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Abstract

Background/Aims: The aim of this study was to evaluate whether supplementation of high doses of cholecalciferol for two
months in normotensive rats results in increased systolic arterial pressure and which are the mechanisms involved.
Specifically, this study assesses the potential effect on cardiac output as well as the changes in aortic structure and
functional properties.

Methods: Male Wistar rats were divided into three groups: 1) Control group (C, n = 20), with no supplementation of vitamin
D, 2) VD3 (n = 19), supplemented with 3,000 IU vitamin D/kg of chow; 3) VD10 (n = 21), supplemented with 10,000 IU
vitamin D/kg of chow. After two months, echocardiographic analyses, measurements of systolic arterial pressure (SAP),
vascular reactivity, reactive oxygen species (ROS) generation, mechanical properties, histological analysis and
metalloproteinase-2 and -9 activity were performed.

Results: SAP was higher in VD3 and VD10 than in C rats (p = 0.001). Echocardiographic variables were not different among
groups. Responses to phenylephrine in endothelium-denuded aortas was higher in VD3 compared to the C group
(p = 0.041). Vascular relaxation induced by acetylcholine (p = 0.023) and sodium nitroprusside (p = 0.005) was impaired in
both supplemented groups compared to the C group and apocynin treatment reversed impaired vasodilation. Collagen
volume fraction (,0.001) and MMP-2 activity (p = 0.025) was higher in VD10 group compared to the VD3 group. Elastin
volume fraction was lower in VD10 than in C and yield point was lower in VD3 than in C.

Conclusion: Our findings support the view that vitamin D supplementation increases arterial pressure in normotensive rats
and this is associated with structural and functional vascular changes, modulated by NADPH oxidase, nitric oxide, and
extracellular matrix components.
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Introduction

Vitamin D (VD) is a fat-soluble compound primarily obtained

through cutaneous synthesis. The remainder of VD may be

obtained from supplements or foods, but few foods contain

substantial amounts of VD [1,2].

The prevalence of VD deficiency has increased in recent years

[3], becoming a public health problem worldwide [4]. It is

estimated that one billion people worldwide are either VD

insufficient or deficient [3]. Furthermore, VD deficiency is

associated with an increased risk of developing several chronic

diseases [2,5,6,7,8,9,10,11]. Therefore, researchers have recom-

mended increased sun exposure, food fortification and VD

supplementation, both for people at higher risk for hypovitamin-

osis D and for the general population [12,13,14]. Medium and

long term effects of VD supplementation with doses above

4,000 IU/day are not well known, and risks may not be

disregarded, although toxic effects are rare [15]. VD dose of

4,000 IU/day was recently recommended by Institute of Medicine

as Upper Level Intake [16].

The classic function of VD is to regulate calcium and

phosphorus homeostasis, but VD also modulates the function of

a variety of non-classical target tissues, including vascular smooth

muscle cells (VSMC) and endothelial cells [17,18,19]. Several

mechanisms have been proposed on how VD could be involved in

blood pressure regulation and the pathophysiology of arterial

hypertension. VD effects on the renin angiotensin aldosterone

system (RAAS), by down-regulates renin expression, have been
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extensively investigated by experimental studies [20,21]. Other

mechanisms linking VD and blood pressure may be related to

direct VD effects on the vasculature [22,23,24,25].

Several randomized controlled trials (RCTs) evaluating the

effects of VD supplementation on blood pressure have been

conducted with inconsistent results [26,27,28,29,30,31]. These

results along with some other RCTs showing no significant blood

pressure effect of VD in largely normotensive individuals

[27,32,33,34], suggest that if antihypertensive effects of VD are

actually present, these may only be observed in groups with both

low VD levels and high blood pressure [35].

On the other hand, in experimental studies Bukoski & Xue

(1993) [36] and Haffner et al. (2005) [37] showed that adminis-

tering 1,25-dihydroxyvitamin D increases systolic blood pressure

in normotensive rats. In agreement with this result, our group has

shown that normotensive rats supplemented for two months with

cholecalciferol also presented with higher systolic blood pressure

[38].

Systemic arterial blood pressure is determined by the cardiac

output and systemic vascular resistance [39,40]. Vascular resis-

tance is set predominantly by the vascular tone in the arterial tree

but is also influenced by alterations in the vascular structural,

functional and mechanical properties. Structural and functional

abnormalities in the vasculature may be due to endothelial

dysfunction, increased vascular oxidative stress, vascular remod-

eling, and decreased compliance. These factors directly impact

vascular resistance and may antedate hypertension and contribute

to its pathogenesis. Therefore, endothelial dysfunction, increased

oxidative stress, vascular remodeling and decreased compliance

directly impact vascular resistance [40,41]. Experimental studies

with rats and cultured cells have shown that VD supplementation

is associated with some of these vascular changes [22,23,24,25].

However, the mechanisms through which VD increases systolic

arterial pressure are unclear.

Therefore, we tested the hypothesis that increased systolic

arterial pressure in normotensive rats after VD supplementation

results from both an increase in cardiac output and vascular

resistance.

The aim of this study was to evaluate whether supplementing

high doses of cholecalciferol for two months in normotensive rats

increases systolic arterial pressure and which are the mechanisms

involved. Specifically, this study assesses the potential effect on

cardiac output as well as the changes in aortic structure and

functional properties.

Materials and Methods

Experimental protocol
All experiments and procedures were performed in accordance

with the National Institute of Health’s Guidelines for the Care and

Use of Laboratory Animals and were approved by the Ethics

Committee for Animal Experimentation of the Botucatu Medical

School, UNESP, São Paulo, Brazil (2008/694). Male Wistar rats

weighting 250 g were randomly allocated into three groups and

fed a cereal-based chow diet for two months: 1) control group (C,

n = 20), with no supplementation of VD (Cereal-based diet -

Nuvilab CR1, with the approximate composition (kg mixture):

protein, 220 g; fat, 40 g; mineral, 100 g; fiber, 80 g and VD,

1,800 IU); 2) VD3 (n = 19), supplemented with 3,000 IU VD/kg

of chow; 3) VD10 (n = 21), supplemented with 10,000 IU VD/kg

of chow. All animals were fed the same amount of chow. All

animal groups received 10 ml of corn oil per kg of chow.

Supplementation with VD was made by adding cholecalciferol

(Sigma-Aldrich, MO, USA) diluted in the corn oil.

The National Research Council recommended to rats the

amount of 1,000 IU of VD per kg of chow for rats [42]. However,

they do not have defined an upper intake level. Therefore, we use

the relation of ten times the recommended daily dose to have our

high dose. Shepard & DeLuca (1980) showed that rats supple-

mented with doses above 1,000 IU of VD/day (, 30,000 IU/kg

of chow) presented toxicity signs such as irritability, diarrhea, loss

of appetite, decrease in weight gain, the kidneys became mottled

and in their kidneys to take on a grayish-white color indicative of

calcification [43]. The doses used in our study were 4.8 and 11.8

times higher than recommended dose for rats and did not reach

the 1,000 IU/day considered toxic by Shepard & DeLuca (1980)

[43]. Therefore, the doses used in the present study were

considered non toxic.

After two months of VD supplementation, the rats were

submitted to measurements of systolic arterial pressure (SAP)

and echocardiographic analyses. Thus, the animals were eutha-

nized, and the thoracic aortas from each animal was carefully

removed, and the segments were used to analyze the vascular

reactivity, assessment of vascular reactive species, mechanical

proprieties, histological analysis and metalloproteinase-2 and -9

activity.

Systolic arterial pressure
The systolic arterial pressure of the tail was measured one week

before euthanasia with a tail plethysmograph. The animals were

warmed in a wooden box at 40uC with heat generated by two

incandescent lamps for four minutes to cause vasodilation artery

tail and were then transferred to an iron cylindrical support that

was specially designed to allow total exposure of the animal’s tail.

A sensor (KSM-microphone) was placed in the proximal region of

the tail, coupled to an electro-sphygmomanometer, Narco Bio-

System, model 709-0610 (International Biomedical Inc, TX, USA)

[44]. The electro-sphygmomanometer was attached to a computer

where the systolic arterial pressure was measured with the software

Biopac Student Lab PRO (Biopac Systems Inc., CA, USA).

Echocardiographic study
After 2 months, all animals were weighed and evaluated with a

transthoracic echocardiographic exam [45]. The exams were

performed using a commercially available echocardiographic

machine (General Electric Medical Systems, Vivid S6, Tirat

Carmel, Israel) equipped with 5–12 MHz phased array transduc-

er. All measurements were obtained by the same observer

according to the leading-edge method recommended by the

American Society of Echocardiography/European Association of

Echocardiography [46]. The data represent the mean of

measurements from at least five consecutive cardiac cycles. The

rats were lightly anaesthetized with an intramuscular injection of a

solution composed of ketamine (50 mg/kg) plus xylazine (1 mg/

kg). The rat chests were shaved, and the rats were placed in a left

lateral position. Targeted 2-D M-mode echocardiograms were

obtained from short-axis views of the left ventricle (LV) at or just

below the tip of the mitral-valve leaflets and at the level of the

aortic valve and left atrium. M-mode images of the LV and left

atrium were recorded at a sweep speed of 100 mm/s. The LV

end-diastolic dimension (LVEDD) was measured at maximal

diastolic dimension. The left atrium was measured at its maximal

diameter. The LV systolic function was assessed by calculating the

ejection fraction [(LVEDD3 – LVESD3)/LVEDD3]. The trans-

mitral diastolic flow (E and A) velocities were obtained from the

apical four-chamber view. The E/A ratio was used as an index of

the LV diastolic function.

Vitamin D, Arterial Pressure and Vascular Function

PLOS ONE | www.plosone.org 2 June 2014 | Volume 9 | Issue 6 | e98895



Vascular reactivity
The thoracic aorta was isolated and cleaned of connective tissue

and fat. Aortic rings, 4 mm in length, were cut and mounted for

isometric tension recording. The rings were placed in bath

chambers (5 ml) for isolated organs (Mulvany Myograph) [47]

containing modified Krebs salt solution of the following compo-

sition (mM): NaCl 130, CaCl2 1.6, MgSO4 1.2, KH2PO4 1.2, KCl

4.7, NaHCO3 14.9, glucose 5.5, which was maintained at 37uC,

pH 7.4, and bubbled with 95% O2 and 5% CO2 [48]. The

responses were recorded on a computer system using the Chart

V4.04, PowerLab ADInstruments (2000) program. The aortic

rings were submitted to a tension of 30 mN during a 45-min

equilibration period. In some aortic rings, the endothelium was

gently removed with a needle. After equilibration, rings were

pharmacologically tested for endothelial integrity with 60 mmol/L

KCl. The concentration-response curves to phenylephrine (Phe)

(10210 to 1025 M) were obtained from the arteries with

endothelium intact or denuded. To assess the endothelium

dependent and endothelium-independent relaxations, aortic rings

pre-contracted with Phe (1025 M) were used to construct

cumulative concentration-response curves to acetylcholine (Ach)

(10211 to 1025 M) and sodium nitroprusside (NPS) (10211 to

1026 M). Relaxation was calculated as a percentage of the

contraction induced by Phe (1025 M). In addition, the involve-

ment of reactive species NADPH-dependent and the contribution

of nitric oxide (NO) to relaxation was assessed by the pre-

incubation of apocynin (361024 M), which was incubated 30 min

before the relaxation induced by Ach and NPS.

Assessment of 25-hydroxyvitamin D3 and calcium and
phosphorus

Plasma concentrations of 25-hydroxycholecalciferol (25(OH)D3)

were measured by high performance liquid chromatography

(HPLC) as described by Asknes (1992) [49]. Extraction of

25(OH)D3 was performed with 500 ml plasma samples that were

placed in disposable glass test tubes, and 500 ml of methanol

isopropanol (90:10 v/v) was added and the tubes were vortex

mixed for 15 s. A 1.5-ml aliquot of n-hexane was added and the

tubes vortex mixed for 60 s and centrifuged at 1000 g for

3 min. The n-hexane layer was carefully transferred to a

tapered microvial for autosampler and evaporated to dryness

with a stream of N2. The samples were redissolved in 125 ml of

methanol and injected by an autosampling injector into a C-18

reverse phase column. The apparatus used was Waters 2695

chromatograph with photodiode-detector Waters 2996. The

mobile phase consisted of a mixture of water and methanol

(85:15, v/v)) at a flow rate of 0.5 ml min-’, followed by a 20-

min. The detector wave length was set at 265 nm. 25(OH)D3

was quantified by determining peak areas on high-performance

liquid chromatograms, calibrated against known amounts of

standards (H4014 Sigma Co. USA).

Serum concentrations of calcium and phosphorus were

measured in through arzenazo III method and colorimetric

method, respectively (test kit Labor Lab, São Paulo, Brazil).

Histological analysis
The first 5 mm of the aorta was cleaned of connective tissue and

immediately fixed in 10% buffered formalin and embedded in

paraffin. Five-micron-thick sections were stained with hematoxylin

and eosin (HE), collagen-specific stain picrosirius red (Sirius red

F3BA in aqueous saturated picric acid) and Calleja’s stain to

evaluate the elastin. The measurements were obtained from digital

images that were collected with a video camera that was attached

to a Leica microscope; the images were analyzed with the software

Image-Pro Plus 3.0 (Media Cybernetics; Silver Spring, MD, USA).

The media cross-sectional area (CSA) was calculated by subtract-

ing the lumen internal area (Ai) from the external area (Ae), which

was measured in the tissue sections (50x). The external diameter

(ED) and the internal diameter (ID) were calculated as the square

root of 4Ae/p and 4Ai/p, respectively. Media thickness (M) was

calculated as (ED-ID)/2. Finally, M to lumen diameter (M/L) was

also calculated [50].

The collagen volume fraction and elastin volume fraction was

determined for the entire aortic section by analyzing the digital

images that were captured under polarized light (4006 magnifi-

cation). These volume fractions were calculated as the sum of all

connective tissue areas divided by the sum of all connective tissue

and aorta areas. On average, 15 microscopic fields were analyzed

per aorta [51].

Mechanical properties analysis of the aorta
Aortic mechanical properties were studied in rat thoracic aortas.

Before mechanical testing, 2-mm aorta fragments were promptly

immersed in saline solution containing 0.25 mg/mL of papaverine

to relax the muscle bundles of the arteries and to standardize the

state of muscle tension in all aortic samples. The mechanical

analysis was performed using a EMIC DL 10.000 Universal

Machine of Mechanical Assays (Equipments and Testing Systems,

Ltd., PR, Brazil). The aortas were immediately fixed with grasping

clamps using smooth non-cutting metallic bars fastened with two

screws. The stretching speed was 30 mm/minute and a 50-N load

cell was used. Failure load, yield point (by Johnson’s method), and

stiffness were obtained. Failure load may be defined as the highest

load tolerated by materials until rupture. Yield point is the

maximum tension value below which materials comply with

Hooke’s law (in which the tension-deformation function is linear).

Beyond the yield point, some degree of lesion may be found and

plastic deformation materials may already be present, making the

return to initial length impossible even if the loading stops.

Stiffness is the linear and constant numeric relation between load

and elongation calculated at the yield point [52].

Metalloproteinase-2 and -9 activities by gelatin
zymography

The metalloproteinase (MMP)-2 and -9 activities were deter-

mined, as reported previously [53]. Briefly, the aortic samples were

homogenized in buffer containing 50 mM Tris, pH 7.4; 0.2 M

NaCl, 0.1% Triton X and 10 mM CaCl2. The tissue extracts were

subjected to electrophoresis on 8% SDS-polyacrylamide contain-

ing 1% gelatin. Electrophoresis was performed in a Bio-Rad

apparatus at 100 V for 2 h at 4uC. After electrophoresis, the gel

was incubated for 1 h at room temperature in 2.5% Triton-X-100,

washed with 50 mM Tris pH 8.4 and incubated at 37uC for

20 hours in 50 mM Tris pH 8.4 containing 5 mM CaCl2. The

staining was performed for 1 h with 0.5% coomassie blue and

destaining in 30% methanol and 10% acetic acid until clear bands

over a dark background were observed. The gels were photo-

graphed with an image analyzer (Carestream Molecular Imaging,

Carestream, Inc., USA), and the optic density of each metallo-

proteinases band (measured in pixels) was quantified using Gel

pro-3.1 software [54]. The inactive, pro and active forms of MMP-

2 were identified as bands at 75, 72 and 64 kDa [55], respectively,

and the pro and active MMP-9 were identified as band at 92 and

80 KDa, respectively [56].
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Data and statistical analysis
The concentration of Ach and NPS producing half-maximal

relaxation (i.e., EC50) and the maximal relaxation of the NE

contractile effect were estimated by linear regression analysis (fitted

to the Hill equation) from the log concentration-response curves

and expressed as -log EC50 (pD2 values) and as the percent of

maximal relaxation. Between-group comparisons were made by a

1-way analysis of variance for variables with normal distribution.

Otherwise, between-group comparisons were made using the

Kruskal-Wallis test. The association between variables was

assessed by Pearson correlation test. Data were expressed as the

mean 6 SD or medians (including the lower and upper quartiles).

Data analysis was carried out with SigmaStat for Windows v3.5

(SPSS Inc., IL, USA). A significance level of 5% was used.

Results

The daily intake of VD, plasma 25(OH)D3 and serum calcium

and phosphorus are listed in Table 1. The daily intake of VD and

serum calcium and phosphorus were higher in supplemented

groups compared to control. Plasma 25(OH)D3 was higher in

VD10 than control.

The data on systolic blood pressure and echocardiographic

variables are listed in Table 2. Systolic arterial pressure was higher

in both the supplemented groups compared to the control. The

echocardiographic variables (i.e., heart rate, cardiac output,

systolic and diastolic function and morphological variables) were

not different when comparisons were performed among the three

groups.

The blood pressure was not associated with serum calcium

(r = 0.05 e p = 0.77).

Table 3 shows pharmacological parameters obtained from the

cumulative concentration-response curves to Phe performed in

endothelium-intact and endothelium-denuded aortas. Supplemen-

tation with 3,000 IU of VD significantly showed higher aortic Phe

pD2 values in the endothelium-denuded aortas compared to the

control group. No changes in the Phe maximal response were

observed. However, changes in Phe responses were not observed

in the endothelium-intact aortas.

These results are also listed in Table 3. The Ach pD2 values

were not different among the groups. However, the maximal

relaxation induced by Ach was significantly lower in the VD10

group than in the control group. Apocynin increased the Ach pD2

values in both the supplemented groups compared to the control,

and reversed the impaired Ach relaxation in the VD10 group.

Similarly, the NPS pD2 values were not different among the

groups, whereas the SNP maximal response was impaired in both

the supplemented groups compared to the control group. The

NAPDH inhibitor apocynin restored the NPS relaxation.

Table 4 summarizes the results from histological analysis. The

morphological data were not different when comparisons were

performed among the three groups. However, the elastin volume

fraction was lower, and the collagen volume fraction and the

collagen/elastin ratio were higher in the VD10 group compared to

the others groups. Moreover, the media of these animals (VD10)

presented fragmentations of elastic fibers, which were observed in

the arterial media of the samples from the VD10 group (Figure 1).

Vascular mechanical properties are listed in Table 5. Supple-

mentation with 3,000 IU of VD significantly had a lower aorta

yield point compared to the control. No differences were observed

among the groups for the other mechanical variables, failure load

and stiffness.

The data describing the MMP-2 and MMP-9 activity are listed

in Table 5. The ratio for active/inactive MMP-2 was higher in the

VD10 group compared to the VD3 group. The ratios for the

active/inactive forms of MMP-9 were not different when

comparisons were performed among the three groups.

Discussion

This study showed that VD supplementation for two months in

normotensive rats is associated with higher arterial systolic

pressure in these animals. In addition, there was higher aortic

contractility, impairment of aortic relaxation, higher production of

ROS, changes in collagen and elastin content and impairment of

mechanical properties in the supplemented groups. These changes

may be part of some mechanisms involved in the higher blood

pressures that were found in the animals supplemented with VD.

In our study the animals supplemented with VD presented

higher plasma 25(OH)D3. These values were consistent with data

shown in studies which supplemented similar doses of VD [43,57].

The rats receiving both VD doses showed a slight increase in

serum calcium but were still normocalcemic [43,57,58,59]. In

addition, levels of 25(OH)D3 and calcium are below the values

considered capable of generating toxicity signs by VD, as shown

by Shepard and Deluca [43].

Consistent with previous reports [36,37,38], our data showed

that VD supplementation in normotensive rats is associated with

higher blood pressure. The elevation on the blood pressure was

not associated with cardiac output nor with serum calcium in this

model.

Over the past 2 decades, it has become apparent that VD is a

modulator of vascular function [17]. Some VD actions are related

to the increased vascular contractility [36,60,61,62]. In our study,

we found that VD supplementation led to an increased contractile

response to Phe in aortas with denuded endothelium. These data

Table 1. Vitamin D and food ingestion, serum calcium and phosphorus and plasma 25 (OH) D3.

Variable C VD3 VD10 p

Food ingestion (g/day) 25.561.5 (20) 25.962.2 (19) 25.262.2 (21) 0.681

Vitamin D ingestion (IU/day) 45.3 (44.2–48.2) (20) 126.3 (116.7–128.5)* (19) 309.2 (288.6–317.6)*# (21) ,0.001

25 (OH) D3 (ng/ml) 15.0 (13.2–20.7) (5) 25.5 (19.0–40.5) (5) 37.0 (34.1–40.0)* (5) 0.016

Ca (mg/dl) 8.2460.36a (20) 9.3260.32* (19) 9.4460.15* (21) 0.016

P (mg/dl) 5.90 (5.65–6.10)a (20) 6.80 (6.35–8.00)* (19) 7.60 (6.95–8.78)* (21) ,0.001

Data are expressed as mean 6 standard deviation of mean or median with 25 and 75 percentiles, numbers in parentheses indicate the numbers of animals included in
each experimental group. C: control group (no supplementation with vitamin D); VD3: supplemented with 3,000 IU VD/kg of chow; VD10: supplemented with 10,000 IU
VD/kg of chow; 25 (OH) D3: plasma 25-hydroxycholecalciferol; Ca: serum calcium; P: serum phosphorus. * p,0.05 versus control group; # p,0.05 versus VD3 group.
doi:10.1371/journal.pone.0098895.t001
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are in accordance with other studies that demonstrated that 1,25-

dihydroxyvitamin D increased the contractile force-generating

capacity of the aorta and mesenteric arteries in both normotensive

and hypertensive rats [36,60,62]. When the experiment was

performed with endothelium, the contractile response returned to

normal. We hypothesize that the endothelium possesses relaxation

factors that controls the VD vasoconstriction effect. Therefore, this

vasoconstriction effect alone does not explain the blood pressure

elevation.

In addition, the animals supplemented with VD had impaired

relaxation to both Ach and SNP. These results suggest the NO

pathway or bioavailability could be impaired once Ach releases

NO by the endothelial cell, while the SNP provides an inorganic

source of NO [63,64].

Superoxide anions (O2
2) are largely responsible for altering the

bioavailability of NO by forming peroxynitrite (ONOO2) [65].

Several enzymatic sources in blood vessels may produce ROS.

NADPH oxidase complex is one of the most important of these

sources and may be the largest producer of O2
2 in the vascular

wall [66]. Thus, we performed additional experiments in vessels in

presence of NADPH oxidase inhibitor (apocynin). When the

NADPH oxidase was inhibited by pre-incubation with apocynin,

the vasorelaxation of supplemented animals improved and

returned to similar vascular response to control group. Therefore,

VD supplementation could be the responsible for the increased

source of the ROS by NADPH oxidase complex and decreasing

the NO bioavailability. This decreased NO bioavailability leads to

impaired vascular relaxation, which may be a mechanism of

increased arterial systolic pressure in this model.

Table 2. Systolic arterial pressure, body weight and echocardiographic data.

Variable C (n = 20) VD3 (n = 19) VD10 (n = 21) p

BW (g) 402633 411638 405623 0.700

SAP (mmHg) 11967.9 12769.2* 13069.9* 0.001

HR (bpm) 318637.8 322637.9 315642.4 0.845

CO (ml/min) 94635 108629 105626 0.322

EF 0.8860.08 0.9060.04 0.9260.04 0.119

E/A 1.48 (1.35–1.60) 1.49 (1.33–1.58) 1.48 (1.22–1.77) 0.992

LA (mm) 4.360.7 4.660.7 4.461.0 0.590

LA/BW (mm/kg) 10.1 (9.3–12.7) 11.0 (9.8–12.8) 9.9 (9.0–12.6) 0.515

LVEDD (mm) 7.060.7 7.260.6 7.160.5 0.475

LVEDD/BW (mm/kg) 17.2 (15.8–18.9) 17.0 (16.1–19.2) 17.5 (16.7–19.0) 0.857

LVM (mg) 6216149 6956115 6986128 0.119

Data are expressed as mean 6 standard deviation of mean or median with 25 and 75 percentiles. n: number of rats. C: control group (no supplementation with vitamin
D); VD3: supplemented with 3,000 IU VD/kg of chow; VD10: supplemented with 10,000 IU VD/kg of chow. BW: body weight; SAP: Systolic arterial pressure; HR: heart
rate; CO: cardiac output; EF: ejection fraction; E: E wave; A: A wave; LA: left atrium; LVEDD: left ventricular (LV) end-diastolic diameter; LVM: left ventricular mass. * p,

0.05 versus control group.
doi:10.1371/journal.pone.0098895.t002

Table 3. Summary of pD2 and Maximal Response values.

Variable C VD3 VD10 p

Phe E2 (%KCl) pD2 7.960.8 (5) 8.860.6* (6) 8.160.3 (6) 0.041

Maximal Response 157.0637.5 (5) 250.3692.3 (6) 197.0649.5 (6) 0.095

Phe E+ (%KCl) pD2 7.460.4 (5) 7.760.2 (5) 7.360.4 (6) 0.236

Maximal Response 148.7641.9 (5) 166.0633.4 (5) 138.4633.6 (6) 0.466

Ach (%) pD2 7.560.6 (9) 7.860.9 (8) 7.060.3 (7) 0.101

Maximal Response 97.5 (71.7–100.1) (9) 90.6 (75.2–95.9) (8) 60.9 (55.6–80.1)* (7) 0.023

Ach + apocynin (%) pD2 7.261.0 (4) 8.760.4* (5) 8.460.5* (6) 0.013

Maximal Response 101.161.4 (4) 96.465.3 (5) 94.866.6 (6) 0.213

SNP (%) pD2 7.460.5 (6) 6.960.6 (5) 7.160.5 (5) 0.416

Maximal Response 120.7613.9 (6) 96.1615.3* (5) 92.366.5* (5) 0.005

SNP + apocynin (%) pD2 9.860.3 (4) 9.460.6 (5) 9.260.5 (5) 0.198

Maximal response 102.2 (100.4–121.3) (4) 102.0 (100.0–105.2) (5) 105.0 (103.2–108.0) (5) 0.382

Data are expressed as mean 6 standard deviation of mean or median with 25 and 75 percentiles; numbers in parentheses indicate the numbers of animals included in
each experimental group. C: control group (no supplementation with vitamin D); VD3: supplemented with 3,000 IU VD/kg of chow; VD10: supplemented with 10,000 IU
VD/kg of chow. pD2: indicates -log EC50 (the concentration of agonist producing half-maximal response); Phe: phenylephrine; E+: endothelium-intact vessels; E2:
endothelium-denuded vessels; Ach: acetylcholine; SNP: sodium nitroprusside. * p,0.05 versus control group.
doi:10.1371/journal.pone.0098895.t003
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Increased arterial pressure is also associated with structural and

mechanical alterations in both resistance and conduit arteries [67].

The maintenance proper structural geometry, mechanical prop-

erties and function of vessels are dependent on the balanced

composition of the extracellular components matrix (ECM)

[68,69]. We showed that supplemented animals did not present

alterations in media cross-sectional area, media thickness and

lumen diameter. However, they showed alterations in ECM. The

collagen content was higher, and the elastin content was lower in

the animals supplemented with highest VD dose. Therefore, the

ratio collagen/elastin was elevated in these animals. However, no

difference was observed in elasticity (yield point) and vascular

stiffness. It can be speculated that occurred production of other

collagen type or architecture rearranged in order to preserve the

integrity and the mechanical properties of the vessel wall [70,71].

The ECM metabolism is regulated for metalloproteinases

(MMPs), which are Zn21- and Ca21-dependent proteolytic

enzymes [72]. Several different MMPs are present in the

vasculature. These MMPs include MMP-2 and MMP-9, which

play an important role in vascular remodeling [73,74,75]. In our

study, MMP2 activity was higher in the supplemented animals

compared to control. Increased MMP-2 activity is associated with

increased deposition of collagen, alterations in ECM architecture

or ECM attachments [76], systemic arterial stiffness [77] and

modulation of vascular contractility and relaxation [78,79],

thereby promoting vasoconstriction. Furthermore, MMP-2 activ-

ities are also associated with the destruction of the elastic lamina of

arteries [80]. In situ studies showed gelatinolytic activity in tissue

sections and strong MMP-2 immunostaining along the inner

elastic lamina up to the lamina break [81]. Clinical and

experimental studies have reported increased expression and

activity of MMPs, particularly MMP-2 in the vascular tissues in

animal hypertension models [51,82]. Therefore, the alterations

observed in ECM of supplemented animals may be associated with

alterations in MMPs.

Studies have shown that increased oxidative stress and

reduction in NO bioavailability both contribute to increased

MMP-mediated vascular remodeling and resulting vascular

pathologies [69,83,84]. In addition, during this process, ONOO2-

generated activates latent MMPs. These processes lead to the

degradation of ECM components elastin and collagen. However,

because the turnover of collagen is fast, more collagen is placed on

the outer interstitial and inner medial layers of the aorta wall [84].

This placement may explain the relation between the higher

collagen content observed in the VD10 group, which also had

increased MMP-2 activity.

Figure 1. Elastin content in the aortic sections and fragmentation of elastic fibers in the VD10 group. Photographs of aortic samples
(4006) stained by Calleja. C: control group (no supplementation with vitamin D); VD3: supplemented with 3,000 IU VD/kg of chow; VD10:
supplemented with 10,000 IU VD/kg of chow.
doi:10.1371/journal.pone.0098895.g001

Table 4. Histological data of the aorta.

Variable C VD3 VD10 p

CSA (mm2) 751961555 648461129 767661642 0.370

(6) (6) (3)

M (mm) 13.3 (13.1–16.1) 12.0 (10.5–12.4) 12.9 (12.3–13.6) 0.235

(6) (6) (3)

L (mm) 157614.9 155613.3 175628.1 0,269

(6) (6) (3)

M/L 0,087 (0,083–0,096) 0,072 (0,068–0,077) 0,070 (0,070–0,081) 0,130

(6) (6) (3)

Collagen (%) 0.2660.03 0.2260.03 0.2960.03# ,0.001

(8) (8) (8)

Elastin (%) 0.3560.04 0.3560.03 0.3060.03*# 0.015

(9) (8) (9)

Collagen/elastin 0.7660.10 0.6460.11 0.9560.19 *# ,0.001

(8) (8) (7)

Data are expressed as mean 6 standard deviation of mean or median with 25 and 75 percentiles; numbers in parentheses indicate the numbers of animals included in
each experimental group. C: control group (no supplementation with vitamin D); VD3: supplemented with 3,000 IU VD/kg of chow; VD10: supplemented with 10,000 IU
VD/kg of chow. CSA: media cross-sectional area; M: media thickness; L; lumen diameter. * p,0.05 versus control group; # p,0.05 versus VD3 group.
doi:10.1371/journal.pone.0098895.t004
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The higher collagen content in the group VD10 may also have

prevented the increase in aortic contractility in these animals.

Study has shown that the increased bulk collagen interposed

between the smooth muscle cells reduced the force generation by

the smooth muscle cells. Another possibility is that the attachments

between smooth muscle cells and extracellular matrix are altered

and influence the maximal tension generated [85]. Finally, VD

supplementation in normotensive rats led to increased systolic

blood pressure, but the mechanisms involved may be different,

depending on the dose used. In the VD10 group, the dose was

related to impaired vascular relaxation and changes in ECM.

While in the VD3 group, the dose was related to increased

vascular contractility and alterations of the aortic mechanical

properties.

Several studies showed that VD exerts a biphasic ‘‘dose

response’’ curve on cardiovascular physiopathology with deleteri-

ous consequences not only of VD deficiency but also of VD excess

[86,87]. Both VD deficiency [88,89,90,91,92,93,94] and high

doses of VD [95,96,97,98] can lead to structure and functional

vascular alterations and hypertension. In addition, the VD

deficiency is associated with marked increase in renin activity

[99]. On the other hand, in hypertension models the VD

presented antihypertensive effect. The antihypertensive mecha-

nisms include the negative regulator for rennin, protects the

vascular function and the inhibition of vascular smooth muscular

cell proliferation and growth [31,99,100,101,102,103].

In conclusion, our data suggest that the higher arterial pressure

in normotensive rats after VD supplementation were caused by

aortic alterations in function and structure. NO bioavailability and

ROS production may also play an important role in this increased

pressure.
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