DXzD will obtain its maximal

value at h[ 0,1ð Þ. Note, from Figure 4, that the crossing of the Xz

and X{ curves, is coincidentally almost the same for both synapse

types, and is obtained at &{0:2. The significance of this point is

discussed below.

Fixed point solutions for the STDP dynamics
Figure 5 shows w� as a function of a for different values of m

(color coded, note that a and m are the parameters that

characterize the synaptic weight dependence of the STDP rule,

equations (3) and (4)). The panels depict different STDP setups

that differ in terms of the temporal kernels as well as the type of

synapse (excitatory/inhibitory). These two factors affect the mean

field equations via Xz={. The dashed lines show the solution to

the fixed point equation, equation (12), using the numerically

calculated Xz={. The fixed points were also estimated numeri-

cally by directly simulating the STDP dynamics in a conductance

based integrate and fire neuron (circles and error bars).

For the estimation of the steady state value of the synaptic

weight, the simulations were set to run for 5 hours of simulation

time, which, according to manual offline analyses of convergence

time scales, is much more than twice the time required for the

system to converge and fluctuate around its steady state. The

circles and error bars depict the mean 6 standard deviation of

the synaptic weight, as estimated from the last 2.5 hours of the

simulation (weights were recorded at a 1 Hz sample rate). Note the

high agreement between the fixed point solution (w�) of equation

(12), and the asymptotic synaptic weight (w0) as estimated by the
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numerical simulation (regression coefficient of 1+5:10{4 with

R2
w0:999 when performing a regression test on the entire set

{w0,w�} presented in each of the panels).

The panels of Figures 5A and 5B compare the standard

exponential TAH rule of equation (2), in A, and our current

STDP model with h~1 in B, for a representative set of

parameters {(ai,mj )} applied to the examined synapse (middle

column for inhibitory synapse and right column for excitatory

synapse). Note that some lines may overlap each other near the

boundaries: w0~0,1. As is evident from the figures, the results

of the two models coincide. In particular, the Hebbian STDP

dynamics of inhibitory synapses is characterized by a one to

one function w� of a and there is no bi-stability, as previously

reported [13,14]. On the other hand, the Hebbian STDP of

excitatory synapses is characterized by bi-stable solutions at

low levels of m below a certain critical value, see e.g., [6,7].

Thus, the current model with h~1 coincides with previous

results.

The panels of Figure 5F show the results of a temporally

asymmetric Anti-Hebbian STDP with h~{1. In striking contrast

to the Hebbian STDP, in this case, inhibitory plasticity is

characterized by bi-stability whereas, the excitatory plasticity is

characterized by mono-stability.

The panels of Figures 5C and 5E explore two other types of

asymmetric rules (Hebbian and Anti-Hebbian respectively). These

results show similar behavior as 5B and 5F in terms of the

classification of STDP kernels discussed in the next section.

The panels of Figure 5D show the results of the symmetric

STDP with h~0 – note, that the dynamics of inhibitory synapse

under the symmetric STDP rule, is characterized by a one to one

function w� of a corresponding to negative feedback, as previously

reported [14].

Stability of the fixed point solution
The stability of the fixed point solution w� to equation (12) is

determined by the sign of the partial derivative of the

dynamical equation, equation (11), with respect to the synaptic

weight:

LS _wwT
Lw

w�ð Þ~lrprerpost
�KK {m 1{w�ð Þm{1

1zw�Xzð Þ
h

z 1{w�ð ÞmXz{amw�m{1 1zw�X{ð Þ{aw�mX{�
ð13Þ

On the other hand, examination of Figure 5 suggests that the

stability of the fixed point is governed by the sign of Lw�=La.

Taking the logarithm and the derivative with respect to a of both

sides of equation (12), one obtains:

Lw�

La
~

1

a

Xz

1zw�Xz

{
X{

1zw�X{

{
m

1{w�
{

m

w�

� �{1

ð14Þ

sign
Lw�

La

� �
~sign

Xz

1zw�Xz

{
X{

1zw�X{

{
m

1{w�
{

m

w�

� �
ð15Þ

where the last equality holds as aw0. At the fixed point,

substituting equation (12) into equation (13) one obtains:

Figure 3. Spike Triggered Average (STA) of a single presynap-
tic input. The conditional mean firing rate of the presynaptic cell given
that the postsynaptic cell has fired at time t~0, is plotted as function of
time. (A) Excitatory synapse (B) Inhibitory synapse. Each set of dots
(color coded) is the conditional mean firing rate calculated over
1000 hours of simulation time with fixed synaptic weights and
presynaptic firing rates on all inputs. The different sets correspond to
a different presynaptic weight (wx) on a single synapse on which the
STA was measured. The respective dashed lines show the numerical
fitting of the form STA wx,Dð Þ~rpre 1zwxc Dð Þð Þ where c Dð Þ takes the

revised formula: ac sin vcD
� �yc

	 

e{D=tc . For every type of synapse, i.e.,

excitatory (in A) and inhibitory (in B), the parameters describing c Dð Þ,
namely ac,vc,yc,tc , were chosen to minimize the least square

difference between the analytic expression and the numerical
estimation of the STA. These parameters were then used to calculate
Xz={.
doi:10.1371/journal.pone.0101109.g003

Figure 4. Mean field constants Xz={ of equation (11) for the
excitatory and inhibitory synapses of the neuronal model used
in our numerical simulations, as a function of h. These values
were calculated using numerical integration (see File S1) with
Kz={ Dt; h,tð Þ as defined by equations (7) and (8), with t~20msec as
set throughout the simulations, and with the fitted formula for c Dð Þ.
doi:10.1371/journal.pone.0101109.g004
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Figure 5. The fixed point solution (w�) of equation (12) (dotted lines), is compared to the asymptotic synaptic weight (w0) (circles),
of a single synapse learning dynamics for various learning rules as defined by equation (5). Each of the panels in the middle column (for
inhibitory synapse) and in the right column (for excitatory synapse) explores the weight dependent STDP component, f+ wð Þ of equations (3) and (4),
for representative set of m (shown by different colors as depicted in the legend) as a function of a. The different rows correspond to different STDP
kernels, K+ Dtð Þ as shown by the panels in the left column. The circles and error bars represent the mean and standard deviation of the synaptic
weight (w0), calculated over the trailing 50% of each learning dynamics simulation (see Methods). The mean field constants {Xz,X{} were
numerically calculated using the c Dð Þ constants estimated as in Figure 3. The dotted lines were computed by equation (12) that was calculated for
10,000 sequential values of w in 0,1½ �. To this end, we replaced m~0 with m~10{6 in order to use equation (12) to plot the dashed red line. Initial
conditions for the simulations: for the majority of the simulations we have simply used w~0:5 as initial condition for the plastic synaptic weight. In
order to show the bi-stable solutions in panels (A2, B2, F1), for m~0,0:01,0:02 and a~1:01,1:03, . . . 1:19 we ran two simulations one with initial
condition w~0 and another with initial condition w~1. (A0-F0) are the STDP kernels (as in Figure 1) used in the simulations. (A1-F1) results for the
inhibitory synapse simulations. (A2-F2) results for the excitatory synapse simulations.
doi:10.1371/journal.pone.0101109.g005
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LS _wwT
Lw

w�ð Þ~lrprerpost
�KK 1{w�ð Þm 1zw�Xzð Þ

{m

1{w�
z

Xz

1zw�Xz

{
m

w�
{

X{

1zw�X{

� � ð16Þ

Yielding:

sign
LS _wwT
Lw

w�ð Þ
� �

~sign
Lw�

La

� �
,Vw�Xzw{1,w�v1,aw0 ð17Þ

Hence, for w�Xzw{1, the fixed point solution in Figure 5 is

stable in segments with negative slope, and unstable in segments

with positive slope. Note that in our simulation setup DXzDv1 (cf.

Figure 4); thus, the condition w�Xzw{1 holds for all values of h
in our case.

Revisiting the different scenarios depicted in Figure 5, we note

the existence of two qualitatively different behaviors; namely, one

that can only show mono-stability (A, C, and F) and the other has

the potential for bi-stability (in panels B, D, and E). We use this

behavior to classify the different STDP temporal kernels that are

parameterized by the single variable h. We shall term ‘‘class-I

temporal kernels’’ the temporal kernels such that w� is mono-

stable for all aw0; m[ 0,1½ �. We shall term ‘‘class-II temporal

kernels’’ the temporal kernels such that w� is bi-stable for some

m[ 0,mc½ Þ and some a mð Þ. Note that this classification depends on

the type of synapse (which via c Dð Þ together with h determine

Xz={). In addition, we note the existence of a special solution at

w�~1=2 that is invariant to m, and enables us to obtain a simple

condition for this classification. In class-I kernels the derivative

Lw�=La at w�~1=2 is always negative, whereas in class-II models

there is a critical value of m below which the derivative changes its

sign.

The ‘‘m-invariant’’ solution and the critical m
As w�~1=2? w�= 1{w�ð Þð Þm~1Vm, the solution of the fixed

point equation, equation (12), at w�~ŵw:1=2 is m-invariant. For a

given STDP temporal kernel (h), i.e. a given set of {Xz,X{} (see

Figure 4; and note that Xz={ are also determined by the pre-post

correlation structure via c Dð Þ), the solution of ŵw~1=2 is obtained

with:

âa~
1zXz=2

1zX{=2
,m[ 0,1½ � ð18Þ

Substituting the m-invariant solution, equation (18), into

equation (15), yields

sign
LS _wwT
Lw

âa,ŵwð Þ
� �

~

sign
Xz

1zXz=2
{

X{

1zX{=2
{m

1

1=2
z

1

1=2

� �� �
VXzw{2

ð19Þ

Thus, the condition for instability of the m-invariant solution is:

mvmc:
1

4

Xz

1zXz=2
{

X{

1zX{=2

� �
ð20Þ

Thus, for mcv0 the m-invariant solution, ŵw, is stable for all

values of m[ 0,1½ � and the STDP rule is class-I for that synapse. On

the other hand, if mcw0 the STDP rule is class-II. This

classification depends solely on the values of {Xz,X{}. In our

simulation setup DXz={Dv1 (see Figure 4), thus the classification of

the parameter combinations is simply determined by the sign of

(Xz{X{); i.e. the manifold that is determined by the condition

{Xz~X{} separates the parameter space (that characterizes the

STDP rule and the synapse) between class-I and class-II.

Bimodal distribution near âa
Figure 6 depicts (using numerical simulations with set of class-II

parameters) the bifurcation plots for the learning dynamics for

inhibitory (A, B) and excitatory (C, D) synapses. For inhibitory

synapses the anti-Hebbian (h~{1) plasticity rules were chosen,

and for the excitatory synapses, the Hebbian (h~1). The panels

show the resultant distribution of the synaptic weight color-coded

after 216101 of 5 hours of simulations for 21 values of the

bifurcating argument (either m or a) along the abscissa. In order to

calculate the synaptic weight distribution for the set of parameters

without the bias of initial conditions, 101 simulations were

performed with different initial weight values evenly spaced from

0 to 1. The rationale for running the simulations for 5 hours each

was to make sure that the learning dynamics had reached a steady

state regime and the synaptic weight fluctuated around it for the

entire trailing 2.5 simulation hours. During these trailing 2.5

simulation hours, the synaptic weights were recorded at a 1 Hz

sample rate. For the estimation of the weight distribution, all the

samples from the 101 simulations (differing only by their initial

conditions) were used with 40 evenly spread bins between 0 and 1.

As expected from the analysis, there was a bifurcation along the

m dimension (top panels), in which above mc the distribution was

uni-modal whereas below mc the distribution was bi-modal. Along

the a dimension (bottom panels) the distribution resembled the

theoretical (dashed) curves of Figure 5 (without the unstable

segment of Lw�=Law0).

Symmetry and phase transition along h
The high degree of similarity between the simulation results for

inhibitory and excitatory synapses (Figure 5) stems from the fact

that they obey the same mean-field equation (11), albeit with a

different set of parameters. Thus, an excitatory synapse, wexc, with

a specific choice of parameters {a,m,Xz,X{} obeys the exact

same mean-field equation as (1{winh), where winh is an inhi-

bitory synapse with the transformed set of parameters

1

a
: 1zXzð Þ

1zX{ð Þ ,m,
{X{

1zX{

,
{Xz

1zXz

� �
and a somewhat different

learning constant (note that Xz={ are positive for excitatory

synapses and negative for inhibitory ones, see Figure 4).

This symmetry is illustrated for different STDP temporal kernels

in Figure 7, where the mean field fixed point, w�, is plotted as a

function of a for different values of h (color coded) at m&0. The

different h were chosen around hc which is defined by the

condition Xz~X{ (see Figure 4) to display the phase transition

from class-I to class-II along this parameter. Coincidentally, in our

simulations and the chosen model (equations (7) and (8)), this

specific hc was almost the same for excitatory and inhibitory
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synapses; i.e. for both synapses hcw{0:22 and hcv{0:21(see

Figure 4). Under these conditions, for an excitatory synapse,

hƒ{0:22 defines the class-I kernels, and h§{0:21 the class-II,

whereas for an inhibitory synapse, hƒ{0:22 defines the class-II

kernels, and h§{0:21 the class-I.

Discussion

The computational role of the temporal kernel of STDP has

been studied in the past. Câteau and Fukai [8] provided a robust

Fokker-Planck derivation and analyzed the effects of the structure

of the STDP temporal kernel. However, their analysis focused on

excitatory synapses and the additive learning rule (m~0). Previous

studies have linked the Hebbian STDP of inhibition with negative

feedback which acts as a homeostatic mechanism that balances the

excitatory input to the postsynaptic cell [13,14]. Positive feedback

and bi-stability of STDP dynamics have been reported only for

excitation, and linked to sensitivity to the input correlation

structure [6,7]. Here it was shown that the STDP of both

excitation and inhibition can produce either positive or negative

feedback depending on the parameters of the STDP model. Thus,

for example, it was reported that both a temporally asymmetric

Hebbian STDP (h~1) and a temporally symmetric learning rule

(h~0) for inhibitory synapses generate negative feedback [13,14].

These reports are in-line with our finding that the critical h for

transition from negative to positive feedback for inhibition is

negative (hc&{0:2).

In general, STDP dynamics of single synapses was classified

here into two distinct types. With class-I temporal kernels, the

Figure 6. Bifurcation plots along the two parameters (m=a) of the weight dependent STDP component, f+ wð Þ (see equations (3) and
(4)) near âa of equation (18). Panels display the synaptic weight distribution (color coded) for the various parameter setups: (A) Inhibitory synapse
with anti-Hebbian (h~{1, see also Figureô 1F) rule, with fixed a~1:07 and varied m. (B) Inhibitory synapse with anti-Hebbian (h~{1, see also
Figureô 1F) rule, with fixed m~0:025 and varied a. (C) Excitatory synapse with Hebbian (h~1, see also Figureô 1B) rule, with fixed a~1:13 and varied
m. (D) Excitatory synapse with Hebbian (h~1, see also Figureô 1B) rule, with fixed m~0:05 and varied a. The dashed white line marks mc in A and B,
and âa in C and D.
doi:10.1371/journal.pone.0101109.g006

Figure 7. Fixed point solution, w�, of the mean field approx-
imation, (plotted using equation (12)), as a function of a, at
m&0 is shown for different values of h (color coded). Using mw0
yields continuity of the curves at the extreme values (w�~1 and w�~0),
which makes the picture clearer. On the other hand as the value of m
increases the unstable regime of a gets smaller and the resolution for h
steps plotted should decrease. Thus, to plot these lines, we used
m~10{4 which is sufficiently close to 0 to illustrate the phase transition
with high accuracy in h. (A) Excitatory synapse. (B) Inhibitory synapse
doi:10.1371/journal.pone.0101109.g007
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dynamics is characterized by a negative feedback and has a single

stable fixed point. In contrast, class-II temporal kernels are

characterized by a sub-parameter regime in which the system is bi-

stable (has positive feedback), and another sub-parameter regime

with negative feedback. However, the mechanism that generates

the negative feedback, (i.e., the stabilizing mechanism) in the two

classes is different in nature. Whereas in class-I the negative

feedback is governed by the convolution of the pre-post

correlations with the temporal kernel, (i.e. the mean field constants

Xz={, similar to the homeostatic mechanism in [13]), in class-II,

the stabilizing mechanism is the non-linear weight dependent

STDP component, f+ wð Þ. Hence, there is no reason a-priori to

assume that the negative feedback in class-II should act as a

homeostatic mechanism.

We found that there is no qualitative difference between the

STDP of excitatory and inhibitory synapses and that both can

exhibit class-I and class-II dynamics. Moreover, there is an exact

symmetry between the excitatory and inhibitory STDP under a

specific mapping of the parameters {a,m,Xz,X{}. This symmetry

results from the fact that the mean-field dynamics depend solely on

the global mean field constants Xz={. It is important to note that

although neural dynamics is rich and diverse, due to the separation

of time scales in our problem, the STDP dynamics only depends

on these fine details via the global mean field constants Xz={.

Certain extensions to our work can be easily implemented into

our model without altering the formalism. For example, empirical

studies report different time constants for depression and

potentiation, e.g. [1]. However, although in our simulations we

used identical time constants at DhD~1, for DhDv1 the depression

time constant is larger than the potentiation time constant in our

simulations. Moreover, our analytical theory depends on the time

constants only via Xz={. Consequently, changing time constants

or any other manipulation to the temporal kernel can be

incorporated into our mean-field theory by modifying Xz={.

Similarly, assuming separation of time-scales between short term

and long term plasticity, the effect of short term plasticity can be

incorporated by modifying Xz={ accordingly.

STDP has also been reported to vary with the dendritic

location, e.g. [18,25]. For a single synapse this effect can also be

modeled by a modification of the parameters Xz={. However, the

importance of the dendritic dependence of STDP may reside in

the interaction with other plastic synapses along different locations

on the dendrite. Network dynamics of a ’population’ of plastic

synapses is beyond the scope of the current paper and will be

addressed elsewhere.

In our model we assumed that the contribution of different

"STDP events" (i.e., pre-post spike pairs) to the plastic synapse are

summed linearly over all pairs of pre and post spikes, see e.g.

equation (21). However, empirical findings suggest that this

assumption is a mere simplification, and that STDP depends on

pairing frequency as well as triplets of spike time and bursts of

activity, e.g. [3,26–30]. The computational implications of these

and other non-linear interaction of spike pairs in the learning rule,

as well as the incorporation of non-trivial temporal structure into

the correlations of the pre-synaptic inputs to the cell are beyond

scope of the current paper.

Empirical studies have reported a high variability of STDP

temporal kernels over different brain regions, locations on the

dendrite and experimental conditions, e.g., [1,12,15,17–19]. Here

we represented the STDP rule as the sum of two separate

processes, one for potentiation and one for depression with an

additional parameter, h, that allows us to continuously modify the

temporal kernel and qualitatively obtain a wide spectrum of

reported data. Representation of STDP by two processes has been

suggested in the past. Graupner and Brunel [31], for example,

proposed a model for synaptic plasticity in which the two processes

(long term potentiation and depression) are controlled by calcium

level. Thus, in their model the control parameter is a dynamical

variable that may alter the plasticity rule in response to varying

conditions. In our work, however, we did not model the dynamics

of h. Moreover, we assumed that h remains constant during

timescales that are relevant for synaptic plasticity. It is, neverthe-

less, tempting to speculate on a metaplasticity process [32,33] in

which the temporal structure of the STDP rule is not hard wired

and can be controlled and modified by the central nervous system.

Thus, in addition to controlling the learning rate, l, or the relative

strength of potentiation-depression, a, a metaplasticity rule may

affect the learning process by modifying the degree of ’Hebbia-

nitty’, h. Such a hypothesis, if true, may account for the wide range

of STDP kernels reported in the experimental literature. How can

such a hypothesis be probed? One option for addressing this issue

is to try and characterize h during different time points and study

its dynamics. One would expect to find that h (for excitatory

synapses) decreases with time in cases where the neural network

has been reported to becomes less sensitive to its input statistics, for

example during developmental changes.

Methods

‘‘Mean field’’ Fokker–Planck approach for the learning
dynamics

From the synaptic update rule, equation (5), changes in the

synaptic weight, w, at time t, result from either pre or post synaptic

firing at time t, affecting both the depression and potentiation

branches (functions) of the adaptation rule. Thus:

w tzDtð Þ{w tð Þ

~lfz wð ÞP post
spike[ t,tzDt½ �
	 
 ðt

{?

dt0rpre t0ð ÞKz t{t0ð Þ

zlfz wð ÞP pre
spike[ t,tzDt½ �
	 
 ðt

{?

dt0rpost t0ð ÞKz t0{tð Þ

{lf{ wð ÞP post
spike[ t,tzDt½ �
	 
 ðt

{?

dt0rpre t0ð ÞK{ t{t0ð Þ

{lf{ wð ÞP pre
spike[ t,tzDt½ �
	 
 ðt

{?

dt0rpost t0ð ÞK{ t0{tð Þ

ð21Þ

where rpre=post tð Þ~
P

i D t{t
pre=post
i

	 

is the firing of the pre/

post synaptic cell, as represented by a train of delta functions at

the neuron’s spike times, with tx
i

� �?
i~1

being the spike times,

and P
pre=post
spike [ t,tzDt½ Þ
	 


is 1 if there was a pre/post synaptic

spike respectively at the specified time interval t,tzDt½ Þ and 0

otherwise.

Taking the short times limit, Dt?0: lim
Dt?0

P
pre=post

spike
[ t,tzDt½ �

� �
Dt

~

rpre=post tð Þ, yields:
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_ww tð Þ~lfz wð ÞLz tð Þ{lf{ wð ÞL{ tð Þ ð22Þ

Lz={ tð Þ~
ðt

{?
rpre t0ð Þrpost tð ÞKz={ t{t0ð Þdt’

z

ðt

{?
rpre tð Þrpost t0ð ÞKz={ t0{tð Þdt’

ð23Þ

Assuming the learning process is performed on a much slower

time scale than the neuronal dynamics [34], the STDP dynamics

samples the pre-post correlations, rpre t0ð Þrpost tð Þ, over long

periods in which the synaptic weight, w, is relatively constant.

Using this separation of time scales in the limit of l?
0

, we can

approximate Lz={ tð Þ by their time average over period T%1=l.

This is the mean-field Fokker-Planck approach to approximating

the stochastic dynamics of w. Integration of equation (22) over

time yields:

lim
T??

ðT

{T

_ww tð Þdt

2T
~lfz wð ÞLz{lf{ wð ÞL{ ð24Þ

Lz={~ lim
T??

ð0

{?
dD

ðT

{T

dt

2T
rpre Dztð Þrpost tð ÞKz={ {Dð Þ

�

z

ð0

{?
dD

ðT

{T

dt

2T
rpre tð Þrpost Dztð ÞKz={ Dð ÞÞð25Þ

Assuming we can replace the time averaging of the pre-post

correlation with its statistical average for sufficiently large T ,

C Dð Þ:Srpre 0ð Þrpost Dð ÞT~ lim
T??

ðT

{T

rpre tð Þrpost Dztð Þdt

2T
ð26Þ

we can substitute equation (26) into equations (25) and obtain the

mean field Fokker-Planck equation for the process:

S _wwT wð Þ~lfz wð Þ
ð0

{?
C {Dð ÞKz {Dð ÞzC Dð ÞKz Dð Þ½ �dD

{lf{ wð Þ
ð0

{?
C {Dð ÞK{ {Dð ÞzC Dð ÞK{ Dð Þ½ �dD

~lfz wð Þ
ð?

{?
C Dð ÞKz Dð ÞdD{lf{ wð Þ

ð?
{?

C Dð ÞK{ Dð ÞdD

ð27Þ

Details of the numerical simulations
Online supporting information. This manuscript is ac-

companied by a complete software package that was used

throughout the study. This package is a Matlab set of scripts

and utilities that includes all the numerical simulations that were

used to produce the figures in this manuscript. It also contains all

the scripts that generated the figures.

The leaky integrate-and-fire model. The learning dynam-

ics of equation (5) was simulated by a single postsynaptic integrate-

and-fire cell. As in our previous work [13] the dynamics of the

membrane potential of the postsynaptic cell, V tð Þ, obeys:

Cm
dV

dt
~

Vrest{Vð Þ
Rm

zgE EE{Vð ÞzgI EI{Vð Þ ð28Þ

where Cm~200pF is the membrane capacitance, Rm~100MV is

the membrane resistance, the resting potential is Vrest~{70mV,

and the reversal potentials are EE~0mV and EI~{70mV. An

action potential is generated once the membrane potential crosses

the firing threshold Vth~{54mV , after which the membrane

potential is reset to the resting potential without a refractory

period. The synaptic conductances, gE and gI , are a superposition

of all the synaptic contributions, i.e., each synaptic input is

convolved with an a-shaped kernel (that models the filtering

nature of the synaptic response) amplified by its synaptic weight

and then summed. The terms gE and gI are thus given by:

gX tð Þ~g0
X

XNX

i~1

wX
i tð Þ

X
j

t{ti
j

h i
z

e
{ t{ti

j

	 
.
tX

 !
ð29Þ

where X stands for Excitation or Inhibition, NX is the number of

synapses, t½ �z:max t,0ð Þ is the dimensionless time value (in

seconds), and ti
j

n o
j

are the spike times of synapse i. For the

temporal characteristic of the a-shape response we chose to use

tE~tI~5 ms, and for the conductance coefficient g0
X our

constant is scaled by NX as elaborated below.

In order to estimate the postsynaptic membrane potential in

equation (28), the software performs the integration of the synaptic

and leak currents using the Euler method with a Dt~1ms step

size. The rationale for using such a low resolution step size and its

verification are discussed below.

Modeling presynaptic activity. Throughout the simula-

tions in this work, presynaptic activities were modeled by an

independent homogeneous Poisson processes, with stationary

mean firing rate rpre~10 spikes=s. To this end, each of the inputs

was approximated by a Bernoulli process generating binary

vectors defined over discrete time bins of Dt~1ms. These vectors

were then filtered using a discrete convolution a-shaped kernel (as

defined above) with a limited length of 10tX (after which this

kernel function is zero for all practical purposes). In all simulations

we used: NE~ 120,NI~ 40.

Conductance constants. In order to be compatible with

previous studies; e.g., [7,13], and to have simulations that are

executed with a robust and generic software package accompa-

nying this manuscript as File S1, we scaled the synaptic

conductance inversely to the number of synaptic inputs in our

simulations. We used the following scaling formula g0
X ~gR

X SX ,

with: gR
E~30nS, SE~1000=NE , gR

I ~50nS and SI~400=NI ,

where NE ,NI are the number of excitatory and inhibitory

presynaptic inputs, respectively.

The learning rate. The simulations of the STDP process

were carried out to obtain the asymptotic weight distribution of the

plastic synapse. Convergence to the asymptotic region was

accelerated by manipulating the learning rate constant l of

equation (1). The software code was designed to support a given

vector of l for each minute of the simulation. Specifically

we used the following formula to generate this vector:

10{3 1z9 1{tð Þ10
h i

, where t[ 0,1ð �, is the ratio between the

minute iteration time and the entire simulation time. Examining

the behavior of this function shows that it starts from a value of
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10{2 and decays significantly fast, leaving the trailing 70% of the

simulation time with more or less the same learning rate of about

10{3.
Postsynaptic spike time accuracy vs. simulation step size

resolution. Figure 5 shows the remarkable match between the

fixed point solution (w�) of equation (12), and the asymptotic

synaptic weight (w0) of the simulations; the regression coefficient

on the entire set {w0,w�} in all the panels is 1+5:10{4 with

R2
w0:999 when using an integration step of size 1ms. Tests of this

kind were performed on simulations using integration steps

ranging from 0:1ms to 1ms in two calculation modes (see below),

and it was found that higher resolution provides a better match to

the analytical solution. However, the key feature that contributes

to this high degree of similarity between the analysis and the

simulations (more than an order of magnitude for the error term

1{R2) was the definition of the spike times of the postsynaptic cell

rather than a 106 decrease of the integration step size.

The spike times of an integrate and fire neuron are defined as

the times in which its membrane potential crossed the firing

threshold, t�. However, in the numerical simulations we used

discrete times, nDtbinf gN
n~0. In previous work we define the time

of the post-synaptic firing by the last discrete time preced-

ing the threshold-crossing time to: tpost~nDt such that

nDtƒt�v(nz1)Dt. This choice may change the causal order of

pre-post firing (from pre before post to simultaneous firing) at time

intervals of the time-bin. Consequently, it will affect the STDP rule

– mainly when kernels that are discontinuous at zero are used.

Here we defined the spike time of the post-synaptic neuron to be:

tpost~(nz1=2)Dt such that nDtƒt�v(nz1)Dt (i.e., shifted by

half a time-bin from previous definition); thus, this manipulation

retains the causality of firing.

Supporting Information

File S1 This package (1Syn-STDP4PLOS.zip) is a Matlab set of

scripts and utilities that includes all the numerical simulations that

were used to produce the figures in this manuscript. It also

contains all the scripts that generated the figures. The scripts in the

main folder are divided into two categories. The files that begin

with ‘‘Bat’’ execute the numerical simulations, and the ones that

begin with ‘‘Plot’’ generate the figures. All the supporting

numerical utilities are stored in the sub folder ‘‘CommonLib’’.

(ZIP)
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