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Abstract

Protein folding occurs in a very high dimensional phase space with an exponentially large number of states, and according
to the energy landscape theory it exhibits a topology resembling a funnel. In this statistical approach, the folding
mechanism is unveiled by describing the local minima in an effective one-dimensional representation. Other approaches
based on potential energy landscapes address the hierarchical structure of local energy minima through disconnectivity
graphs. In this paper, we introduce a metric to describe the distance between any two conformations, which also allows us
to go beyond the one-dimensional representation and visualize the folding funnel in 2D and 3D. In this way it is possible to
assess the folding process in detail, e.g., by identifying the connectivity between conformations and establishing the paths
to reach the native state, in addition to regions where trapping may occur. Unlike the disconnectivity maps method, which
is based on the kinetic connections between states, our methodology is based on structural similarities inferred from the
new metric. The method was developed in a 27-mer protein lattice model, folded into a 36363 cube. Five sequences were
studied and distinct funnels were generated in an analysis restricted to conformations from the transition-state to the native
configuration. Consistent with the expected results from the energy landscape theory, folding routes can be visualized to
probe different regions of the phase space, as well as determine the difficulty in folding of the distinct sequences. Changes
in the landscape due to mutations were visualized, with the comparison between wild and mutated local minima in a single
map, which serves to identify different trapping regions. The extension of this approach to more realistic models and its use
in combination with other approaches are discussed.
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Introduction

Understanding the processes leading to a protein folding into its

native (functional) state is one of the important problems in

molecular biophysics. In the 1960s, Anfinsen hypothesized that a

protein in its native state and under physiological conditions would

adopt such a structure with the lowest possible energy [1]. Though

this hypothesis turned out to be correct, no explanation was

offered to explain the large range of characteristic folding times,

which may vary from milliseconds to seconds. In what became

known as the Levinthal Paradox, in 1969 Levinthal argued that,

due to an exponentially large number of states, a random search

for the native structure would take cosmological times [2]. The

solution to this paradox came from the energy landscape theory

[3–7], which embeds the statistical nature of the folding process.

The folding happens in a very high dimensional space, but in one

of the possible descriptions, the complex landscape theory is

projected along the reaction folding coordinate. The effective

folding landscape topology is like a funnel, which has an energy

gradient toward the native state region. This theory explained

quantitatively the data for the folding of several proteins [8–14],

and the funnel topology is correlated with the thermodynamics

and kinetics of folding [15]. Many aspects of the folding funnel can

be inferred from this approach, such as analysis of conformational

maps [16,17], folding mechanisms involving mutants [18], and

topological features in the transition state [19].

In other approaches, local minima are individually addressed

and go beyond one-dimensional representation [20,21]. Visuali-

zation of distances between local minima is a very appealing way

of showing the underlying structure of the funnel. However,

visualizing the local minima poses a significant challenge owing to

the multidimensional nature of the system. Among the motivations

to investigate the funnel details and its visualization is the potential

help in understanding the role of metastable states, kinetic routes

and conformational changes associated with protein function [22–

24]. The visualization of potential and free energy surfaces is not

essential for calculating any dynamic or thermodynamic proper-

ties, but it can certainly help in providing insights as to what those

properties might be [20,25,26]. Methods such as Principal

Component Analysis (PCA) have been used in funnel visualization

for isobutyryl-(ala)3-NH-methyl (IAN) [27], where disconnectivity

graphs were used to visualize the overall organization of the

landscape [28]. The potential energy surface is represented in
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terms of local minima and the transition states that connect them,

providing a convenient coarse-grained representation of the

corresponding landscape [29]. This method has been applied to

a wide number of systems. For example, Lennard-Jones clusters

present multi-funnel characteristics [30–32]. Disconnectivity

graphs are able to reveal the effects of gatekeepers in the potential

energy surface by raising the energies of low-lying minima relative

to the global minimum [33]. The diferences in folding efficiencies

can also be inferred in proteins with and without frustration for

structure based models [34]. Disconnectivity graphs can also be

extended for the visualization of free energy landscape, maintain-

ing the description of barriers faithfully [26,35,36]. When rate

constants are associated with the rearrangements mediated by

each transition state, a kinetic transition network can be defined

[37,38]. So the kinetics and thermodynamics of complex

transitions can be modeled in terms of transitions between the

relevant conformational substates [39–41], in which kinetic

transition networks are constructed from geometry optimization

and molecular dynamics simulations. These examples show that

this method overcomes the fundamental limitations of reaction-

coordinate-based methods. Most of these approaches emphasize

the kinetic path between probed states, and are able to indicate,

for example, the funnel aspect of the landscape against a hub-like

hypothesis [41].

In this paper we focus on the structural organization of

conformations, looking at the difference of contacts in each

conformation. We propose a suitable conformation metric that

reflects the underlying landscape in which the kinetics takes place.

The method is tested in a 27-mer protein lattice model, folded into

a 36363 cube, which has been extensively used in protein folding

studies [3,42,43], and in particular for visualization methods [44].

We restricted the visualization to local minima of regions from

around the transition-state to the native state. These partially

folded states are the relevant ones in the study of metastable states

and function-related conformation changes. The data obtained

from computational simulations in a lattice model were projected

on a 2D or 3D plot with the Force-Scheme method [45], which

allowed us to map the connectivity of conformations (local

minima). The choice of a metric is essential in order to reach a

sensible connection between the original data and the projection,

and it must efficiently distinguish between pairs of conformations.

From the analyses, we noted that distinct sequences lead to

different patterns, from which folding routes could be established

and the effects from mutations could be probed.

Results and Discussion

The simulation of the folding dynamics probes the conforma-

tions associated with local minima within given time intervals. We

are interested in mapping the partially folded states, associated

with conformations from the transition-state to the native

configuration. The transition state was inferred from the free

energy as a function of degree of nativeness (see Supporting

Information) for the protein-like sequences A, Af, B, C and D.

Conformational states are characterized by the energy and non-

bonding contact points for each monomer of the sequence. The

dataset thus generated is multidimensional, and its visualization

requires dimension reduction projection methods. A crucial point

for the projection is to establish a metric for the distance between

two conformations. We tried several possibilities, including the

Minkowski family of metrics [46], of which the Euclidean distance

is one example. These did not lead to physically plausible results

since the computation of such metrics considers that lack-of-

contact comparisons define similar elements. In the lattice case,

the absence of contact (‘‘0’’ comparisons) occurs when two

conformations do not present contacts. In this scenario a binary

distance is a better choice, i.e., only contacts (‘‘1’’ comparisons) are

relevant.

The measure between two conformations i and j has to satisfy

commutativity and null distance to itself, i.e.,

M(i,j)~M(j,i) and M(i,i)~0: ð1Þ

The structural measure or distance shown to be most effective was

the ratio between the dissimilarity (Di,j) and similarity (Ci,j)

between i and j, which is equivalent to the ratio between the

Jaccard index and the Jaccard distance [47], defined as

Ms(i,j)~
Di,j

Ci,j
, ð2Þ

C(i,j)~
Dfig\fjgD
Dfig|fjgD ,

D(i,j)~
Dfig|fjgD{Dfig\fjgD

Dfig|fjgD :

Di,j (Ci,j) is given by the number of different (common) non-

bonded contacts between conformations given by the set of

contacts fig and fjg: Ms takes into account all the contacts

whether they are native or not. Comparing Ms with other

variables often used, the usual reaction coordinate Q(A) (given by

the fraction of native contacts formed in conformation A) cannot

satisfy Eq.(1), since Q(A), given a native reference N, is different

from Q’(N), given a reference conformation A: Root Mean

Square deviation (RMSD) satisfies the Eq.(1) conditions, but

compares the overall conformation, which may not properly

account for local details.

One could argue that this topological distance, which could

capture static features of the conformation space, may not cope

with details of folding. Folding process is an intrinsically dynamic

process, which is also the basis of the the discontinuity graphs

discussed in the Introduction. Moreover, two structurally similar

conformations could differ in terms of the dynamics for folding.

We therefore incorporated in the simulations a dynamic

measurement defined by

Md (i,j)~ min
fpathsg

n(i,j), ð3Þ

where n(i,j) is the number of local minimum intermediates

required to go from i to j conformations. Md (i,j) corresponds to

the minimum calculated over all the paths going from i to j (or

vice-versa). The measurement is normalized upon dividing by the

largest distance encountered. This approach resembles the method

using to determine kinetic transition networks [48–50]. In

subsidiary simulations we noted that using an effective distance

Mef (in Eq.(4)), which takes into account the dynamic measure-

ment, yields essentially the same results as with our initial

measurement defined in Eq.2. Therefore the use of the latter

appears to embed the underlying landscape of the system.

Visualization of Protein Folding Funnels in Lattice Models
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Visualizing the folding funnel
The protein funnel was obtained by projecting the multidimen-

sional local minima, distributed according to the effective metric

distance, onto a 2D surface. The 5 sequences investigated, viz. A,

Af, B, C and D, are described in detail in the Methods. Figure 1

shows the funnel representation of sequence A, in which the

minima are colored according to conformation energy in

Figure 1a, or according to the reaction coordinate Q in

Figure 1b. The steep convergence to the native state either in

energy or Q representation is an indicative of the principle of

minimal frustration associated with this sequence. The important

information is the relative distance between two given points, and

the axes were removed because the directions do not have any

special meaning. Different regions in the 2D representation can be

associated with different partially folded motifs, as shown in

Figure 1a. As expected, different time intervals sample different

minima, thus yielding varying local minima resolution, but the

overall funnel pattern was maintained (see Figures S3, S4, S5 and

S6 in the Supporting Information). The pattern preservation for

distinct time intervals (in MCs) ensures that the sequence possesses

a unique ‘‘signature’’, with clusters of conformations becoming

denser as the number of time intervals decreases (probing more

fluctuations). For a 30 MCs interval, in particular, a more refined

energy distribution can be visualized with the identification of

higher energy conformations when compared with local minima in

simulations with larger time intervals.

Figure 2 shows that the funnel landscape obviously depends on

the protein sequence, with a unique native structure being

represented by a unique funnel landscape. The sequence D, in

particular, has a doubly degenerate native state, where the two

lowest-energy conformations differ from each other by 5 native

contacts. The existence of these two native states is reflected in two

clusters of points in Figure 2d. For this sequence, a change from

one region (native state) to the other native state requires unfolding

(i.e. the need to move towards the periphery in the projection).

Note that, for sequences that are difficult to fold (Figure 2a and

2c), the number of conformations with intermediate energy (in the

green light blue region) increases considerably, in comparison with

the easily-foldable sequences (A and B) (Figure 1 and 2b). By the

same token, the sequences with non-efficient folding funnels take a

much longer average time to fold, as shown in Figure S2 in the

Supporting Information.

In order to generate a 3D visualization for the funnel, the 2D

representation was taken for the x and y axes, while the energy

was taken as the z axis, with the lowest energy value corresponding

to the native state. Color encodes the reaction coordinate Q,
which is the degree of nativeness. Figure 3 shows the 3D picture of

the funnel for the sequence A, while the figures for the other

sequences are given in Figures S7 and S8 in the Supporting

Information. It must be stressed that the result of the projection

method is independent of the initial condition of the states in the

2D representation. The native conformation converges to the

center of the funnel without any constraint or external force. The

global minimum of the system, or native configuration, in the

center of the 2D representation reinforces the funnel-like structure

of the landscape.

Folding routes
The 2D and 3D visualizations of the folding funnels appear to

confirm that the strategy proposed here is suitable for describing

the folding process, but they do not suffice to ensure that the

choice of the distance metrics is robust. The latter can be probed

by analyzing the folding routes, for in a good funnel representation

the folding route has to be represented by a sequence of small steps

in the effective funnel representation. Figure 4a shows two routes

generated from first passage time simulations, which show mostly

small steps between successive minima. The details of this

representation can be seen in different folding routes, which

probe very distinct regions of the phase space (associated with

different partially folded motifs). Also worth mentioning is that the

Figure 1. Visualization in 2D of the conformation space for sequence A. Each point represents one conformation (local minimum) and the
distance between points refers to the projection of their effective distance. The axis directions do not have any special meaning and have been
removed. In (a) the color is associated with the conformation energy. In (b) the color is associated with the reaction coordinate Q, where Q~28
represents the native state.
doi:10.1371/journal.pone.0100861.g001
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routes do not directly cross the empty regions, but go around them

through neighboring connected states. Figure 4b shows that, for

sequence A, the distances between two subsequent local minima in

the 2D representation are almost always very small, which means

that no drastic changes occur in conformation from one minimum

to the next. This confirms the robustness of the approach

presented here.

Analysis of a mutation
The 2D projection was also used to explore a mutation in

sequence A, where two monomers were exchanged to yield a less

stable sequence (see Table 1 in the Methods). The effects from the

mutation can be evaluated by mapping the data of the two

sequences in the same projection. Due to mutation a set of

conformations is no longer energetically favorable for the folding.

This can be seen in Figure 5a where the whole region on the left is

missing for the mutated sequence (green points). One thousand

(1000) folding routes were calculated for each sequence, with

examples shown in Figures 5b and 5c. In contrast to the wild

sequence (A), for the mutated sequence (Af) the routes normally

probe a significant part of conformational space before reaching

the native state, with 95% of the pathways occurring on the right-

hand part of the projection. The mutation stabilizes a different set

of local minima, which hinders the folding process and causes a

considerable increase in the average folding time (as seen in Figure

S2). Note that most of the minima in the mutated sequence do not

coincide with those of the wild sequence, thus indicating that they

are structurally different, even though they have the same native

state.

Conclusions

Visualization was based on the assumption that the distance

between two conformations was the ratio between the Jaccard

index and the Jaccard distance taking into account all non-bonded

contact points. The suitability of the approach could be confirmed

by comparing the funnels and folding routes for 5 sequences,

where much larger folding times were estimated for sequences

known to be difficult to fold. Furthermore, a doubly degenerate

sequence yielded a funnel with two native states, as expected.

Figure 2. 2D visualization for the sequences (a) Af; (b) B; (c) C and (d) D, obtained with a time interval of 1000 MCs.
doi:10.1371/journal.pone.0100861.g002
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Since the methods employed are entirely generic, this approach

is a potential tool to be used in association with other methods that

efficiently probe the energy landscape, such as diffusion-map-

directed MD (DM-d-MD) [51], disconnectivity graphs [20] and

metadynamics [52]. The method was tested in a simple lattice

model, in which the minima were sampled with variable time

intervals. It will be straight forward to apply this methodology to

realistic models and more meaningful sampling methods, such as

those used by Wales [20,21,25]. In particular, our method may be

helpful to probe details of folding trajectories and effects of

mutation in the study of metastable states. As applications,

previous work using disconnectivity graphs analyzed the potential

energy landscapes of proteins involving gatekeeper residues

[33,53,54]. By probing the gatekeeper residue contacts using our

method we expect to be able to shed light into the nature of these

peculiar conformational states.

Methods

Model
In this lattice model, a globular protein is modeled as a

simplified heteropolymer made up of 27 monomers (or beads)

covalently bonded. The monomers are placed on the vertices of a

cubic lattice. These models are capable of accounting for several

features of protein folding [42], where the most compact (folded)

structure is a 36363 cube. One contact is defined for two

monomers that are at nearest-neighbor distances but not

connected covalently. In the lattice model the maximum number

of contacts is 28: The energy of the system is given by

E~nlElznuEu, where nl is the number of (non-covalent) contacts

of like monomers and nu is the number of contacts between

distinct monomers. The folding kinetics is performed with the

Metropolis algorithm in a Monte Carlo simulation with typical

motions in polymers [42]. Here we use a low hydrophobicity

regime with El~{3 and Eu~z3 in arbitrary units. This regime

was chosen to mimic the folding behavior where the sequence

evolves toward its native state without going through a hydropho-

bic collapse [43,55]. Five sequences were chosen for the analysis,

which exhibit very distinct features, as indicated in Table 1. For

each conformation, the free energy was calculated as a function of

the parameter Q (See Figure S1 in the Supporting Information).

The data collected for the projection is restricted to conformations

from around the transition state (QTS{1) to the native state

(Q~28): The simulation temperature was set to 1:1 Tf , in order

for the conformational space to be visited as thoroughly as

possible, thus avoiding the sequence having to spend long times in

its native state. Local minima were obtained within time intervals

segmented along the Monte Carlo trajectories. 4 time intervals

Figure 3. 3D visualization of the funnel for sequence A, with two different views. The third axis (depth) of the funnel is associated with the
energy of the local minima, and the color map is the reaction coordinate Q:
doi:10.1371/journal.pone.0100861.g003
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were used: 30, 100, 300 and 1000 Monte Carlos steps (MCs). For

each interval, the total time was set so that 107 minima were

obtained. The conformation at each local minimum was stored in

a 27|27 binary matrix representing all the contacts. The

conformational matrix is symmetrical and an element ci,j is 1 if

there is a contact between monomers i and j and 0 otherwise.

Metric
The projection of these multidimensional data was performed

using a metric based on the conformational similarity (Jaccard

index) and dissimilarity (Jaccard distance), referred to as the

structural measurement: Ms (Eq. 2). We also tested a dynamic

measurement in which the number of intermediate minima for

going from one conformation to the other was taken into account.

This latter metric was named dynamic measurement Md (Eq. 3).

Using these measurements one may calculate a normalized

effective distance between any two conformations,

Me f (i,j)~(1zMd (i,j)) Ms(i,j): ð4Þ

Projection
Our goal is not to develop a technique for dimensionality

reduction. We want to visualize the similarity between conforma-

tions according to our metric. Since the information of structures

occurs in a multidimensional space, there is a need for projection

into a lower dimension. As with any projection technique, we can

create the projection in up to three dimensions [56]. The choice of

two dimensions is simply for the ease of data interpretation. 3D

projections are very difficult to interpret due to occlusions and

overlaps which, in most cases, do not bring real gain compared to

2D [57].

The projection onto a 2D plot was made using the distance

matrix with the Force-Scheme method [45], where the objects are

initially placed in random positions, and then attraction and

repulsion forces between the objects take the system to equilibrium

according to a chosen heuristics. Here, the system was initialized

with the conformation energies, which proved more efficienct for

convergence of the method. After the first placement of the

objects, iterations within the Force-Scheme method are performed

to preserve similarity in the original space into the projected space.

In the first iteration, for each projected point yi[Y , (where Y is the

input dataset) a vector is calculated~vvi,j~(yj{yi),Vyj=yi: Then yi

is moved in the~vv direction by a step D, defined as:

Figure 4. Analysis of folding routes. In (a) Folding routes for the sequence A, where the starting point was a random conformation and the final
point corresponds to the native state. In (b) Histogram of the distribution of distances between two subsequent local minima in the 2D
representation for very long trajectories.
doi:10.1371/journal.pone.0100861.g004
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D~ 2kz2ð Þ
1

2kz1{1

� �
, ð5Þ

where k is the number of previous iterations. After an iteration,

each object should be moved closer to its similar ones until the

system converges. The number of iterations may be defined

arbitrarily or the scheme may be stopped when a threshold is

reached. Here the process was stopped when the difference in

distances for a given object between two consecutive iterations was

below a threshold of 10{4: In order to build the 3D funnel, the

points in the 2D projection are shifted along a perpendicular axis

according to their energies, thus generating a 3D structure where

the lowest-energy states are placed on the bottom. We also

performed tests with one of the most precise projection techniques

in terms of distance preservations, referred to as Classical

Multidimensional Scaling (MDS) [56]. The results were similar

to those produced by the Force-Scheme in terms of distributing

the points on the plane according to the similarity between

conformations, with the final shape of the funnels also being very

similar. The MDS technique, however, is much more costly in

computational time, and in some cases ordinary microcomputers

lack the power to obtain the funnels. Therefore, we opted for the

Figure 5. 2D Projection of sequence A (blue points) and its mutated form Af (green points), while the points in red are common to
both A and Af sequences. An example of a route for each of the sequences is presented: (b) sequence A and (c) sequence Af.
doi:10.1371/journal.pone.0100861.g005
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Force-Scheme approach, which is much faster and allows one to

process thousands of conformations in a few minutes with a simple

PC.

Supporting Information

Figure S1 Free energy vs Native contacts (Q). Free energy

as a function of native contacts (Q) for four protein-like sequences

A, Af, B and C. The simulation was performed at the folding

transition temperature (Tf ):

(TIF)

Figure S2 Mean first-passage times. Mean first-passage

times as a function of the logarithm of the number of local minima

needed to reach the native state. Note that the two proteins with

high Zscore (A and B sequences), on average, fold more quickly. In

contrast, in the sequences with a low Zscore (Af and C sequences),

the number of conformations necessary to reach the native state is

much greater.

(TIF)

Figure S3 Visualization in two dimensions for all time
intervals for sequence A. a) 30 MCs; b) MC 100; c) 300 MCs

and d) 1000 MC.

(TIF)

Figure S4 Visualization in two dimensions for all time
intervals of sequence Af. a) 30 MCs; b) MC 100; c) 300 MCs

and d) 1000 MC.

(TIF)

Figure S5 Visualization in two dimensions for all time
intervals for sequence B. a) 30 MCs; b) MC 100; c) 300 MCs

and d) 1000 MC.

(TIF)

Figure S6 Visualization in two dimensions for all time
intervals for sequence C. a) 30 MCs; b) MC 100; c) 300 MCs

and d) 1000 MC.

(TIF)

Figure S7 3D visualization of the funnel for sequence C.
A profile of the funnel is shown on the left, while details of the

internal and external parts of the funnel are shown on the right.

(TIF)

Figure S8 3D visualization of the funnel for sequence D.
A profile of the funnel is shown on the left, while details of the

internal and external parts of the funnel are shown on the right.

(TIF)
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38. Prada-Gracia D, Gómez-Gardeñes J, Echenique P, Falo F (2009) Exploring the

free energy landscape: From dynamics to networks and back. PLoS Comput Biol

5: e1000415.
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