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Abstract

Protein a-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important
microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with
a-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides
identified in silico were chemically synthesized; circular dichroism studies indicated partial or high a-helical content.
Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea.
Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong
reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the a-
helical coiled coil structures. In addition, ex vivo production of IFN-c by murine mononuclear cells confirmed the
immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice
immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-
reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and
whole parasites. Results here point to the a-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as
were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models
to assess their protective efficacy as single components or assembled as hybrid linear epitopes.
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Introduction

Despite the important reduction in reported malaria incidence

during the last decade in a number of countries worldwide,

malaria infection still represents one of the major global public

health threats. The World Health Organization (WHO) estimated

an annual global burden of 207 million malaria cases and 627,000

deaths in 2012 [1].

Of at least six different malaria parasite species which can be

transmitted to humans, Plasmodium vivax is the second most parasite

species of epidemiological importance with 70–80 million cases

estimated per year worldwide [2]. In most malaria-endemic areas,

it coexists with P. falciparum, thus making its control more difficult.

Due to the limited impact and cyclical loss of effectiveness of

some of the classical malaria control measures, and based on

multiple evidence on the feasibility of malaria vaccines, significant

efforts have been invested in the development of malaria subunit

vaccines over the past 2 to 3 decades [3–5]. Significant progress

has been achieved with P. falciparum where several vaccine

candidates are currently in clinical development [6]; with one

now being considered for licensure [7]. In contrast, development

of P. vivax vaccines has been significantly neglected and only a few

candidates have been selected for clinical testing [8].

Most P. vivax antigens considered to have vaccine potential have

been tested in in vitro studies as well as in preliminary preclinical

studies in mice and primates [9–13]. Only a few of these antigens

further selected by classical immuno-serological methods have

undergone phase I clinical trials [14–16]. In the past, the number

of parasite antigens available for vaccine studies has been quite

limited. Presently, advances in the establishment of Plasmodium

genomes and proteomes [17–19] together with high throughout

laboratory techniques [20], can potentially accelerate the devel-

opment of malaria vaccines. Additionally, the use of bioinformatics

tools to explore the malaria genome/proteome databases has

allowed new approaches for identification of parasite proteins

containing a-helical coiled coil domains [21].

Such domains readily fold into stable structures that are capable

of eliciting antibodies reactive with structurally native epitopes,
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and are generally monomorphic [22]; these structures have the

capacity to block critical functions of medically important

microorganisms [23,24]. Specifically in P falciparum some antigens

containing these domains have been involved in antibody-

dependent inhibition of malaria parasite growth [25,26], and

therefore represent targets for vaccine development, thus drasti-

cally reducing the time required for antigen selection and

preclinical testing [21].

In the past few years, approximately 170 P. falciparum a-helical

coiled coil protein fragments have been assessed by combining

genome-wide bioinformatics analysis, peptide selection, peptide

chemical synthesis, immune and biochemical assays, in vitro

functional assays, with associated protection analysis [25,26]

(unpublished data). A total of 140 putative a-helical coil-

containing proteins of 200 to 10,000 amino acids in length were

identified as new target proteins in P. falciparum asexual blood

stages. Here we describe studies carried out using the same

technology and approach with P. vivax antigens orthologous to P.

falciparum, which have been evaluated for their antigenicity using

human sera and immunogenicity in mice.

Materials and Methods

P. vivax genome bioinformatics analysis
Orthologues are good candidates for multi-species vaccines as

they have the potential to elicit antigenic reactions against all the

species included in the search parameters. A P. vivax Salvador I

genome database (PlasmoDB) was used for the selection of P. vivax

orthologous to P. falciparum protein sequences from asexual blood

stages containing a-helical coiled coil structures, analyzed by

COILS software [27]. Fifty P. vivax orthologues were found to have

at least 30% homology with the 170 P. falciparum a-helical coiled-

coil proteins previously identified. Sequences were of the maximal

length possible in order to maximize the stability of the a-helical

conformations and to increase the array of conformational

epitopes that could be yielded. Selected a-helical coiled coil-

containing proteins were further characterized as to possible

surface location and GPI anchoring, using the following software:

identification of potential signal peptides by SecretomeP and

SignalP (http://www.cbs.dtu.dk/services/) [28]; transmembrane

spanning region- (TMPRED http://www.ch.embnet.org/ soft-

ware/TMPRED_rm.html and TMHMM http://www.cbs.dtu.

dk/services/TMHMM; [29], and GPI-anchored proteins (http://

mendel.imp.univie.ac.at/sat/gpi/gpi_server.html [30]; and pre-

diction of sub-cellular localization (pTARGET) [31]. Additionally,

major histocompatibility complex protein (MHC-II) binding

predictions were made using the IEDB analysis resource

Consensus tool [32,33] which combines predictions from ANN

aka NetMHC [34,35], SMM [36] and Comblib [37] within the

sequence of preselected peptides used in murine immunogenicity

studies.

Peptide synthesis
Fifty P. vivax polypeptides 25 to 57 amino acids long were

synthesized by fluorenylmethoxycarbonyl (F-moc) solid-phase

chemistry [38] using an Intavis AG Bioanalytical synthesizer

(Germany) (Table S1). The resulting construct was HPLC-

purified; purity was confirmed by analytic C18 HPLC and mass

spectrometry (MALDI-TOF; Applied Biosystem, Foster City, CA).

All reagents were purchased from Fluka (Buchs, Switzerland) and

Novabiochem (Laufelfingen, Switzerland). Additionally, five P.

falciparum polypeptides (Pf-P27, Pf-P43, Pf-P45, Pf-P82 and Pf-P96)

described previously [26] were used to test cross-reactivity between

P. vivax and P. falciparum species.

Circular dichroism studies
Spectra of peptides were recorded on a JASCO J-810

spectrometer (JASCO corporation, Tokyo, Japan) equipped with

a temperature controller and a 0.1 cm path length cuvette. The

measurements were made in water at pH 7.3 and 22uC and at a

peptide concentration of 0.15 mg/mL.

Human sera
Human serum samples from adults living in malaria-endemic

areas of Colombia and Papua New Guinea (PNG) as well as from

a non-endemic area (Switzerland) were used to assess peptide

antigenicity. Sera (n = 42) were collected from Maprik District of

the East Sepik Province, a malaria-endemic region of PNG, during

a cross-sectional survey described previously [39], whereas the

Colombian samples (n = 90) were obtained from two geographi-

cally distant and epidemiologically different malaria-endemic sites:

Tumaco (Nariño state, n = 51) and Tierralta (Córdoba state,

Figure 1. Representative CD spectra of peptides (A) PvPep40 and (B) PvPep63. The CD’s were done at room temperature on 150 mg/mL
samples in aqueous solutions. Spectrums came from the averages of duplicates in the far UVs, from 190 to 250 nm and were smoothed with a 5
points filter.
doi:10.1371/journal.pone.0100440.g001
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n = 39). Previous infection with P. vivax was confirmed based on a

positive P. vivax blood-stage immunofluorescent antibody test

(IFAT) result. Ethical clearances for this study were obtained from

the PNG Medical Research Advisory Committee as well as from

the Institutional Review Boards (IRB) of the Malaria Vaccine and

Drug Development Center–MVDC (CECIV) in Cali, Colombia.

Written informed consent (IC) was obtained from each volunteer.

Negative control samples were obtained from Swiss adult donors

with no history of malaria and no previous travel to malaria-

endemic areas. Human antibodies specific to Pf-P27 and Pf-P45

[26], were affinity-purified from a pool of human serum samples

from adults living in Burkina Faso, and used to test cross-reactivity

to the respective P. vivax orthologues.

Animals and immunization procedures
Five-week old female BALB/c mice, maintained at the facility of

MVDC and handled according to institutional guidelines, were

divided into eight groups of four animals each. Mice were injected

three times with the selected antigens formulated in Montanide

ISA 720 adjuvant (Seppic Inc., Paris, France). Each mouse was

injected subcutaneously at the base of the tail with 20 mg of the

peptide formulation in a final volume of 50 mL on days 0, 20 and

40. Approximately 150 mL of whole blood were collected eight

days before the first immunization, and ten days after second and

third immunizations, under anesthesia from the orbital sinus;

antibody responses were measured by ELISA as described

previously [40]. Twenty days after the final immunization, mice

were euthanized by anesthetic inhalation and spleens and lymph

nodes were aseptically removed. Mononuclear cells were obtained

by lymph node and spleen maceration followed by separation

using Ficoll-hystopaque gradients; cells were assayed immediately.

IFN-c production by mononuclear cells was determined using a

specific ELIspot assay as described below.

Ethics Statement
This study was carried out in strict accordance with institutional

guidelines. The protocol was approved by the Committee on the

Ethics of Animal Experiments of the Universidad del Valle (Permit

Number: 004-08). All surgery was performed under anesthesia,

and all efforts were made to minimize suffering.

ELISA test
Antibody responses to the tested antigens were measured in

human and murine sera by ELISA as described previously [40].

Briefly, ELISA plates (Nunc-Immuno Plate, Thermo, USA) were

coated with 5 mg/mL of the respective polypeptides overnight.

Plates were then blocked with 5% skim milk in PBS+0.05% tween-

20 (PBST) pH 7.4 for 2 h at room temperature. After washing,

plates were incubated 1 h at room temperature with sera samples

prepared in PBST/2.5% skim-milk as follows: human sera were

tested at a 1:200 dilution, whereas murine sera were tested at

three-fold serial dilutions starting at 1:100. IgG antibodies were

detected using alkaline phosphatase-conjugated anti-human or

anti-mouse immunoglobulin (Sigma Chemical Co., St Louis, MO)

at a 1:1000 dilution. Enzymatic activity was developed after

incubation for 30 min at room temperature with para-nitrophenyl

phosphate substrate. The final reaction was read at 405 nm in a

microplate reader (MRX, Dynex Technologies, Inc., Chantilly,

VA). Cut-off points were calculated as three SD above the mean

absorbance value of sera from healthy malaria- naı̈ve Swiss

volunteers or naı̈ve mice, respectively. Positive responders were

classified according to the OD ratio (OD values of tested sample

divided by the cut-off value). Results were considered positive

when absorbance of the test sera was higher than or equal to the

cut-off points. All ELISA experiments were performed in

duplicates in two independent experiments.

Since all fragments were orthologous to P. falciparum, we tested

the cross-reactivity to this species using P. falciparum antigens and

sera from mice immunized with P. vivax a-helical coiled coil

fragments (PvPep27, PvPep43, PvPep45, PvPep82 and PvPep96).

Likewise, we tested the P. vivax fragments with affinity-purified

human IgG specific to Pf-P27 and Pf-P45, two P. falciparum

fragments which had previously shown capacity to induce strong

monocyte-dependent parasite killing [26]. As negative control, a

different a-helical coiled coil non-related antigen was used.

Figure 2. Immunogenicity of coiled coil peptides in BALB/c mice. Titration of IgG antibody responses to coiled coil peptides in immunized
mice. Evaluation on days 0, 30 and 50. Titers shown are according to a Log10 scale. ‘‘w, g, b and t corresponds to an identification mark for each one
of the animals per group. ELISA experiments were performed by duplicated in two independent experiments.
doi:10.1371/journal.pone.0100440.g002

Table 3. Immunogenicity of P. vivax coiled coil fragments in BALB/c mice.

Antigen Protein IDa ELISA titer range ELISA responders IFAb

n Percentage 1:20

PvPep27 PVX_113335 3.06102–2.46104 2 50% 2

PvPep42 PVX_087730 96102–86103 3 75% 2

PvPep43 PVX_089660 6.66105–2.06106 3 100% +

PvPep45 PVX_123385 2.76103–2.26105 3 75% ++

PvPep52 PVX_123480 7.26104–2.06106 4 100% 2

PvPep82.02 PVX_122740 2.46104–2.26105 4 100% ++

PvPep95 PVX_117455 2.46104–7.26104 3 75% 2

PvPep96.03 PVX_084385 7.26104–2.26105 4 100% +

aID from PlasmoDB; b(-) negative, (+) positive with 1-10, and (++) positive between 10 to 20 fluorescent parasites per well, respectively.
doi:10.1371/journal.pone.0100440.t003
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Figure 3. Cross-reactivity of P. vivax and P. falciparum antigens. Antigenic cross-reactivity between P. vivax and P. falciparum was tested by
ELISA, testing mice sera samples A. anti-PvPep27; B. anti-PvPepP43; C. anti-PvPep 45; D. anti-PvPep82 and E. anti-PvPep96; at 1:200 dilution with the
corresponding P. vivax and P. falciparum antigens. Additionally, affinity-purified human antibodies specific to F. PfP27 and G. PfP45 were used to test
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IFA test
Parasite recognition by anti-peptide antibodies was determined

by IFAT, using as antigen, P. vivax blood stages obtained from

Colombian patients, and mouse sera collected 10 days after last

peptide immunization. Briefly, parasites were incubated with sera

diluted 1:20. This reaction was developed with fluorescein-

conjugated goat anti-mouse IgG (Jackson Immunoresearch

Laboratories, Inc., Baltimore, MD) diluted 1:1000. Slides were

mounted in 30% glycerol and examined under a Nikon Eclipse

microscope by epifluorescence. P. falciparum parasite cross-reactiv-

ity was also determined by IFAT using as antigen, Pf-FCB-1

blood-stage parasites derived from in vitro cultures [41].

Cellular immune responses in mice
To determine the potential of eight selected peptides to

stimulate T-cell responses, in vitro IFN-c-production by lymph

nodes and splenocytes obtained from immunized mice was

quantified. For this purpose a commercial mouse anti-IFN-c
ELISpot kit (Mabtech AB, Stockholm, Sweden) was used; the test

carried out according to the manufacturer’s instructions. Multi-

screen 96-well plates (Millipore, Bedford, MA) were coated

overnight at room temperature with 5 mg/mL anti-mouse IFN-c
antibodies. RPMI 1640 medium containing 10% fetal bovine

serum (FBS, GIBCO) was used as a blocking solution. Freshly

isolated mononuclear cells were plated into duplicate wells at

56105 cells in RPMI 1640 medium supplemented with 10% FBS

(100 mL/well). Culture medium alone, Conconavalin A or 10 mg

of each synthetic peptide/mL medium (100 mL/well) was added

and plates were cultured for 40 h at 37uC in a 5% CO2 humidified

atmosphere. After washing, biotinylated antibody at 1 mg/mL was

added and incubated for 2 h at room temperature. Plates were

washed and alkaline phosphatase-streptavidin (Mabtech AB,

Stockholm, Sweden) was added (1:1000). Spots were visualized

by adding 50 mL/well of BCIP/NBT (Sigma), scanned and

counted using the AID ELISpot reader (AID Autoimmun

Diagnostika GmbH, Germany) to determine the number of

spots/well. Results were expressed as the mean number of IFN-c
spot-forming cells (SFC) per 106 cells.

Statistical analysis
Fisher’s exact test (262 contingency tables) was used to compare

differences in seroprevalence between the PNG and Colombian

groups; the ANOVA test was used to compare groups. Dunnett’s

Multiple Comparison Test was used as post-hoc analysis and p

value,0.05 was considered statistically significant. Statistical

analyses were performed using GraphPad Prism software (version

5.01; GraphPad Software Inc., San Diego, CA, USA.

Results

P. vivax genome bioinformatic analysis
A total of 50 P. vivax fragments, 25–57 residues long and containing

the a-helical coiled coil motifs, were selected based on proteome and

transcriptome data of P. falciparum orthologues present in erythrocytic

parasite stages (Tables 1 and S1). Variable homology (29 to 100%

identity) was observed between P. falciparum and the corresponding P.

vivax fragments (Table S1), most of which (32 antigens) were greater

than 60% homologous. Identification of potential signal peptides,

transmembrane (TM) regions, and GPI-anchored or sub-cellular

localization prediction revealed five proteins containing TM domains

(PvPep39, PvPep101, PvPep122, PvPep123 and PvPep131) and

another three involved in secretory pathways (PvPep52, PvPep60,

PvPep96.01). These latter peptides also contained a signal peptide.

One of the proteins is predicted to be located in the mitochondria

(PvPep39); none contained a GPI anchor.

Circular dichroism studies
Circular dichroism (CD) studies of 16 randomly selected peptides

indicate that they assume a total or partial a-helical conformation in

water. Peptides 40-43, 55, 60 and 65 exhibit a CD pattern

characteristic of a high a-helical content as indicate for PvPep40

(Figure 1A), whereas the remaining peptides (2, 5, 12, 27, 41, 45, 48 59

and 63) show CD profiles similar to that shown for peptide PvPep63

(Figure 1B) or intermediate between those shown in Figures 1A and

1B, all characteristic of a partial a-helical organization.

Recognition of a-helical coiled coil peptides by human
sera

Out of the 50 a-helical coiled coil peptides tested by ELISA

using human sera, 43 were recognized by PNG (n = 42) sera at

the reactivity of homologous P. falciparum and P. vivax antigens. Human IgG was tested at a 1:200 dilution. In all cases, a non-related antigen was
used as a negative control. Reactivity index defined as OD values of tested sample divided by the cut-off value, are reported as mean 6 SEM for each
mouse serum. Cross reactivity experiments were performed in duplicate in two independent experiments.
doi:10.1371/journal.pone.0100440.g003

Table 4. Reactivity of IgG tested with different parasite antigen fragments and whole parasites.

Origin Antibody Identitya (%) P. vivax fragmentsb P. falciparum fragmentsc P. vivax parasited P. falciparum parasitee

Mouse anti PvPep27 63 + + - -

Mouse anti-PvPep43 82 + + + -

Mouse anti-PvPep45 44 + - + -

Mouse anti-PvPep82 61 + - + -

Mouse anti-PvPep96 43 + - + -

Human anti Pf-P27 NAd + + + +

Human anti Pf-P45 NA + + + +

aIdentity between P. vivax and P. falciparum orthologous antigens; bReactivity tested by ELISA test using P. vivax antigens; cReactivity tested by ELISA test using P.
falciparum antigens; dReactivity tested by IFA test with P. vivax blood stages; eReactivity tested by IFA test with P. falciparum blood stages; dDoes not apply.
doi:10.1371/journal.pone.0100440.t004
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variable prevalence, however in all cases prevalence was .10%;

20 antigens displayed reactivity .29% (see Table S1). In addition,

17 peptides, which showed more than 30% of prevalence with

PNG samples, were further tested with Colombian sera; all these

peptides were antigenic with variable prevalence (Table 2). Ten

peptides (PvPep27, PvPep42, PvPep43, PvPep45, PvPep82.02,

PvPep82.03, PvPep83, PvPep95, PvPep96.01 and PvPep96.03)

tested with the 90 human Colombian sera samples displayed a

high degree of recognition, ranging from 30% to 86%. Recogni-

tion of the 17 peptides by PNG sera ranged between 29-71%,

whereas recognition by Colombian sera for the same 17 peptides

varied between 2–86%.

Interestingly, seven of the 17 selected peptides were the most

antigenic (.50% of responders) in PNG (PvPep27, PvPep43,

PvPep45, PvPep63, PvPep83, PvPep96.01, PvPep96.03), four

peptides (PvPep27, PvPep42, PvPep82.03 and PvPep83) were the

most reactive with Colombian sera (Table 2). Differences in

reactivity were also observed between the two malaria-endemic

sites in Colombia, Tierralta and Tumaco (data not shown).

Responses against 16/17 peptides were stronger with PNG as

compared with Colombian sera, presenting with OD ratios .2

(Table 2).

Immunogenicity of a-helical coiled coil peptides in mice
Eight peptides that showed prevalence .50% either with PNG

or Colombian sera were further tested for their immunogenicity in

BALB/c mice. Immunized mice developed specific IgG antibodies

to the a-helical coiled coil fragments after the second immuniza-

tion dose as determined by ELISA with the exception of those

immunized with PvPep42; three immunization doses were needed

to produce detectable antibody levels (Figure 2). Antibody titers

increased steadily with titers ranging from 96102 to 26106 after

the third immunization (Table 3). Mice immunized with PvPep27

and PvPep95 showed variable responses that were not uniform in

all animals; two animals in each group failed to develop the typical

boosting response after third dose. Antibody titers decreased and

became negative (PvPep27) or remained stable (PvPep95); neither

recognized the native protein in the IFAT (Table 3).

However, sera from four of the eight immunized groups were

able to recognize native protein on P. vivax asexual blood stages in

IFAT assays at a 1:20 dilution; two showed strong reactivity

(Table 3). Control mice, which received only adjuvant in saline

solution, were non-responsive as indicated by ELISA and IFAT

(data not shown).

Cross-reactivity tests
Sera from mice immunized with PvPep27 and PvPep43 were

reactive with the corresponding orthologues Pf-P27 and Pf-P43

with similar reactivity indices as compared to a control sample

(Figure 3). None of the other antigens (Pf-P45, Pf-P82 or Pf-P96)

showed significant cross-reactivity. Moreover, cross-reactivity was

also observed when specific affinity-purified human IgG to Pf-P27

and Pf-P45 were tested with the corresponding P. vivax orthologue;

three-fold less reactivity was observed in both cases as compared

with the positive control. Additionally, cross-reactivity with whole

P. falciparum parasites was observed by IFAT (Table 4). No

relationship was observed between homology and reactivity since

fragments with low identity, such as PvPep45, were highly reactive

with both the P. vivax fragment and the P. falciparum parasite,

whereas PvPep82.02 with greater than 60% homology was not

reactive (Table 4).

Cellular immune responses in mice
T-cell IFN-c production was induced by six (PvPep27, PvPep42,

PvPep43, PvPep45, PvPep52 and PvPep82.02) of the eight peptides

tested by ELIspot; PvPep95 and PvPep96.03 were not recognized

by murine lymphocytes (Table 3). The greatest IFN-c production

was induced by PvPep43 and PvPep52 (mean SFC 344.7615.33

and 304660.8, respectively) followed by PvPep45, PvPep27 and

PvPep42 (mean SFC 176.7698.1, 127.3647.6 and 68.3647.6,

respectively) (Figure 4).

Additionally, the selected peptides presented potential CD4+
epitopes in their amino acid sequences as confirmed by

bioinformatics analysis (Table 5). No apparent relation was

observed between the affinity of the predicted epitope and the

IFN-c results obtained, when mouse epitopes were described

(Table 5). Higher affinity, defined as the lower percentile rank,

were observed for PvPep27 and PvPep82.02 epitopes. When the

alleles from human were tested, higher affinity was observed in all

cases compared with mouse epitopes, although differences were

observed in the main epitopes found. Same epitopes predicted for

mouse alleles could be present in human alleles but with lower

affinity.

Discussion

In an attempt to identify new target parasite antigens for

malaria vaccine development, bioinformatics tools have been

previously used to select proteins containing a-helical coiled coil

motifs in P. falciparum proteins. In this study, similar algorithms

were used in a pilot search of P. falciparum orthologous antigens in

the P. vivax genome, and 50 a-helical coiled coil P. vivax segments

showing a high degree of homology to the previously identified

orthologous P. falciparum fragments were selected, and were further

assess in antigenicity and immunogenicity studies; at the end four

antigens were identified as potential targets for additional testing as

vaccine candidates (Figure 5).

It is interesting to note that of the 50 fragments tested

containing a-helical coils, 19 were recognized by sera of

individuals living in P. vivax endemic areas of PNG and Colombia.

Figure 4. Production of IFN-c by mononuclear cells from
immunized mice. Proliferative responses of mononuclear cells
obtained from mice immunized with eight synthetic peptides, and
further in vitro-stimulated with 10 mg/mL of corresponding coiled coil
peptides. Conconavalin A (Con A) mitogen was used as a positive
control. RPMI 1640 medium was used as a negative control. Data of SFC
were reported as mean 6 SEM for each peptide. P value was calculated
by the ANOVA test. MN: mononuclear cells.
doi:10.1371/journal.pone.0100440.g004

Plasmodium vivax Antigen Discovery

PLOS ONE | www.plosone.org 9 June 2014 | Volume 9 | Issue 6 | e100440



T
a

b
le

5
.

C
e

ll
im

m
u

n
e

re
sp

o
n

se
an

d
as

so
ci

at
io

n
w

it
h

H
LA

II
e

p
it

o
p

e
s

p
re

d
ic

ti
o

n
.

A
n

ti
g

e
n

IF
N

-c
p

ro
d

u
ct

io
n

S
F

C
a

M
o

u
se

H
u

m
a

n

M
e

a
n

ra
n

g
e

P
e

p
ti

d
e

A
ll

e
le

P
e

rc
e

n
ti

le
ra

n
k

P
e

p
ti

d
e

A
ll

e
le

P
e

rc
e

n
ti

le
ra

n
k

P
vP

e
p

2
7

1
6

4
1

2
5

–
2

2
8

K
K

Q
N

A
EK

EL
SV

LK
K

N
H

2
-I

ad
9

.8
V

LK
K

N
Y

D
A

M
SE

EI
EE

H
LA

-D
Q

A
1

*0
4

0
1

/D
Q

B
1

*0
4

0
2

1
.0

2

K
K

Q
N

A
EK

EL
SV

LK
K

N
H

LA
-D

P
A

1
*0

2
0

1
/D

P
B

1
*0

5
0

1
1

6
.0

9

P
vP

e
p

4
2

1
3

3
1

0
4

–
1

6
9

P
D

Y
Y

K
K

IT
T

K
LQ

N
N

I
H

2
-I

ad
2

0
.7

2
IN

N
IT

N
D

IN
IL

K
SS

I
H

LA
-D

R
B

1
*0

3
0

1
0

.3
1

P
D

Y
Y

K
K

IT
T

K
LQ

N
N

I
H

LA
-D

R
B

5
*0

1
0

1
1

.4

P
vP

e
p

4
3

3
4

4
3

1
4

–
3

6
0

V
K

K
LR

EE
LN

K
V

T
N

EY
H

2
-I

ad
4

3
.0

1
T

N
EY

D
D

FK
N

K
LE

LL
Y

H
LA

-D
R

B
1

*0
8

0
1

2
.3

7

V
K

K
LR

EE
LN

K
V

T
N

E
Y

H
LA

-D
P

A
1

*0
2

0
1

/D
P

B
1

*0
5

0
1

9
.1

4

P
vP

e
p

4
5

2
5

4
1

9
1

–
3

3
9

N
EA

K
EE

V
IE

K
K

EE
M

T
H

2
-I

e
d

4
8

.8
5

IN
K

N
IS

T
IN

D
D

V
D

H
I

H
LA

-D
R

B
3

*0
1

0
1

0
.0

1

P
vP

e
p

5
2

2
7

7
1

2
2

–
3

7
5

N
IN

ET
K

IT
H

LR
N

K
IE

H
2

-I
e

d
3

2
.4

4
IN

EQ
IN

IN
ET

K
IT

H
L

H
LA

-D
R

B
1

*0
7

0
1

0
.3

5

N
IN

ET
K

IT
H

LR
N

K
IE

H
LA

-D
R

B
1

*0
8

2
7

4
.2

9

P
vP

e
p

8
2

.0
2

6
9

3
6

–
1

4
2

N
LD

Q
K

IL
EL

Q
A

SF
T

C
H

2
-I

ad
7

.9
3

N
EI

K
Q

V
IK

K
IE

G
LE

K
H

LA
-D

R
B

5
*0

1
0

1
0

.3
9

N
LD

Q
K

IL
EL

Q
A

SF
T

C
H

LA
-D

R
B

1
*0

1
0

2
0

.3
9

P
vP

e
p

9
5

N
R

b
N

R
LK

D
LN

D
K

IR
N

Y
D

SI
I

H
2

-I
e

d
4

7
.2

2
EK

G
LK

D
LN

D
K

IR
N

Y
D

H
LA

-D
R

B
3

*0
1

0
1

0
.2

6

LK
D

LN
D

K
IR

N
Y

D
SI

I
H

LA
-D

R
B

5
*0

1
0

1
1

7
.0

4

P
vP

e
p

9
6

.0
3

N
R

N
R

N
D

D
V

D
H

IN
SN

IN
N

IN
H

2
-I

ab
4

2
.2

8
IN

K
N

IS
T

IN
D

D
V

D
H

I
H

LA
-D

R
B

3
*0

1
0

1
0

.0
1

N
D

D
V

D
H

IN
SN

IN
N

IN
H

LA
-D

R
B

1
*0

1
0

2
1

2
.6

1

a
SF

C
:

sp
o

t-
fo

rm
in

g
co

lo
n

ie
s6

1
0

6
;

b
N

o
re

sp
o

n
se

o
b

se
rv

e
d

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
0

4
4

0
.t

0
0

5

Plasmodium vivax Antigen Discovery

PLOS ONE | www.plosone.org 10 June 2014 | Volume 9 | Issue 6 | e100440



Most of the fragments were antigenic with variable prevalence

depending on the origin of the serum samples. Variation in

reactivity among sera appeared to be associated mainly with the

distinct malaria transmission conditions in these two regions

[42,43]. Whereas PNG is highly endemic for P. vivax and accounts

for a large proportion of the malaria cases, Colombia is a low- to

moderate malaria-endemic region where P. vivax is the prevalent

Plasmodium parasite. However, other factors such as differences in

the genetic background of the host and parasites, and transmission

rate may also explain the differences observed in the recognition

frequency. These results are similar to those found in previous

studies where different reactivity was observed when antigens were

tested with sera from different endemic areas [26,44].

Additionally, it is very promising to find that eight peptide

fragments were able to induce a significant antibody response in

immunized mice with concomitant induction of IFN-c producing

T-cells with six of the peptides. Furthermore, specific antibodies to

four of the fragments resulted in positive reactions in IFA assays

using P. vivax blood- stage parasites; two of these antibodies were

also reactive with P. falciparum orthologous antigens, although none

was reactive to P. falciparum parasite antigens. On the other hand,

affinity purified human antibodies specifics to two P. falciparum

antigens were reactive with the P. vivax parasite antigens. All eight

preselected antigens induced antibody responses although to a

variable degree regarding antibody titers and antibody kinetics.

Similar results were obtained in previous studies using P. falciparum

orthologous antigens, which elicited variable intermediate-to- high

antibody responses [26]. Responses do not seem to be associated

with fragment length since strong antibody titers were observed in

response to smaller fragments such as PvPep43. However, only

four peptides (PvPep43, PvPep45, PvPep82.02, and PvPep96.03)

induced antibodies in mice that were able to react with whole P.

vivax parasites; these four peptides induced the strongest antibody

responses. Peptides PvPep43 and PvPep82.02 are chromosome-

associated proteins with the other two being hypothetical proteins.

Most interestingly, antibodies to PvPep43 were cross-reactive

with the orthologous P. falciparum antigen, which could represent a

clear advantage for multispecies malaria vaccine development

provided that cross reactivity will be also observed with the P.

falciparum parasite protein. Additionally, considering the interest on

Pf-P27, previously described as a promising malaria vaccine

candidate [26], we also tested the cross-reactivity to this antigen.

Both sera from mice immunized with PvPep27 and specific

purified human IgG were reactive with both Pf-P27 and PvPep27.

Homology of the two peptides, PvPep27 and PvPep43, is variable

(60% and 83%, respectively). Surprisingly, Pv82.02, which shares

an identity of 60% with the corresponding orthologue, did not

show cross-reactivity; interestingly, PvPep45 was shown to be

reactive with purified human IgG anti-Pf-P45, however converse-

ly, the P. falciparum antigen was not reactive with anti-PvPep45

mouse sera. None of the antibodies to P. vivax antigen tested

showed cross-reactivity with the native protein in blood stages as

detected by IFAT possibly due the lower sensitivity of the test due

to a mixture of stages present in the donor’s samples or the low

protein expression.

Most of the peptides induced strong IFN-c production as

expected because of the presence of MHC-II epitopes predicted by

bioinformatics analysis. PvPep43, PvPep45 and PvPep52 induced

higher levels of IFN-c along with strong antibody responses.

PvPep95 and PvPep96.03 did not induce detectable IFN-c
production in agreement with the low affinity CD4+ cell epitopes

predicted as assessed by the IEDB analysis resource Consensus

tool. It is worthy to note that peptides inducing the greatest IFN-c
production also induced the strongest antibody responses, which

indicates a great potential for vaccine development. Since not

association was observed between mouse and human predicted

epitopes, additional experiments should be performed in non-

human primates to assess the cell immune response.

Most of the antigens that have trans-membrane segments or are

involved in secretory pathways were found to be poorly antigenic,

suggesting that these fragments may not be expressed on the

parasite surface or are not present in sufficient concentrations to

allow recognition. Further investigations are warranted to

determine the actual localization of the corresponding antigens.

Although most antigenic fragments were not associated with trans-

membrane domains with only two (PvPep52 and PvPep96.01)

involved in secretory pathways, it has been shown that soluble

proteins released at the time of schizont rupture are equally

effective at triggering immune responses [45–47].

Though desirable, the functional activity of antibodies elicited in

mice or humans as measured by a parasite growth inhibition assay

could not be performed due to the lack of P. vivax in vitro cultures.

Further preclinical studies, including experimental infection in

non-human primates, must be carried out to address this question.

Taken together, present data, along with that previously

published, point to coiled coil peptides as an important potential

source of malaria vaccine candidates. Analysis of a-helical coiled

Figure 5. Schematic representation of the antigen selection
process. Download selection is represented: first, 50 P. vivax antigens
containing a-helical coiled coil motifs, selected from orthologues of P.
falciparum, were chemically synthesized and tested with PNG sera.
Seventeen reactive with prevalence .30% were tested with Colombian
sera. Eight antigens with prevalence .50% either with PNG or
Colombian sera were used for mice immunization and immune
response testing. Four antigens were finally selected for further pre-
clinical testing.
doi:10.1371/journal.pone.0100440.g005
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coil motifs should be extended to the entire group of erythrocytic

parasite antigens. Poly-subunit antigens should be designed,

containing both relevant P. vivax and P. falciparum fragments that

are capable of inducing effective immune responses. Thus, this

study has direct relevance to P. vivax asexual blood- stage vaccine

design and suggests that some of the antigens tested could be

effective in different malaria settings such as PNG and Colombia.

Supporting Information

Table S1 Bioinformatics analysis of coiled coil frag-
ments and Antibody response to PNG sera samples of all
coiled coil P. vivax tested antigens.

(XLSX)
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